

Predictive Analytics

- "Predictive analytics encompasses a variety of techniques from statistics, modeling, machine learning, and data mining that analyze current and historical facts to make predictions about future, or otherwise unknown, events."
 - Quotes from Wikipedia
- A popular phrase that is related to many things that are already being done, but big data shines new light on it---
 - Innovative data collections (web, social media, etc.) enable more / better data: Quantity and quality of data matters
 - Powerful data analytical approaches help
 - Large data collection / analysis benefits from parallelism etc.

12/10/2013 CSC 296/576 - Fall 2013

Case Examination: Credit Scores

- What is a credit score?
 - Likelihood that a person is going to repay debts
- How does a credit agency predict such likelihood?
 - Use past data to learn future outcome
 - E.g., learn the correlation between properly repaying debts with outstanding loan balances, the number of possessed credit cards, past defaults, delayed payments
 - How can you do better with more data?
 - Zip code
 - Employment, income
 - Availability and content of personal web pages
 - · Available tweets, social media contacts, ...
 - Craigslist transactions
 -

12/10/2013

CSC 296/576 - Fall 2013

Case Examination: Insurance Fraud Detection

- "Predictive Analytics: White Paper" by Charles Nyce
 - Insurance frauds are costly
 - Reviews of potential frauds are costly
 - Aggressive reviews of actually legitimate claims can be most costly (losing costumers and subject to litigation)
- An insurance agency can analyze data to predict fraud likelihood
 - Traditional data includes insurance records and claim records
 - Learn fraud patterns from past fraud
 - Collect external data about accident rates for car makes, road conditions, locations, etc.

12/10/2013

CSC 296/576 - Fall 2013

Case Examination: Tax Fraud Detection

- A totally hypothetical discussion!
- Many numbers and parameters (whether certain boxes are checked, certain forms are filed) in a tax form
 - Data can analyzed to link numbers and parameters with likelihood of tax fraud
- "Innovative" data collection
 - Link web / social media presence with fraud likelihood
 - If FAA and border control can help, IRS can link foreign travels with the chance of fraud on foreign incomes / assets
 - If NSA helps a bit, IRS can link the variety / frequency of phone calls to the chance of fraud on business incomes

•

12/10/2013

CSC 296/576 - Fall 2013

4

Case Examination: Recommendation Systems

- Recommendation systems are one class of examples for predictive analytics
 - Search ads
 - Product recommendations at online retailers
 - Movie recommendations
 - YouTube suggestions
 - Recommendations for news articles, blogs
 - ·

12/10/2013 CSC 296/576 - Fall 2013

Predictive Analytics in the Big Data Era

- Very large data volume requires parallelism for fast processing
 - Particularly important for testing new ideas: many tests, need quick feedback at each test, but high-quality tests must run on large datasets
- Incremental data processing
 - Do not re-process from scratch when new data samples come in continuously

12/10/2013

CSC 296/576 - Fall 2013

5

Data Analytical Techniques

- Linear regression
 - Let's say we developed the theory that the income level is linearly correlated with fraud chances and want to compute the parameters in the linear model: fraud = $\beta_1 + \beta_2 \cdot$ income

Income Fraud-chance \$10,000 0.00004 \$20,000 0.00005 ... \$90,000 0.00013

Least-square fitting computation

http://en.wikipedia.org/wiki/Linear least squares (mathematics)

12/10/2013

CSC 296/576 - Fall 2013

10

12

Data Analytical Techniques

- Least-square fitting computation
 - Formulate the square error (residual)
 - Formulate zero derivative equations (linear)
 - Solve the linear equations
- Which step is most expensive?
- Parallelization?
 - Mapreduce()?
- Incremental data processing?

12/10/2013

CSC 296/576 - Fall 2013

Discrete Data Analysis

- K-nearest neighbors
 - A set of training samples
 - For each new data point, use a distance measure to locate nearest neighbors among the training samples
 - A decision rule to classify from the k-nearest neighbors
- Which step is most expensive?
- Parallelization?
- Incremental data processing?

12/10/2013 CSC 296/576 - Fall 2013

Discrete Data Analysis

- Decision tree (ID3)
 - Iterative process to identify the most descriptive parameter and partition the dataset
 - Each iteration of ID3: within the current dataset, find the parameter to produce most information gain
- Parallelize by MapReduce?
 - Map: find the information gain of using each parameter to partition the dataset (maybe a portion of the dataset)
 - Reduce: find the best parameter
 - Problem: each task needs the whole dataset ⇒ poor locality
 - Map task within a data partition?
- Incremental processing?

12/10/2013

CSC 296/576 - Fall 2013

11

People Analytics

- Predictive analytics to manage human resources
 - Hiring, firing, promotions, incentives, ...
 - http://www.unwired.eu.com/WORKTECH13/newyork/ downloads /Ben-Waber-People-Analytics.pdf, by Ben Waber
 - Data collection?

12/10/2013 CSC 296/576 - Fall 2013

People Analytics

Google's Project Oxygen to identify effective management approaches

12/10/2013

CSC 296/576 - Fall 2013

13

Big Data Computation with Legacy Tools

- Tools like R and matlab have useful libraries, kernels, but
 - they support limited parallel computation
 - little support for I/O parallelism
 - isn't flexible for linking with modern big data technologies (e.g., mapreduce/Hadoop)
- How will big data computation evolve into the future?
 - people stick with the legacy tools
 - R, matlab evolve to fully integrate with big data technologies
 - people start abandoning them
 - integration technologies appear to link legacy computation tools with massive parallelism and fast I/O

12/10/2013 CSC 296/576 - Fall 2013

14