




## **Computer Execution Statistics**

- Computers don't just process/analyze data, their executions also leave a trail of data that can be useful
- Software system logs
  - Application logs, OS kernel logs, network message traces, error traces, ...
  - High data volume over time across many machines
- Hardware events
  - Instruction execution rates, floating point operations, cache accesses/misses, memory accesses, ...
  - Very high data volume (at high sampling rate) even on one machine
- Others like the power traces

11/7/2013 CSC 296/576 - Fall 2013



#### **Computer Execution Statistics**

- Computer execution statistics
  - Software system logs
  - Hardware events
  - Others like the power traces
- What are they useful for?
  - Performance analysis
  - Reliability assessment
  - Provenance tracking
  - Understand workload/application patterns
  - Privacy and security

11/7/2013 CSC 296/576 - Fall 2013



#### **Performance Analysis**

Network message traces

- To understand request/response performance
  - Identify matching send/receive events and compute delay
  - #128 → #129 delay 2.4 msecs
  - #132 → #133 delay 5 usecs TOO SHORT!
  - #132 → #135 delay 14.1 msecs
- Inference is useful, by imprecise

11/7/2013 CSC 296/576 - Fall 2013

1



## **Performance Analysis**

- Analyze network message traces in a distributed system
  - Match send event at S with receive event at R
  - There are many send events and many receive events, how to find matching pairs?
- Statistical correlation
  - Assume that the network delays within a short period of time are largely stable, find a time shift such that the send events will best align with the receive events [Aguilera et al. 2003]

11/7/2013

CSC 296/576 - Fall 2013

5



### **Performance Analysis**

- Performance problems occur in a complex IT system with many components ⇒ very hard to find the causes and fix
- Black-box machine learning [Cohen et al. 2004]
  - Collect a ton of system logs and traces (as much as you can)
    - CPU time, disk I/O, amount of swap space on machine, network activities, Apache web server statistics, database events, Javascript warnings, file systems alerts, ... ...
  - Build a large history of such traces and problem manifestations
  - Train a classifier (Bayesian, decision tree, etc.) that link system metrics to problems 
    ⇒ help problem diagnosis
  - Link advanced system metrics to problems ⇒ predict problem in future

11/7/2013 CSC 296/576 - Fall 2013

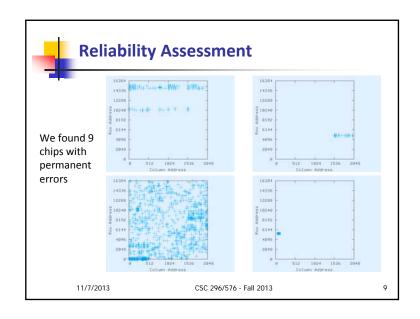


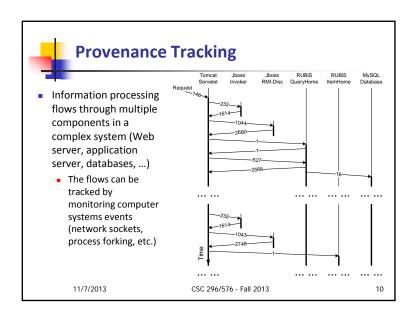
### **Reliability Assessment**

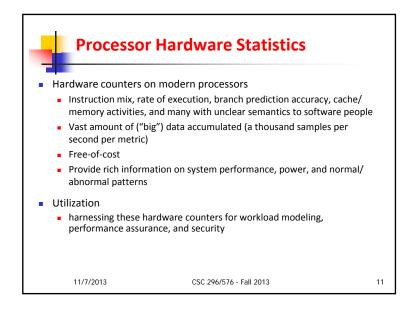
- Component (disk, memory, processor, etc.) reliability assessments are hard
  - They are largely reliable so for sufficient error statistics, such assessment requires very large-scale data collection
- Google accumulated significant data on disk failures and made some statistical analysis [Pinheiro et al. 2007]
  - Correlation with age and utilization (Figure 3)
    - Bathtub reliability curve
  - Correlation with temperature (Figure 5)
- Correlation does always mean causality!

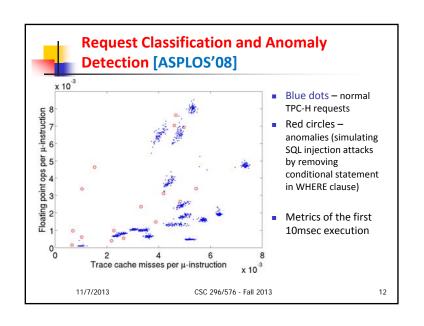
11/7/2013

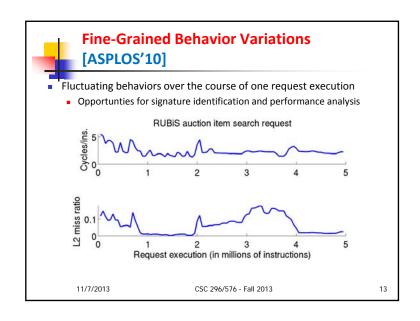
CSC 296/576 - Fall 2013





# **Reliability Assessment**


- Memory errors
  - Transient errors (particle strikes, cosmic rays, etc.)
  - Permanent chip defects
- Understanding memory error rates helps the computer system reliability management and devise countermeasures
- We monitored 212 machines (4GB each) at Ask.com by enforcing hourly memory scrubbing on each chip [Li et al. 2007]
  - Over 9 month, we found two transient errors
  - With 99% probability, the error rate is less than 0.56 FIT/Mb, orders of magnitude lower than 200-5000 FITs/Mb reported previously


11/7/2013


CSC 296/576 - Fall 2013

