il

MapReduce
Parallel Data Processing

Kai Shen

9/10/2013 CSC296/576 - Fall 2013

9/10/2013

Big Data Processing

http://www.worldwidewebsize.com

Fifty billions of indexed web pages
= 500 terabytes if 10KB per page

Processing large datasets is time consuming

Fortunately, many of the big data processing tasks (e.g.,
counting words) are embarrassingly parallel

= Distribute the work across a cluster of commodity machines and
do that in parallel

9/10/2013 CSC296/576 - Fall 2013

Challenges of Big Data Processing

Parallel programming (what have you done before?)
Parallel programming is challenging
= Co-ordination and communication among nodes

= Load balancing necessary for scalable performance (particularly
for large number of nodes)

Distributed systems are subject to faults

= Nodes (hardware or software) may fail & a small per-node failure
probability leads to significant chance for something to fail in a
large system

= Inexplicable performance anomaly may arise = a small anomaly
probability on a component leads to significant chance for
something abnormal in a large system

Good engineering is possible, but very hard
9/10/2013 CSC296/576 - Fall 2013

What do we need?

Ideally to have a programming interface and system support
such that:

= the interface is easy to program;

= the programming interface is suitable for many big data
processing applications;

= the underlying system can automatically support data movement,
load balancing, and fault-tolerance behind this interface.

A realization includes a programming interface and associated
system support

MapReduce is one such realization [Dean and Ghemawat 2004]
= first introduced at Google for large-scale web data processing

9/10/2013 CSC296/576 - Fall 2013




9/10/2013

MapReduce Programming Interface

= Two-stage data processing
= Data can be divided into many chunks

= A map task processes input data and generates local results for
one or a few chunks

= A reduce task aggregates and merges local results from multiple
map tasks

= Datais always represented as a set of key-value pairs
= Key helps grouping for the reduce tasks

= Though key is not always needed (for some applications, or for
the input data), a consistent data represent eases the
programming interface

9/10/2013 CSC296/576 - Fall 2013

MapReduce Programming Example

= Count the occurrences of individual words in bunch of web pages

= Map task: find words in one or a few files
= Input: <key = page url, value = page content>

" ou

= <“www.golf.com”, “golf in florida ...”>

.
= Output: <key = word, value = word count>
= <“golf”, 1>
» <“florida”, 1>

= Reduce task: compute total word counts across multiple files
= Input/output: <key = word, value = word count>

9/10/2013 CSC296/576 - Fall 2013

Dependency in MapReduce

= Dependency/synchronization is honored by the system support
= Essential for application correctness

= Too much dependency/synchronization complicates system
support; limits performance and scalability

= Dependency/synchronization in MapReduce
= Map tasks are independent from each other, can all run in parallel

= A map task must finish before the reduce task that processes its
result

= In many cases, reduce tasks are commutative

9/10/2013 CSC296/576 - Fall 2013

System Support

= Dean’s paper, Figure 1

= Besides getting all the work done, the underlying system can
optimizate the performance
= It assigns work in a load-balanced fashion
= It may monitor the progress of work on each node to re-balance
the work
= It may adjust work assignment to minimize data movement

9/10/2013 CSC296/576 - Fall 2013




System Support

= The underlying system also supports fault tolerance
= It can monitor potential failures and performance anomaly (not
finishing something that should’ve been finished); re-launch a
task if necessary
= Since most work is done by the master, master failure needs
special handing (periodic checkpointing and restart from
checkpointed state)

= Performance optimization and fault-tolerance are hidden
behind the simple programming interface

9/10/2013

Usage Examples

= Web data processing (inside Google)
= Count words

= Generate inverted web indexes: set of words, and list of matching
web pages for each word

= Identify popular queries from tons of search logs

= Data clustering for Google news personalization [Das et al.,
WWW2007]

9/10/2013 CSC296/576 - Fall 2013

10

9/10/2013 CSC296/576 - Fall 2013 9

Usage Examples
= Distributed grep
= Distributed sort
= Distributed matrix vector multiplication

A B C
X =
9/10/2013 CSC296/576 - Fall 2013 11

Usage Examples

= Big data machine learning

= An example: K-means clustering

= Each iteration of K-means: given K centers, each sample is
grouped into the nearest center

= Can be done in MapReduce
= Map: find the nearest center for one or a few samples
= Reduce: aggregate the results

9/10/2013 CSC296/576 - Fall 2013

12




MapReduce Implementations

= MapReduce has multiple implementations

= Original MapReduce implementation at Google
= Not shared with the public

= Implemented in C/C++, but support many interfaces including Java

Hadoop
= Open source implementation
= Implemented in Java, only support Java interface?

Phoenix
= Also open source
= MapReduce on a single multi-core machine
= Does it make sense? MapReduce vs. threads?

9/10/2013 CSC296/576 - Fall 2013

13

9/10/2013

Applications that don’t fit

MapReduce supports limited semantics

= The key success of MapReduce depends on the assumption that
the dominant part of data processing can be divided into a large
number of independent map tasks

What applications don’t fit this?

= Those with complex dependencies --- Gaussian Elimination to
solve a linear system of equations; k-means actually wasn’t a
great fit; other iterative machine learning computations, ...

9/10/2013 CSC296/576 - Fall 2013

14

Alternative Parallel Data Processing

= Good old ways:

= Distributed applications (synchronized over sockets) to process
data on multiple machines

= Multi-threaded processing to take advantage of multiple CPU
cores on a single machine

= Something in between---ideally to have a programming
interface and system support such that:

= the interface is easy to program;

= the programming interface is suitable for many big data
processing applications;

= the underlying system can automatically support data movement,
load balancing, and fault-tolerance behind this interface.

9/10/2013 CSC296/576 - Fall 2013

15




