2/13/2014

Synchronization
(cont.)

Kai Shen

2/13/2014 CSC 258/458 - Spring 2014

Synchronization and Scheduling

Busy-waiting synchronization
= Waste CPU on waiting
= OK if each process/thread has a CPU exclusively
= What if there are fewer CPUs than processes/threads?

Blocking (yielding CPU) synchronization

= Yield the CPU (so other process/thread can make good use) if we
must wait

= Need operating system involvement

2/13/2014 CSC 258/458 - Spring 2014

Semaphore

= Solving the critical section

= Synchronization tool that does problem:

not require busy waiting.

Shared data:
= Semaphore S — integer variable semaphore mutex=1;
which can only be accessed via
two atomic operations:

wait(S) or P(S):
wait until S>0;
S--;

Process Pi:
wait (mutex) ;
critical section
signal (mutex) ;
remainder section

signal(S) or V(S): Can you show mutual exclusion?
S++; Can you show deadlock-free?

2/13/2014 CSC 258/458 - Spring 2014

Define a semaphore as a record

Semaphore Implementation

= Semaphore operations now
defined as (both are atomic):

typedef struct { wait(S) :

} semaphore;

Assume two OS operations:

int value; S.value--;

proc_list *L; if (S.value < 0) {

add this process to s.L;
block;

}

block susper}ds the process signal(s) :
that invokes it. S.value++;
if (S.value <= 0) {

remove a process P from S.L;
wakeup (P) ;

wakeup (P) resumes the
execution of blocked process p.

}
How to make sure wait(S) and signal(S) are atomic?
So have we truly removed busy waiting?

2/13/2014 CSC 258/458 - Spring 2014

2/13/2014

Mutex Lock (Binary Semaphore)

= Mutex lock — a semaphore with only two states: locked/unlocked

= Semantics of the two (atomic) operations:

lock (mutex) :
wait until mutex==unlocked;
mutex=locked;

unlock (mutex) :

mutex=unlocked;

= Can you implement mutex lock using semaphore?

= How about the opposite?

2/13/2014 CSC 258/458 - Spring 2014

Implement Semaphore Using Mutex Lock

m wait operation:
= Data structures: lock(Ll) ;
C --;
if (€ < 0) {
unlock (Ll) ;
lock(L2) ;

}

unlock (L1) ;

mutex lock L1, L2;
int C;

= Initialization:

L1 = unlocked;

L2 = locked;

¢ = initial value of semaphore; = signal operation:

lock (L1);

C ++;

if (C <= 0)
unlock (L2) ;

else
unlock (L1) ;

2/13/2014 CSC 258/458 - Spring 2014 6

Busy-Wait vs. Blocking Synchronization

= Busy-wait synchronization: software/hardware spin locks
= Blocking synchronization: semaphore, mutex lock, condition variable, ...

= When each process/thread has its dedicated CPU
= |s busy waiting OK?

= When only need to protect a short (bounded size) critical section
= |s busy waiting OK?
= Still has the risk of wasting substantial CPU time in waiting, if context
switched out in the middle of critical section

= For complex synchronization of unpredictable waiting time
= Is busy waiting OK?
= Higher overhead (typically done in the OS, may involve context switch),
but no risk of wasting substantial CPU time in waiting

2/13/2014 CSC 258/458 - Spring 2014

Busy-Wait vs. Blocking Synchronization

= Benefit of blocking:
= Useful when the waiting time is long
= Cost of blocking:
= Context switch overhead (cache warmup cost)

= Application does not make the choice, but rather leave it to the OS

= When a process/thread must wait for synchronization from some
other process, should it spin (busy-wait) or block?

= What if you know the waiting time?

= Spin the waiting time is shorter than the context switch cost; block
otherwise

= What if you don’t know the waiting time?

= Spin for the time equal to the context-switch overhead. If not
successful, then block.

2/13/2014 CSC 258/458 - Spring 2014 8

Dining-Philosophers Problem

3

2/13/2014

Dining-Philosophers Solution

u Philosopheri(1<i<5):

while (1) {
eat;

think;

= Shared data:

mutex chopstick[5];

Eating needs both chopsticks (the left and the right one).

2/13/2014

CSC 258/458 - Spring 2014

Philosopher i
while(1) {

}:

lock (chopstick[il) ;

lock (chopstick[(i+1l) % 51);
eat;

unlock (chopstick[il) ;

unlock (chopstick[(i+1) % 51);

think

2/13/2014 CSC 258/458 - Spring 2014

10

