10/22/2013

Structured Data Stores

Kai Shen

10/22/2013 CSC 296/576 - Fall 2013

Structured vs. Unstructured Data

= What is unstructured data?
= General byte stream in a file

= Structured data
= Specific, regular data organization that contains semantics to
enable powerful/flexible search and update

= Most prominent example: relational database
= Data is organized into tables, views, keys (references), indexes
etc. that allow SQL queries and updates with potential multiple
table joins
= Data consistency (structural consistency) over failures is
supported by transactions (implemented through REDO/UNDO
logging-based atomic 1/0)

10/22/2013 CSC 296/576 - Fall 2013

Example SQL Statement (TPC-H Q2)

select
s_acctbal, s_name, n_name, p_partkey, p_mfgr, s_address, s_phone, s_comment
from
part, supplier, partsupp, nation, region
where
p_partkey = ps_partkey and s_suppkey = ps_suppkey and p_size = 22
and p_type like '%COPPER' and s_nationkey = n_nationkey
and n_regionkey = r_regionkey and r_name = 'AFRICA'
and ps_supplycost = (
select min(ps_supplycost)
from partsupp, supplier, nation, region
where p_partkey = ps_partkey and s_suppkey = ps_suppkey
and s_nationkey = n_nationkey and n_regionkey = r_regionkey
and r_name = 'AFRICA'

10/22/2013 CSC 296/576 - Fall 2013

Relational Databases

= The ones that you know?
= They typically run one machine, right?

= How do they scale in the big data era?
= Data partitioning makes distributed query complex and expensive
= Data replication makes it challenging to maintain data consistency
in updates

= Transactions are already complex (much more complex if
transactions commit in a distributed fashion)

10/22/2013 CSC 296/576 - Fall 2013




10/22/2013

Key-value/Nosql Store

= There is space between no-structure (plain file system) and
strongly-structured data (relational DBs supporting SQL)

= Key-value or hash table store
= Data is organized into sets of key-value pairs

= Support lookup(key), insert(key,value), delete(key), and
replace(key,new_value)

= Can also support transactions using REDO/UNDO logs

= What data fits the key-value model?
= Webtable: key is the URL, value is the web page content
= What else?

= Nosql data stores

10/22/2013 CSC 296/576 - Fall 2013

Specific Key-value Stores

= Before the times of relational databases
= dbm, developed by Ken Thompson (AT&T), 1970s

= After the wide uses of relational databases
= TokyoCabinet/KyotoCabinet, 2000s
= LevelDB, 2010s

10/22/2013 CSC 296/576 - Fall 2013

memcache

= In-memory key-value store, not durable

= Limited memory space, older things are evicted (following LRU
order) when space runs out, effectively a cache

= Typically work together with a durable store [Nishtala et al. 2013]

Application Application

1. lookup(k) 2. SELECT ... 1. UPDATE ...
) 2. delete
3. insert(k,v) or replace

[
store store
= What is good about it?

10/22/2013 CSC 296/576 - Fall 2013

Key-value Stores vs. Relational DBs

= Data semantics isn’t as flexible

= What if your data semantics does fit into one single table;
semantic linking/joining of multiple tables are needed to answer
queries or support updates?

= But leaner and faster
= Really? Some argue SQLite is lean, fast, AND supporting SQL.

m Easier to scale up

= Operations are uniformly simple, each operating on a single data
item (no whole table scans or cross-table joins, data partitioning
won’t cause distributed operations)

10/22/2013 CSC 296/576 - Fall 2013




10/22/2013

Scalable Structured Store: Bigtable

= Developed at Google [Chang et al. 2006]

= Data model

= Enhanced key-value model

= (row:strong, column:string, time:int64) — string

= Two-dimensional key allows multiple attributes for each key:
in Webtable, a web page has content, incoming references, other
labels (spam, ...)

= Timestamp allows version management (earlier versions may be
useful; related to garbage collection)

10/22/2013 CSC 296/576 - Fall 2013

Bigtable: Data Locality

Data ordering
= Datain lexicographic order by row key
= Applications should devise the row key in a way such that rows
often referenced together have lexicographically nearby keys
= Reversing URL hostname components for row keys in Webtable
“www.google.com/index.html” = “com.google.www/index.html”

Processing near data
= Data processing scripts can be supplied to run at data server

10/22/2013 CSC 296/576 - Fall 2013 10

Bigtable: Distributed Organization

= Centralized or decentralized management?
= A master server and many tablet servers
= A special METADATA table that records the location of user tables

= Scalability and robustness in centralized management

= Relieve the master from common tasks = won’t become the
scaling bottleneck
= Fast recovery in case of master failure

10/22/2013 CSC 296/576 - Fall 2013

11

Bigtable: Distributed Consistency

Maintain consistency in distributed system
= Ensure that everyone agrees with one master at a time
= Ensure that everyone agrees with the root METADATA table
= Distributed consensus

Paxos distributed consensus
= Google’s implementation: Chubby lock service

10/22/2013 CSC 296/576 - Fall 2013 12




10/22/2013

Bigtable: Performance

= Figure 6 of the paper

10/22/2013 CSC 296/576 - Fall 2013 13

Distributed memcache

Key idea:
= Decouple the performance/scalability from 1/0 and durability, if the
workload is read-mostly

A two-layer data management system: distributed memcache
and durable data store (relational databases or ...)
= Both layers handle writes
= Distributed memcache handles reads alone (mostly)
= If the workload is read-mostly, only the distributed memcache
layer needs to be scalable and fast
= Can work with legacy databases that don’t scale well

Used in many places including Facebook

10/22/2013 CSC 296/576 - Fall 2013

14

Distributed memcache: Scalabilty

= Since memcache isn’t concerned with durability or 1/0, its
scalability is easier to accomplish:
= A balanced data partition to many memcache servers
= A scalable, robust, distributed algorithm to tell which memcache
server has your data

D
X @ hash code of a data object
A
c © hash code of a memcache server
B
10/22/2013 CSC 296/576 - Fall 2013 15

Bigtable vs. Distributed memcache

Performance / scalability?
Ease of construction?

Distributed memcache is poor man’s Bigtable (in a smart way)

10/22/2013 CSC 296/576 - Fall 2013

16




Megastore

= Arecent Google system [Baker et al. 2011] that is a step closer to
relational databases

= Support relational DB-like data model but do not support
operations that hinder scalability (e.g., SQL table joins)

= SQL table joins can be implemented by applications after initial
lookups on the based tables with indexes

= A new point in the flexibility vs. scalability design space:

= Bridge to the SQL world, but require applications to explicitly
support expensive operations

10/22/2013 CSC 296/576 - Fall 2013

17

10/22/2013

Summary

A variety of data management systems

Unstructured file system

Relational databases with SQL support (MySQL, SQLite, Oracle,
Microsoft SQL Server, ...)

Single machine key-value stores (KyotoCabinet, LevelDB, ...)
Bigtable

Distributed memcache

Megastore

What is right for my big data application?

Data model and data access semantics
Scalability / performance requirements

Ease of development and ease of use
10/22/2013 CSC 296/576 - Fall 2013

18




