Detecting Gene Mutations in Cancer

androwis abumoussa | janice spence phd | john spence phd | richard burack md/phd

Background

sanger sequencing | next generation sequencing

biology

gcgtaagaccgcgtaagaccgcg gcattctggcgcattctggcgca

alignment

gcgtaag	accgcgtaag	accg															
gcgtaag	accgcgtaag	accg															
	Ref	ferenc	e Pos	ition	:	1	2	3	4	5	6	7	•••••	•••••	•••••	•••••	•••••
cattc	tggcgcattc	tgg															
cattc cattc	tggcgcattc tggcgcattc		tggcgcattc tggcgcattc	tggcgcattc tggcgcattc													
														tggcgcattc		tggcgcattc	tg
cattc cattc	tggcgcattc	tg;															
cattc cattc	tggcgcattc tggcgcattc	tggcgcattc tggcgcattc	tggcgcattc tggcgcattc	tggcgcattc tggcgcattc	tggcgcattc tggcgcattc	tggcgcattc tggcgcattc	tggcgcattc	tggcgcattc tggcgcattc	tg; tg;								

accgcgtaag accgcgtaag

map reduce

DNA Sequencing | Alignment

- Maximize Similarity
- Bound Search Space
- Make assumptions to do this

Targeted Resequencing

Cell Pathways

Cell Pathways

Next Gen Sequencing

Predominant applications:

Point mutations

Deletions

Predominant applications:

Copy number variation

Structural variants

Point mutations

Predominant applications:

Copy number variation

Point mutations

Gene expression

Gene fusions

Splice variants

Predominant applications:

Gene expressionGene fusions

Splice variants

Predominant applications:

Big Data in Genetics

Parallel Data Structures | Map Reduce | Distributed Computing

Parallel Data Structures

trie | burrow-wheeler's algorithm

Trie Formation

PCR amplicon

Predominant applications:

- Point mutations
- Deletions

read	•	accgcgtaag
read	•	actgcgttag
read	•	actgcgtatg
read	•	accgcgtaag
read	•	actgcgttag
read	•	actgcgtatg
read	•	accgcgtaag
read	•	accgcgtaag
read	•	actgcgttag
read	•	actgcgtatg
read	•	accgcgtaag
read	•	actgcgttag
		actgcgtatg
		accgcgtaag

Trie Formation

read : accgcgtaag

```
Step 1: create suffixes
                              Step 2 : alphabetize suffixes
                                read : aag$
 read : accgcgtaag$
                                        accgcgtaag$
         ccgcgtaag$
                                        ag$
         cgcgtaag$
                                        ccgcgtaag$
         gcgtaag$
                                        cgcgtaag$
         cgtaag$
                                        cgtaag$
         gtaag$
                                        gcgtaag$
         taag$
                                        gtaag$
         aag$
                                        g$
         ag$
                                        taag$
          g$
```

Trie Formation

```
read: accgcgtaag
hash: 1346579028
Step 2: alphabetize suffixes Step 3: build trie
```

```
read : 0 aag$
       1 accgcgtaag$
       2 ag$
       3 ccgcgtaag$
       4 cgcgtaag$
       5 cgtaag$
       6 gcgtaag$
       7 gtaag$
       8 g$
       9 taag$
```


Burrows-Wheeler

Burrows-Wheeler (actual)

Map-Reduce in Genetics

Regions of Analysis

Map Reduce

```
accgcgtaagaccgcgtaag
accgcgtaagaccgcgtaag
accgcgtaagaccgcgtaag
accgcgtaagaccgcgtaag
accgcgtaagaccgcgtaag
accecetaagaccecetaag
tggcgcattctggcgcattctggcgcattc
tggcgcattctggcgcattctggcgcattc
tggcgcattctggcgcattc
```

ROA Partitioning

Ref: ...taagaaccgcgtaagaaccgcgtaagaaccgcgtaagaaccgcgtaagaaccgcgtaagaaccgcgtaagaaccgc...

ROA

```
ccgcgtaagaaccgcgtaagaaccgcgtaagaaccgcgtaagaaccgcgtaagaaccgcgtaagaaccgcgtaagaaccgcgtaagaaccgcgtaagaaccgcgtaagaac
 gcgtaagaaccgcgtaagaaccgcgtaagaaccgcgtaagaacc
  cgtaagaaccgcgtaagaaccgcgtaagaaccgcgtaagaaccg
   gtaagaaccgcgtaagaaccgcgtaagaaccgcgtaagaaccgc
     taagaaccgcgtaagaaccgcgtaagaaccgcgtaagaaccgcgtaagaacc
     aagaaccgcgtaagaaccgcgtaagaaccgcgtaagaaccgcgtaagaaccgcgt
      agaaccgcgtaagaaccgcgtaagaaccgcgtaagaaccgcgta
       gaaccgcgtaagaaccgcgtaagaaccgcgtaagaaccgcgtaa
        aaccgcgtaagaaccgcgtaagaaccgcgtaagaaccgcgtaagaacc
         accgcgtlaagaaccgcgtaagaaccgcgtaagaaccgcgtaagaaccgcgtaaga
          ccgcgtaagaaccgcgtaagaaccgcgtaagaaccgcgtaagaacc
           cgcgtaagaaccgcgtaagaaccgcgtaagaaccgcgtaagaacc
            gcgtaagaaccgcgtaagaaccgcgtaagaaccgcgtaagaaccgcgtaagaacc
             cgtaagaaccgcgtaagaaccgcgtaagaaccgcgtaagaaccg
             gtaagaaccgcgtaagaaccgcgtaagaaccgcgtaagaaccgc
              taagaaccgcgtaagaaccgcgtaagaaccgcgtaagaaccgcgt
               aagaaccgcgtaagaaccgcgtaagaaccgcgt
                agaaccgcgtaagaaccgcgtaagaaccgcgtaagaaccgcgta
                 gaaccgcgtaagaaccgcgtaagaaccgcgtaagaaccgcgtaa
```

Length: 34 BP

Dictionary Formation

Ref: ...taagaaccgcgtaagaaccgcgtaagaaccgcgtaagaaccgcgtaagaaccgcgtaagaaccgcgtaagaaccgc...

ROA

aagaaccgcgtaagaaccgcgtaagaacc aagaaccgcgtaagaaccgcgtaagaacc aagaaccgcgtaagaaccgcgtaagaacagcgtaagaacc aagaaccgcgtaagaaccgcgtaagaaccgtgtaagaacc aagaaccgcgtaagaaccgcgtaagatccgcgtaagaacc aagaaccgcgt**cc**gaaccgcgtaagaaccgcgtaagaacc aagaaccgcgtaagaaccgcgtaagaacc aagaaccgcgtaagaaccgcgtaagaacc aagaaccgcgtaagaaccgcgtaagaacc aagaaccgcgtaagaaccgcgtaagaacc aagaaccgcgtaagaaccgcgtaagaacc aagaaccgcgṭaagaaccgcgṭaagaacc aagaaccgcgtaagaaccgcgtaagaaccgcgtaagaacc aagaaccgcgtaagaaccgcgtaagaacc aagaaccgcgtaagaaccgcgtaagaacc aagaaccgcgtaagaaccgcgtaagaacc

Length: 34 BP

Dictionary Formation

ROA

acgtggttacttgtacgtttgggaccaatgca acgtggttacttgtatgtttgggaccaatgca acgtggttacctgtatgtttgggaccaatgca acatggttacctgtatgtttgggaccaatgca acatggttacctgtatgtttgggaccacgtggt acgtggttacctgtacgtttgggaccaatgca acgtggttacctgtacgtttgggaccaatgca acgtggttacttgtacgtttgggaccaatgca acgtggttacttgtacgtttgggaccaatgca acgtggttacctgtatgtttgggaccaatgca

REF: 8657
Word 1 1033
Word 2 427
Word 3 98
Word 4 2

Dictionary Thresholding

ROA

acgtggttacctgtacgtttgggaccaatgca acgtggttacctgtatgtttgggaccaatgca acgtggttacctgtatgttttgggaccaatgca acatggttacctgtacgtttgggaccaatgca acatggttacctgtatgtttgggaccacgtggt

acgtggttacctgtacgtttgggaccaatgca acgtggttacttgtacgtttgggaccaatgca acgtggttacctgtatgtttgggactaatgca REF: 8657 Word 1 1033 Word 2 427 Word 3 98

Baseline Reconstruction

ROA 18-51	ROA	52-85	ROA 8	5-118	
ROA:	35-68	ROA	69-92		
tggttacctg gttacctg	tacgtttgggad gggad	caatgcat caatgcattg caatgcattgca caatgcattgca caatgcattgca caatgcattgca caatgcattgca caatgcattgca caatgcattgca caatgcattgca	act actga	cgt cgta	

Dictionary Reconstruction

Initial dictionary										
Reference Sequence										
t = 1										
Word (68)	Reference (50)	nce (50) Word (68)		nce (50)	Word (68					
Word	(68) Referen	nce (50) Wo	ord (68)	Referen	nce (50)					
Reference (50)	Word (68)	Reference (50) Wor	d (68)	Referen	nce (50)				
t = n										
Word (6	8)	Wo	ord (68)		W	ord (68				
	Word (68)		Word (6	8)						

Word (68)

Word (68)

Repeat

Distributed Systems in Genetics

Distributed Systems

