

Data Security in the Big Data Era

- Mis-uses of big data is a big concern, for examples
 - information of a person's online activities may reveal every aspect of the person's life
 - medical/genetic information of individuals can be improperly exploited by health insurers
 - large datasets may be stolen by governments or unfriendly groups
- Not a comprehensive study on data security, but
 - to understand the value and consequences of misuses of big data
 - to understand basic techniques and practical issues in data security
 - to know, as a user, how to protect yourself in the big data era
 - to stimulate your interests to read more and possibly do more (final course project)

11/12/2013 CSC296/576 - Fall 2013

Data Security Model

- What can adversary do to your data?
 - Steal and understand the content of sensitive data
 - Actively changing data
- Data security protection:
 - Confidentiality: only the proper persons/groups can possess and "understand" data
 - Data Integrity: data is preserved in an integral way without unauthorized tampering

11/12/2013

CSC296/576 - Fall 2013

Cryptography

- Encryption: uses a key to turn original data into encrypted data
- Decryption: uses a key to turn encrypted data back to the original
 - It is (computationally) infeasible to know the original data from the encrypted data without the decryption key
- Symmetric key crypto: encryption and decryption keys are identical. (both are secret)
- Public key crypto: encryption key is public, decryption key is secret.

11/12/2013

CSC296/576 - Fall 2013

Symmetric Key Cryptography: Monoalphabetic Cipher

Monoalphabetic cipher: substitute one letter for another.

plaintext: abcdefghijklmnopqrstuvwxyz

ciphertext: mnbvcxzasdfghjklpoiuytrewq

Plaintext: bob. i love you. alice ciphertext: nkn. s gktc wky. mgsbc

Q1: How hard to break this simple cipher?

- brute force?
- other?
- Q2: How to make it more difficult to break?

11/12/2013

CSC296/576 - Fall 2013

Symmetric Key Cryptography: DES 56-bit key **DES: Data Encryption Standard** US encryption standard [NIST 1993] • 56-bit symmetric key, 64-bit plaintext input encryption: initial permutation ⇒ 16 "rounds", each using different 48 bits of key ⇒ final permutation decryption: reverse operation using the 48-bit K2 same key ■ How secure is DES? L3 R3 DES Challenge (1999): 56-bit-keyencrypted phrase decrypted (brute force) in 22 hours 15 minutes 48-bit K16 ■ Making DES more secure: use three keys sequentially (3-DES) use more bits 11/12/2013 CSC296/576 - Fall 2013

AES: Advanced Encryption Standard

- Newer (Nov. 2001) symmetric-key NIST standard, replacing DES
- Processes data in 128 bit blocks
- 128, 192, or 256 bit keys
- Brute force decryption (try each key) taking 1 sec on DES, takes 149 trillion years for 128-bit AES

11/12/2013

CSC296/576 - Fall 2013

5

Stream Cypher

- Fixed-size key K expanded to an infinite random stream C(K)
- For data X, it uses an portion of the key stream (equal length to data X), then xor the data to produce encrypted data
- Same key cannot be used twice, otherwise

Encrypted(X) = X xor C(K)

Encrypted(Y) = Y xor C(K)

- ⇒ Encrypted(X) xor Encrypted(Y) = X xor Y
- ⇒ If you know X (or Y), then you know the other
- ⇒ Even if you know neither, you can guess X and Y guite well from X xor Y if X and Y are in a natural language

Sources: http://en.wikipedia.org/wiki/Stream cipher attack

- Used in the WEP wireless encryption
 - Employ an initialization vector of 24-bit, but insufficient

11/12/2013

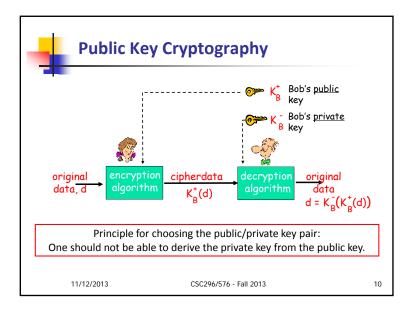
CSC296/576 - Fall 2013

Public Key Cryptography

Symmetric key cryptography

- requires the knowledge of secret key
- Q: in network communication, how sender/receiver agree on key in the first place? (particularly difficult if adversary is eavesdropping on all communication)

Public key cryptography


- encryption key is different from decryption key
- encryption key is public, known to everyone, also called public key
- decryption key is secret, known only to receiver, also called private key

11/12/2013

CSC296/576 - Fall 2013

0

11

Public Key Cryptography: RSA

(Ron Rivest, Adi Shamir and Len Adleman)

- Choosing keys:
 - Choose two large prime numbers p, q. (e.g., 1024 bits each)
 - Compute n = pq, z = (p-1)(q-1)
 - Choose e (with e<n) that has no common factors with z
 - Choose f such that ef-1 is exactly divisible by z
 - Public key is (n,e). Private key is (n,f)
- To encrypt a dataset, d (<n): do c = de mod n
- To decrypt a encrypted cipherdata, c: do d = cf mod n
- Reason: for any d (relatively prime with n)
 - d^z mod n = 1; therefore d^{ef-1} mod n = 1
- Another property: (df mod n)e mod n = d

11/12/2013

CSC296/576 - Fall 2013

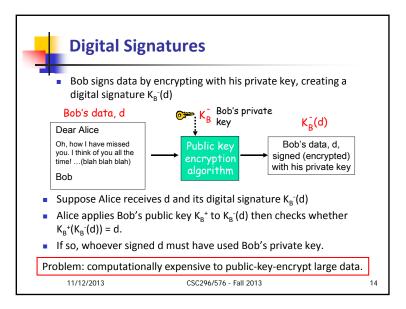
Public Key Cryptography: RSA

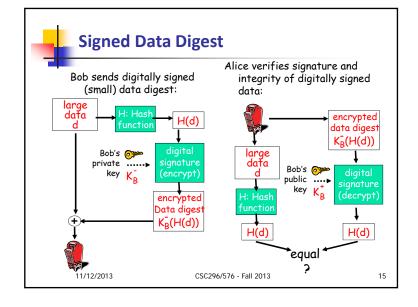
- RSA is much slower than the symmetric key cryptos
- In practice, you never use RSA to encrypt large datasets
 - Use symmetric key to encrypt large datasets
 - Then use RSA to protect the secret transfer of symmetric key

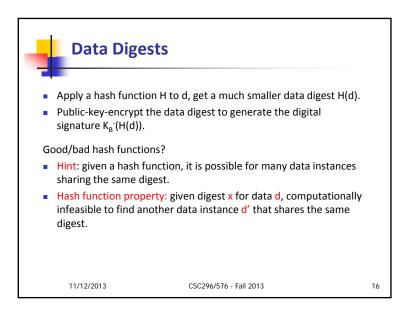
11/12/2013

CSC296/576 - Fall 2013

12


Data Integrity


- Digital Signatures:
 - cryptographic technique to ensure data integrity
 - analogous to hand-written signatures
- Data is attached with a digital signature which ensures that the data is
 - nonforgeable: data hasn't been changed since the signing
 - verifiable: data was signed by the right person


11/12/2013

CSC296/576 - Fall 2013

13

18

Good Hash Functions for Generating Data Digests

- MD5
 - computes 128-bit data digest in 4-step process.
 - appears difficult to construct data d whose MD5 hash is equal to x.
- SHA-1
 - [NIST, FIPS PUB 180-1]
 - 160-bit data digest

11/12/2013

CSC296/576 - Fall 2013

17

19

Security Overhead for Big Data

- Tests on a 3.1GHz Intel Xeon processor (by Zhuan Chen) show that:
 - 128-bit AES encryption of 4KB data takes 41us; decryption takes 55us
 - SHA-1 hashing takes 10us
- 1TB data
 - Encryption takes 3 hours 3 minutes
 - Decryption takes 4 hours 6 minutes
 - Hashing takes 45 minutes
 - Parallelization can help
- Public-key-crypto (RSA) is much slow, but never directly use to protect large datasets

11/12/2013

CSC296/576 - Fall 2013

4

Disclaimer

 Preparation of this class was helped by materials in the book "Computer Networking: A Top-Down Approach" by Kurose and Ross.

11/12/2013

CSC296/576 - Fall 2013