Instruction-Level Parallelism

Kai Shen

1/30/2014 CSC 258/458 - Spring 2014

1/30/2014

Instructional-Level Parallelism

= Instructional-level parallelism

= Asingle CPU core, but multiple functional units (arithmetic
computation, floating-point computation, ...)

= Possible to execute multiple instructions in parallel

= Pipelining: initiate one instruction per cycle
% SuperScalar: possibly initiate multiple instructions in a cycle

= Historical perspectives

= Scalar vs. vector processors = Superscalar processor
= RISC/CISC architectures

1/30/2014 CSC 258/458 - Spring 2014

Sequential Execution Model

Sequential execution model:

= One instruction at a time = all computation completed, all state
committed before next instruction starts

Equivalent executions to sequential execution model:
= Follow control dependences — execute same set of instructions

= Follow data dependences — each instruction executed in the same way
(using the same input data and producing the same output)

= Software written (or compiled) for sequential execution model
processors will remain correct on a superscalar processor

1/30/2014 CSC 258/458 - Spring 2014

Sequential Execution Model:
Interrupts

An interrupt in sequential execution:
= Instruction at program counter (PC) is interrupted
= Every instruction before PC has been completed
= Every instruction after PC has not started

= Enough is known about PC’s execution state so it can be resumed after
interrupt

Precise interrupt:
= Aninterrupted state is equivalent to that under sequential execution
= Why does it matter? — allowing easy state saving and restoration

1/30/2014 CSC 258/458 - Spring 2014




Manage Dependencies

= Control dependences

= Not to go beyond a branch instruction until the instruction’s
outcome becomes available

= Execute predicted branch(es) on temporary space and not to
commit in case of mis-prediction

= Data dependences
= Read-after-write, or RAW (true)
= Write-after-read, or WAR (artificial)
= Write-after-write, or WAW (artificial)
= Resolve artificial dependencies through optimization

1/30/2014 CSC 258/458 - Spring 2014

1/30/2014

Superscalar Processor Phases

= Instruction fetching

= Instruction decoding

= Instruction issuing and parallel execution
s Committing state

1/30/2014 CSC 258/458 - Spring 2014

Instruction Fetching

= Fetching multiple instructions each cycle.

= Challenge I: slow memory accesses
= Separate instruction cache from data cache
= High fetch speed to leave margin for cache misses

1/30/2014 CSC 258/458 - Spring 2014

Instruction Fetching

= Fetching multiple instructions each cycle.

= Challenge II: branches
= Recognize branch instruction (before real decoding)
= Branch prediction and speculative execution

= Static prediction using branch direction (backward branch
forming a loop) and compiler flag

= Dynamic prediction based on history
= Compute branch target

= Ideally not use a register (PC + offset), branch target buffer
for repetitive loops

= Transfer control
= Delayed branches

1/30/2014 CSC 258/458 - Spring 2014




1/30/2014

Instruction Decoding

= Recognize and prepare instructions before (possibly parallel)

execution

= Recognize data dependencies

= Data in registers and main memory location

= Overcome artificial dependencies (WAR/WAW)

= Register renaming
= Larger physical register space or a temporary buffer

1/30/2014 CSC 258/458 - Spring 2014

Register Renaming I:
Mapping to More Physical Registers

= Model
= Instructions specify logical registers (e.g., r1-r8). A larger number of
physical registers in hardware (e.g., R1-R16).

= Multiple versions of a logical register may physically exist at a time
(in the case of WAR). Each version uses a physical register.

add R2, R1, 4 mapping r1l = R1
load R3, memaddr mapping rl1 = R3

addr2,r1, 4
load r1, memaddr

= Support on processor
= Map logical to physical registers at instruction decoding.
= Manage the resource of physical registers.
= When can a physical register (e.g., R1) be reclaimed?

1/30/2014 CSC 258/458 - Spring 2014

10

Register Renaming Il:
Using A Reorder Buffer

Model

= Results of instruction execution put in the buffer, arranged in
instruction order

= Results are committed in order

addr2,rl, 4 add rob5, r1, 4 mapping rl = rl
mapping r2 = rob5

load rob6, memaddr mapping rl = rob6

load r1, memaddr

1/30/2014 CSC 258/458 - Spring 2014

11

Parallel Instruction Execution

= Independent instructions can execute in parallel

= Subject to resource constraints
= Physical register space or reorder buffer space
= Function units (floating-point unit)

= Architectures
= Queue-based, one queue per type of instructions (limited, cross-
queue parallelism)
= Reservation stations (Tomasulo’s algorithm)

1/30/2014 CSC 258/458 - Spring 2014

12




Committing State

= Committing execution results
= Physical register becomes visible through logical register
= Move result from reorder buffer head to the register

= Challenges of precise interrupts
= Multiple instructions may commit in one cycle
= Instructions may be committed out of order

= Possible solutions (operational state and recovery state)
= Checkpoint and recover
= Physical state (for operations) and architectural state (for recovery)

1/30/2014 CSC 258/458 - Spring 2014

13

1/30/2014

Handling Memory Operations

Memory different from register
= Target location requires calculation
= Address itself a variable
= Need logical to physical translation
= Only known at execution

Consequences:

= No recognition of dependency at decoding stage = no removal of
artificial dependencies

= Observe data dependencies during execution

= Buffer outstanding access addresses; new load and store
instructions checked against outstanding addresses

1/30/2014 CSC 258/458 - Spring 2014

14

Handling Memory Operations

= Memory access requires logical to physical address translation
= Accelerated by TLB (cached logical-physical mapping)

= Parallel memory access and address translation
= Access cache before logical-to-physical address translation is done?

1/30/2014 CSC 258/458 - Spring 2014

15

Role of Software

Must run all legacy binaries correctly

But software/compiler assistance can help things run faster
= Software removal of dependencies
= Place independent instructions together
= Provide explicit hints for branch prediction

1/30/2014 CSC 258/458 - Spring 2014

16




