il

Multiprocessor Memory
Consistency

Kai Shen

2/6/2014 CSC 258/458 - Spring 2014

Multithread Application Semantics

= Initially
flagl = flag2 = 0;
P1 P2
flagl = 1; flag2 = 1;

if (flagl==0) {
/* critical section */

if (flag2==0) {
/* critical section */

} }

= Semantics — only one CS may run (or neither)
= Uni-processor

= Assume interrupts are precise (instructions before interrupt are
completed; instructions after interrupt hasn’t started)

= Multi-processor with local caches
= Would cache coherence help?

2/6/2014 CSC 258/458 - Spring 2014

Multiprocessor Cache Coherence

Coherence means the system semantics is the same as that of a
system without processor-local caches

Multiprocessor cache coherent if there exists a hypothetical
sequential order of all memory accesses:
= returned value in the read access is that written by last write in the
sequential order
= the sequential order matches the order of memory accesses from
each processor

At the program level, ordering only effective on individual data
location since cross-data-location ordering is affected by
optimizations (what optimizations?)

2/6/2014 CSC 258/458 - Spring 2014

Complications

= Ordering only effective on individual data location since cross-
data-location ordering is affected by
= Instruction-level parallelism (SuperScalar processor):
= Read is issued while writes to other locations are outstanding.
= Overlapping writes to different locations

= Non-blocking reads (issuing next read, to a different location, while
waiting for the current one)

= Compiler reordering (common sub-expression elimination, register
allocation, ...)

= Butindividual ordering on each location may not be sufficient for
supporting parallel execution semantics

2/6/2014 CSC 258/458 - Spring 2014

2/6/2014

Multithread Application Semantics

= Initially
flagl = flag2 = 0;
PL P2
flagl = 1; flag2 = 1;
if (flag2==0) { if (flagl==0) {
/* critical section */ /* critical section */
} }

= Semantics — only one CS may run (or neither)
= Multi-processor
= Is cache coherence sufficient?

= Memory consistency model: specification of memory access
behaviors (at program level, at the presence of instruction-level
parallelism)

2/6/2014 CSC 258/458 - Spring 2014

Sequential Memory Consistency

= It means the memory access semantics is the same as that of a

uni-processor system with precise interrupts

= Sequential consistent if there exists a hypothetical sequential

order of all memory accesses on all locations:
= returned value in the read access is that written by last write in the
sequential order
= the sequential order matches the order of memory accesses from
program on each processor

2/6/2014 CSC 258/458 - Spring 2014

Sequential Ordering on
One-Location, All-Locations

= Does the follow execution satisfy sequential ordering on one-
location, all-locations?

Py Py
write(X) T

o
™

1 read(x)
1 write(y)

L read(y)

-+ read(x)

= So this can happen on a cache-coherent machine that allows
unrestricted instruction-level parallelism. How?

2/6/2014 CSC 258/458 - Spring 2014

Support Sequential Consistency

= Naive approach
= Processor-level serialization: A multiprocessor without processor-
local caches, using a shared bus connected to memory

= Program-level serialization: All memory operations serially issued in
program order by each processor

= A multiprocessor with processor-local caches
= Use cache coherence to ensure processor-level serialization

2/6/2014 CSC 258/458 - Spring 2014

2/6/2014

Support Sequential Consistency

Program order

= A processor ensures the previous memory access completed before
issuing next memory access in program order

Write atomicity
= Writes to the same location are serialized
= A write is not returned by a read until the result is visible to all

Not helpful to instruction-level parallelism

Determining the completion of a write typically requires explicit
acknowledgement memory from memory (and other caches)

2/6/2014 CSC 258/458 - Spring 2014 9

Optimizations satisfying Sequential
Consistency

m Prefetch write ownership (ReadEx)

= Speculative read
= Can the speculation go wrong?
= What do we do when it goes wrong?

Relaxed Consistency Models

Relax write-to-read ordering

= Optimization: a read can be issued while a write is ongoing if they
are to different locations

Relax write-to-write ordering

= Optimization: addresses of outstanding writes are buffered; new
write can be issued as long as its address doesn’t appear in the
buffer

Safety backup
= Serialization instruction (memory fence)
= Example: http://en.wikipedia.org/wiki/Memory_barrier

Collaboration between hardware and software

2/6/2014 CSC 258/458 - Spring 2014 11

2/6/2014 CSC 258/458 - Spring 2014 10
Specific Relaxed Consistency Models
= |BM 370
= SPARC V8 total ordering model (TSO)
= Processor consistency
= Relaxing write-to-read ordering with safety nets
= Weak ordering
= Relaxing all types of ordering
= Allow a special category of synchronization memory operations:
a synchronization operation preserves order with all previous and
following operations
2/6/2014 CSC 258/458 - Spring 2014 12

2/6/2014

Specific Relaxed Consistency Models

Release consistency
= Acquire: reading a critical variable (flag) signaled by others
= Release: signaling

shared
special ordinary
sync nsync

acquire release

Ordering: acquire — all, all = release, and special — special.

2/6/2014 CSC 258/458 - Spring 2014

13

2/6/2014

