

Pre-requisite and Programming Requirement

- No formal prerequisite
- Desire good programming skills
 - Comparable to CSC252
 - Need to know Java
 - Abilities of learning new programming tools/techniques e.g., scripting language, threads, network sockets, ...
 - NO need to know C/C++

9/3/2013

CSC296/576 - Fall 2013

5

What is Big Data?

- The recognition that data is at the center of our digital world and that there are big challenges in collecting, storing, processing, analyzing, and making use of such data.
- To me, "big" may refer to very large data volume, but not necessarily so.

9/3/2013 CSC296/576 - Fall 2013

A Computer Systems Course

- Big data is a broad concept that covers many aspects of computer science.
- We focus on the computer systems aspect---for instance,
 - How various parts of a big data computer system (hardware, system software, and applications) are put together?
 - What are the appropriate approaches to realize high performance, scalability, reliability, and security in practical big data computer systems?
- Probably not the right course if you are hoping to learn about algorithmic design and theoretical/mathematical foundations for machine learning and data mining.

9/3/2013

CSC296/576 - Fall 2013

Kinds of Data

- Web data and web data accesses
- Emails, online chats, tweets, ...
- Telephone data
- Public databases GeneBank, ...
- Private datasets medical records, stock trades, credit card transactions, ...
- Sensor-ed data camera surveillance, wearable sensors, seismic data around an earth fault line or volcano, ...
- Byproduct of computer systems operations power signal, CPU events, ...
- .

9/3/2013

10

12

Data is Valuable

- Google and Facebook build their businesses on mining user data (web searches, social network interactions) for advertising purposes.
- Hedge fund companies analyze financial records, (real-time) transactions, or web/social media for opportunities of profitable trades.
- Health, medical data is processed for enhanced health care and treatment.
- Highway is monitored for traffic analysis and control.
- What else?

9/3/2013

CSC296/576 - Fall 2013

9

11

Data Centers

- Containing racks of machines and storage
- Size of warehouses
- Sometimes built next to rivers because
 - Cheap energy from nearby dams
 - Good corporate image for using renewable energy

9/3/2013 CSC296/576 - Fall 2013

"Big" Data in "Small" Systems

- Data sources are sometimes in remote areas

 Systems are necessarily small due to deployment and power constraints
- But data collection and processing is still the center of these systems

Photos are from videos in work by Wolff et al. 2012

9/3/2013

CSC296/576 - Fall 2013

Collection of Big Data

- Collection/acquisition of big data is challenging
 - Difficult to get access to valuable data
 - It stresses the computer system's ability to acquire a lot of data efficiently
 - It is also difficult to collect useful information from a sea of irrelevant data
 - Data collection should not negatively impact the target system's operations
- An example Web data collection
 - How to crawl the web efficiently, on the right topic, without affecting the normal uses of the web?

9/3/2013

14

16

Processing and Analysis of Big Data

- Processing large datasets is time consuming
 - Parallel data processing is necessary
 - But parallel data processing is challenging
- Mapreduce
 - Parallel data processing with easy programming and automatic support of data movement, load balancing, and fault-tolerance
 - Originated in web data processing (counting words); suitable for easily parallelizable workloads
 - But limited semantics
- Threaded and networked data processing in parallel

9/3/2013

CSC296/576 - Fall 2013

13

15

Data Representation and Organization

- Relational databases and SQL
 - Hard to scale for big data, no mainframe is big enough for big data
- Key-value, nosql stores
 - Bigtable
- Specialized indexes
 - Inverted indexes for web search
 - Multi-dimensional data organization

9/3/2013 CSC296/576 - Fall 2013

Storage and I/O

- Storage and I/O are critical for big data performance and reliability
- Hardware: disks, Flash, SSD, nonvolatile memory
- Parallelism: RAID, parallel data storage and file system
- Data durability and consistency

9/3/2013

CSC296/576 - Fall 2013

Energy

- Energy efficiency in data centers
 - A huge financial and environmental issue
- Data center construction from low-power computers [Anderson et al. 2009]
 - Think of a stack of tablets
 - Low joules per unit of work compared to conventional data center
- Data centers on renewable energy
 - Hydro-power, wind, solar, ...

9/3/2013

18

Sustainability

- Minimize environmental harm in field data collection
 - Use renewable energy; no batteries

9/3/2013

CSC296/576 - Fall 2013

17

4

Data Privacy and Protection

- Mis-uses of big data is a big concern
 - E.g., information of a person's online activities may reveal every aspect of the person's life
- Systems provide clear guidelines on data privacy and protection
 - E.g., sensitive clinical information is not propagated to datasets used for medical research
 - Computer systems are equipped with proper mechanisms to ensure data privacy and protection
- A user needs to understand the ways that the big data world operates on

9/3/2013