2/12/2014

Synchronization

Kai Shen

2/12/2014 CSC 258/458 - Spring 2014

Sequential Memory Consistency

It means the memory semantics is the same as that of a uni-
processor system with precise interrupts

Sequential consistent if there exists a hypothetical sequential
order of all memory accesses on all locations:
= returned value in the read access is that written by last write in the
sequential order
= the sequential order matches the order of memory accesses from
program on each processor

Support
= Multiprocessor cache-coherence

= Each processor issues all memory accesses in program order without
instruction-level parallelism; no compiler re-ordering either

2/12/2014 CSC 258/458 - Spring 2014

Relaxed Consistency Models

Relax write-to-read ordering
= Optimization: a read can be issued while a write is ongoing if they are
to different locations
Relax write-to-write ordering
= Optimization: addresses of outstanding writes are buffered; new write
can be issued as long as its address doesn’t appear in the buffer

Release consistency
Software manipulation
= Software understands the relaxed consistency model and constructs
programs accordingly
= Use serialization instructions (memory fence, acquire—all,
all—release) when needed

2/12/2014 CSC 258/458 - Spring 2014

Synchronization

What is synchronization?

= Synchronize/coordinate the progress of parallel/concurrent processes
to satisfy certain high-level semantics

What are desired semantics for synchronization?
= Mutex locks
= Condition variable
= Barrier

Avoid race conditions

= Race condition — output/result of a parallel execution depends on the
relative progress of concurrent processes

2/12/2014 CSC 258/458 - Spring 2014

Synchronization and
Instruction-Level Parallelism

2/12/2014

Synchronization and Instruction-
Level Parallelism

= Initially
flagl = flag2 = 0;
P1 P2
flagl = 1; flag2 = 1;

if (flag2==0) {

}

if (flagl==0) {

/* critical section */ /* critical section */

}

= Assume sequential memory consistency on multiprocessor
= Show that at most one of the critical sections runs?
» What if each processor allows instruction-level parallelism that

relaxes write-to-write reordering (on different locations)?

= What if write-to-read reordering is relaxed?

= Where to put the fence instruction?

2/12/2014 CSC 258/458 - Spring 2014

= Initially
flagl = flag2 = 0;
P1 Pz
flagl = 1; flag2 = 1;
turn = 2; turn = 1;

while (flag2 && turn==2) ; while (flagl && turn==1)
/* critical section */

flagl = 0; flag2 = 0;

/* critical section */

= Assume sequential memory consistency on multiprocessor

= Mutually exclusive?

= Deadlock free?

= What if the each processor relaxes write-to-write reordering?
= What if write-to-read reordering is relaxed?

2/12/2014 CSC 258/458 - Spring 2014

Synchronization Using Special
Instruction: TSL (test-and-set)

entry section:

TSL R1, LOCK copy lock to Rl and set lock to 1

I
CMP R1, #0 | was lock zero?
JNE entry section | if it wasn’t zero, lock was set, so loop
RET | return; critical section entered

exit section:
MOV LOCK, #0 | store 0 into lock

RET return; out of critical section

= Mutually exclusive and deadlock free (support many processes,
only 2 in the previous software case).

m What if the superscalar processor may reorder memory accesses
to different locations?

2/12/2014 CSC 258/458 - Spring 2014

Synchronization Performance

P1
flagl = 1;
turn = 2;

while (flag2 && turn==2) ;

/* critical section */

= Costs of busy waiting on others?
= No processor-local cache
= Cache-coherent local cache

2/12/2014 CSC 258/458 - Spring 2014

Synchronization Performance

2/12/2014

entry section:
TSL R1l, LOCK | copy lock to Rl and set lock to 1
CMP R1, #0 | was lock zero?
JNE entry section | if it wasn’t zero, lock was set, so loop
\

RET return; critical section entered

= Costs of busy waiting on others (cache-coherent local cache)?
= Write-through cache, write-back cache
= One is waiting, many are waiting

exit_section:
MOV LOCK, #0 | store 0 into lock
RET | return; out of critical section

= Costs of settling the new critical section holder?

2/12/2014 CSC 258/458 - Spring 2014

Synchronization Performance
Summary

= Synchronization performance
= Bus/memory traffic while waiting

= Bus/memory traffic while the critical section becomes available
for competition

= Scalability in a large system of many threads
= Costs of busy waiting to each other

= Costs of settling competition when critical section becomes
available

2/12/2014 CSC 258/458 - Spring 2014 10

