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Computer Execution Statistics

Computers don’t just process/analyze data, their executions also
leave a trail of data that can be useful

Software system logs

= Application logs, OS kernel logs, network message traces, error
traces, ...

= High data volume over time across many machines

Hardware events

= Instruction execution rates, floating point operations, cache
accesses/misses, memory accesses, ...

= Very high data volume (at high sampling rate) even on one machine

Others like the power traces
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Computer Execution Statistics

Computer execution statistics

Software system logs
Hardware events
Others like the power traces

What are they useful for?

Performance analysis

Reliability assessment

Provenance tracking

Understand workload/application patterns
Privacy and security
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Performance Analysis

= Network message traces

#128 <1.732364sec> NET SEND; PID:13661 HOST_ADDR -> 128.151.67.29:41800 REMOTE_ADDR -
#129 <1.734737sec> NET RECV: PID:13661 HOST ADDR -> 128.151.67.29:41800 REMOTE_ADDR -.
<1.736060sec> NET RECV: PID:13661 HOST_ADDR -> 128.151.67.29:41800 REMOTE_ADDR -
<1.738076sec> NET RECV: PID:13661 HOST ADDR -> 128.151.67.29:41800 REMOTE_ADDR -> 128.151.67.228:8080 SIZE:1448

#130
#131

> 128.151.67.228:8080 SIZE:177
> 128.151.67.228:8080 SIZE:161
> 128.151.67.228:8080 SIZE:684

#132

<1.738398sec> NET SEND: PID:13661 HOST_ADDR -> 128.151.67.29:41800 REMOTE_ADDR -
#133 <1.738403sec> NET RECV: PID:13661 HOST_ADDR -> 128.151.67.29:41800 REMOTE_ADDR -
#134 <1.738421sec> NET SEND: PID:13661 HOST_ADDR -> 128.151.67.29:41800 REMOTE_ADDR -
#135 <1.752501sec> NET RECV: PID:13661 HOST ADDR -> 128.151.67.29:41800 REMOTE ADDR -> 128.151.67.228:8080 SIZE:12

> 128.151.67.228:8080 SIZE:600
> 128.151.67.228:8080 SIZE:568
>128.151.67.228:8080 SIZE:363

= To understand request/response performance

= Identify matching send/receive events and compute delay
= #128 - #129 delay 2.4 msecs

= #132 - #133 delay 5 usecs TOO SHORT!

= #132 - #135 delay 14.1 msecs

Inference is useful, by imprecise
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Performance Analysis

= Analyze network message traces in a distributed system
= Match send event at S with receive event at R

= There are many send events and many receive events, how to find
matching pairs?

= Statistical correlation

= Assume that the network delays within a short period of time are
largely stable, find a time shift such that the send events will best
align with the receive events [Aguilera et al. 2003]
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Performance Analysis

Performance problems occur in a complex IT system with many
components = very hard to find the causes and fix

Black-box machine learning [Cohen et al. 2004]
= Collect a ton of system logs and traces (as much as you can)

= CPU time, disk /0, amount of swap space on machine, network
activities, Apache web server statistics, database events, Javascript
warnings, file systems alerts, ... ...

= Build a large history of such traces and problem manifestations

= Train a classifier (Bayesian, decision tree, etc.) that link system
metrics to problems = help problem diagnosis

= Link advanced system metrics to problems = predict problem in
future
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Reliability Assessment

= Component (disk, memory, processor, etc.) reliability
assessments are hard

= They are largely reliable so for sufficient error statistics, such
assessment requires very large-scale data collection

= Google accumulated significant data on disk failures and made
some statistical analysis [Pinheiro et al. 2007]
= Correlation with age and utilization (Figure 3)
= Bathtub reliability curve
= Correlation with temperature (Figure 5)

= Correlation does always mean causality!

11/7/2013 CSC 296/576 - Fall 2013

Reliability Assessment

Memory errors

= Transient errors (particle strikes, cosmic rays, etc.)

= Permanent chip defects
Understanding memory error rates helps the computer system
reliability management and devise countermeasures

We monitored 212 machines (4GB each) at Ask.com by enforcing
hourly memory scrubbing on each chip [Li et al. 2007]
= Over 9 month, we found two transient errors
= With 99% probability, the error rate is less than 0.56 FIT/Mb,
orders of magnitude lower than 200-5000 FITs/Mb reported
previously
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Reliability Assessment

We found 9
chips with
permanent
errors
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Provenance Tracking
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Processor Hardware Statistics

= Hardware counters on modern processors

= Instruction mix, rate of execution, branch prediction accuracy, cache/
memory activities, and many with unclear semantics to software people

= Vast amount of (“big”) data accumulated (a thousand samples per
second per metric)

= Free-of-cost

= Provide rich information on system performance, power, and normal/
abnormal patterns

= Utilization

= harnessing these hardware counters for workload modeling,
performance assurance, and security
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Floating point ops per p-instruction

Request Classification and Anomaly

Detection [ASPLOS’08]
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Blue dots — normal
TPC-H requests

Red circles —
anomalies (simulating
SQL injection attacks
by removing
conditional statement
in WHERE clause)

Metrics of the first
10msec execution
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Fine-Grained Behavior Variations
[ASPLOS’10]

= Fluctuating behaviors over the course of one request execution
= Opportunties for signature identification and performance analysis

RUBIS auction item search request

L2 miss ratio
o Cycles/fins.
o = n
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Request execution (in millions of instructions)

Power Virus Containment
[ASPLOS’13]

= Power viruses — unusually high power tasks, by stressing multiple
power-consuming resources simultaneously

= Simply-constructed (200 lines of Java code) power viruses injected
to a Google App Engine workload

Introduction of power viruses
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Stealing the RSA key in OpenSSL
’
[HotOS’07]
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Power Traces

Power measurement is fairly easy (compared to collecting processor
hardware statistics)

Medical devices run critical tasks yet they are vulnerable to computer
viruses like normal computers do
= Researchers collect data on power traces and virus infections
[WattsUpDoc 2013]
= Pattern correlation and machine learning tell the power behaviors that
indicate virus infections

11/7/2013 CSC 296/576 - Fall 2013 16




