

Challenges of Big Data Collection

- Challenging to acquire a lot of data quickly
 - Need of large processing, networking, and storage throughput
 - Parallelism can help
- Challenging to acquire useful information from a sea of irrelevant data
 - What data is more important than others
 - Identify redundancy efficiently
 - Collect topic-specific data
- Challenging to collect from distributed, remote data sources

9/5/2013 CSC296/576 - Fall 2013

Web Crawling

- Collect published web content crawling
 - First retrieve some root/seed pages;
 - Parse their content and follow hyperlinks to retrieve more pages;
 - Repeat the last step.
- How is it useful?
 - Web search engines
 - Dive deep (go beyond what is provided by search engines) on a specific topic
 - Businesses/advertisers to find potential customers
 -

9/5/2013 CSC296/576 - Fall 2013

Goals

- Collect good (high-quality) pages
- Collect web pages on a certain topic
- Crawl efficiently
- Crawl without annoying others

9/5/2013 CSC296/576 - Fall 2013

Redundancy Removal

- Avoid parsing and following the same page more than once
 - Record all URLs that have been parsed and followed
 - Same page may have different URLs
- URL normalization
 - Host portion is case-insensitive
 - Decode percent-encoded octets of unreserved characters ('%30' is '0')
 - '/./' or '/'
 - ·
- URLs that look totally irrelevant may also be the same page
 - Compute and match page content checksum

9/5/2013

CSC296/576 - Fall 2013

5

Link Selection

- There are many choices at each step of crawling
- Depth-first search vs. breadth-first search?
- Hyperlink with high likelihood pointing to a high-quality page?
 - High in-links
 - Pointed to from high-quality pages
 - Spam identification and avoidance
 -

9/5/2013 CSC296/576 - Fall 2013

Focused Crawling

- Maximize the page downloads on a certain target, minimize the resources spent on irrelevant downloads
- Crawl all pages from a domain (e.g., rochester.edu)
- Topic-specific crawling:
 - A page's topic is inferred from the URL text, anchor text, and surrounding text of the hyperlink
 - Look for specific keywords
 - Reinforcement learning [McCallum, Rennie, and others 1999]
 - Train a Q function: mapping from "bag of words" to a value (future rewards – chance of hitting on-topic pages if following the link)

9/5/2013

CSC296/576 - Fall 2013

Scalable Web Crawling

- What are the resources consumed?
 - CPU processing for network operations and the parsing of page content
 - writing to disk storage
 - network bandwidth to remote web sites
- Parallel web crawling
 - Use multiple CPUs
 - Use multiple storage devices
- Challenges:
 - Synchronization on already visited URLs
 - Downloading network bandwidth remains the bottleneck

9/5/2013

CSC 257/457 - Spring 2013

Politeness

- Crawling is not always welcome (in fact, often unwelcome) by web sites
 - Some of my content is good to show up on a search engine, others (processing scripts etc.) has no use (to me) to be crawled
 - Crawlers/bots consume my web server resources that may affect the experience of human users
- Robot Exclusion Standard
 - http://www.cs.rochester.edu/robots.txt
- Limit the crawler bandwidth use
 - Page download rate; downloading bandwidth
 - Limit per site

9/5/2013

CSC296/576 - Fall 2013

11

Assignment #1

- Focused web crawling
 - Within a domain
 - Topic-specific
- Not to visit the same URL twice, URL normalization
- Follow the robot exclusion standard and crawl at a determined slow rate (e.g., sleep a second between consecutive page downloads)
- No parallelism

9/5/2013

CSC296/576 - Fall 2013

10

12

Assignment #1

- Parsing a web page for hyperlinks and anchor texts?
 - HTML pages are notoriously error-prone ⇒ browsers go to great length to tolerate imperfect HTML pages; you may find it not easy to do
- Maintaining the list of visited URLs ⇒ what data structure?
- Programming languages:
 - Java, C, Perl, Python, ...
- Demo and pre-assignment questionnaire

9/5/2013

CSC296/576 - Fall 2013

Other Big Data Collection

- USArray seismic data collection
 - http://www.usarray.org/
- Seismic data collection in African volcanos [Prof. Ebinger at the Earth and Environmental Sciences]

9/5/2013

CSC296/576 - Fall 2013

14

16

Other Big Data Collection

- Challenges of data collection at remote locations
 - No power infrastructure ⇒ solar panels + batteries
 - Reliability (batteries died; GPS malfunctioning)

9/5/2013

CSC296/576 - Fall 2013

13

15

Other Big Data Collection

- High-speed cameras on roads and highways
- Challenges
 - A lot of data produced by high-speed cameras
 - Wireless deployment is economically efficient, but wireless networks aren't very good (low bandwidth, intermittent)
 - Processing on site to relieve the burden of data transfer

9/5/2013 CSC296/576 - Fall 2013

Public Eavesdropping

- Listen to open WiFi signals
 - Lots of communications are unencrypted
 - WEP encryption is weak
- Insert a Gnutella relay node to collect information on Gnutella traffic
 - Know what are being searched
 - Know the group of searches made by one person

9/5/2013

CSC296/576 - Fall 2013

Big Data in Your House

- If you are Google, Facebook, Twitter, Amazon, AT&T, VISA, Strong Hospital, ...
 - There are limited privacy laws
 - Others are fair game (individual identities are usually scrambled in the collection phase)

9/5/2013

CSC296/576 - Fall 2013