

Where we are in the class?

- So far focused on big data programmer's perspective:
 - Big data applications
 - Big data programming paradigms and how to program
- We move on to computer systems issues:
 - Not to make you a computer systems expert, but be knowledgeable on computer systems issues that matter to big data
 - Generally bottom → up, and small → large-scale

10/10/2013 CSC 296/576 - Fall 2013

Persistent Data Storage

- Persistent storage retains data after sudden system crashes and power losses
 - Disks, tapes, SSDs, Flash drive, non-volatile memory (NVRAMs), ...
- As a contrast, memory
 - isn't durable, not surviving software/system/power failures
 - is still comparatively expensive (\$/GB)
- Persistent storage is durable, cheap (in general), but slow (though slow in a complex way)

10/10/2013

CSC 296/576 - Fall 2013

Persistent Storage for Big Data Applications

- When data is too large (or expensive) to fit into memory
 - The crawled web
 - Inverted web indexes for search
 - Online image repository
 - Movie databases
- Collected/output data that needs to be durable
 - Financial transactions, medical records
 - Outputs of data processing

10/10/2013

CSC 296/576 - Fall 2013

10

12

Storage Performance Implication

- Storage performance
 - Generally slow for disks
 - Slow writes for NAND Flash
 - How much you writes, and how many times you write
- Writes in big data applications
 - Data collection writes a lot
 - Data processing doesn't write as much, but still writes processing results and checkpoints
- Performance implication
 - Sync your data infrequently to improve I/O performance
 - Tradeoff between I/O performance and data durability

10/10/2013

CSC 296/576 - Fall 2013

9

11

Storage Product Varieties and Marketing

- SCSI vs. ATA disks: Beyond interface difference, mostly a businessoriented economical argument [Anderson et al. 2003]
 - Some are willing to pay a lot more with a bit more reliability, controllability, and sometimes performance (typically at a loss of space capacity)
- Google (at least early day Google) didn't buy it
- Different Flash storage
 - Sophistication of the device controller (basically software)
 - Enterprise vs. consumer Flash, desktop/server vs. smartphone/tablet

10/10/2013 CSC 296/576 - Fall 2013

Storage Reliability

- What does reliability mean?
 - Does not die until after a long lifetime
 - Keep data that it has promised to keep
- Lifetime measurement
 - Need patience and scale
 - Extract from system logs and correlate with workloads, temperature,

Does it keep the data?

 Repeated crash tests – fast, expensive drives aren't always most reliable

10/10/2013

CSC 296/576 - Fall 2013

Where to keep data? Memory vs. Disk

- Economical rule about whether to keep data in memory or on disk
 - disk system is constrained by throughput
 - · memory is constrained by space
- Five-Minute Rule: [Gray&Putzolu 1987]
 - one disk access per second costs about \$2000
 - 1KB memory costs \$5
 - breakeven economical point 1KB data accessed once per 400sec
- Seem to still approximately hold after 10 years [Gray&Graefe 1997]
- Absolutely not true for SSDs
 - cause for re-evaluating storage-related system designs (file system, databases, etc.) [Graefe 2007]

10/10/2013

CSC 296/576 - Fall 2013

14

16

Where to keep data? Disk vs. Flash SSD

- Economical rule about whether to keep data on disk or Flash
 - disk system is constrained by throughput
 - Flash is constrained by space
- Breakeven point
 - 60 IOPS per GB [Narayanan et al. 2009]
 - Too expensive to move to Flash SSDs
 - 1.5 IOPS per GB [Albrecht et al. 2013]
 - Figure 4 of the paper
 - Worth doing it selectively for some workloads

10/10/2013

CSC 296/576 - Fall 2013

13

15

NVRAMs or Persistent Memory

- Phase change memory, STT-MRAM, memristor, ...
 - Like normal memory, byte-addressable, but persistent
 - Even more expensive than Flash (\$/GB)
- People already started talking about a day when Flash is irrelevant
 - At least Prof. Ipek

10/10/2013 CSC 296/576 - Fall 2013

Storage Considerations

- Tapes → disks → Flash → NVRAMs
- What do I use for my big data systems?
 - Operating costs matters, as shown in previously mentioned studies
 - Latency matters too
 - Software and tools
 - Reliability
- Big trend
 - Manufacturing capability (upfront investment)

10/10/2013

CSC 296/576 - Fall 2013

Storage Deduplication

- Lots of redundancy in your data
 - Examples?
 - Deduplication conserves space, making it more affordable to phase out an old storage technology
 - Data Domain [Zhu et al. 2008] argued that tapes should be replaced by disks
- How does it work?
 - Keep hashes of data blocks
 - Compare hash of a new write with hashes of existing blocks
 - Be mindful of the cost of hash maintenance and lookup
- Content-addressable storage

10/10/2013

CSC 296/576 - Fall 2013