MapReduce
Parallel Data Processing

Kai Shen

Big Data Processing

- Fifty billions of indexed web pages
 - 500 terabytes if 10KB per page
- Processing large datasets is time consuming
- Fortunately, many of the big data processing tasks (e.g., counting words) are embarrassingly parallel
 - Distribute the work across a cluster of commodity machines and do that in parallel

Challenges of Big Data Processing

- Parallel programming (what have you done before?)
- Parallel programming is challenging
 - Co-ordination and communication among nodes
 - Load balancing necessary for scalable performance (particularly for large number of nodes)
- Distributed systems are subject to faults
 - Nodes (hardware or software) may fail ⇒ a small per-node failure probability leads to significant chance for something to fail in a large system
 - Inexplicable performance anomaly may arise ⇒ a small anomaly probability on a component leads to significant chance for something abnormal in a large system
- Good engineering is possible, but very hard

What do we need?

- Ideally to have a programming interface and system support such that:
 - the interface is easy to program;
 - the programming interface is suitable for many big data processing applications;
 - the underlying system can automatically support data movement, load balancing, and fault-tolerance behind this interface.
- A realization includes a programming interface and associated system support
- MapReduce is one such realization [Dean and Ghemawat 2004]
 - first introduced at Google for large-scale web data processing
MapReduce Programming Interface

- Two-stage data processing
 - Data can be divided into many chunks
 - A map task processes input data and generates local results for one or a few chunks
 - A reduce task aggregates and merges local results from multiple map tasks
- Data is always represented as a set of key-value pairs
 - Key helps grouping for the reduce tasks
 - Though key is not always needed (for some applications, or for the input data), a consistent data represent eases the programming interface

MapReduce Programming Example

- Count the occurrences of individual words in bunch of web pages
 - Map task: find words in one or a few files
 - Input: <key = page url, value = page content>
 - <"www.golf.com", "golf in florida ...">
 - ...
 - Output: <key = word, value = word count>
 - <"golf", 1>
 - <"florida", 1>
 - ...
 - Reduce task: compute total word counts across multiple files
 - Input/output: <key = word, value = word count>

Dependency in MapReduce

- Dependency/synchronization is honored by the system support
 - Essential for application correctness
 - Too much dependency/synchronization complicates system support; limits performance and scalability

System Support

- Dean’s paper, Figure 1
 - Besides getting all the work done, the underlying system can optimize the performance
 - It assigns work in a load-balanced fashion
 - It may monitor the progress of work on each node to re-balance the work
 - It may adjust work assignment to minimize data movement
System Support

- The underlying system also supports fault tolerance
 - It can monitor potential failures and performance anomaly (not finishing something that should've been finished); re-launch a task if necessary
 - Since most work is done by the master, master failure needs special handing (periodic checkpointing and restart from checkpointed state)
- Performance optimization and fault-tolerance are hidden behind the simple programming interface

Usage Examples

- Web data processing (inside Google)
 - Count words
 - Generate inverted web indexes: set of words, and list of matching web pages for each word
 - Identify popular queries from tons of search logs
 - Data clustering for Google news personalization [Das et al., WWW2007]
 -

Usage Examples

- Distributed grep
- Distributed sort
- Distributed matrix vector multiplication

\[
\begin{array}{c|c|c|c}
A & B & C \\
\hline
\text{X} & = & \\
\end{array}
\]

Usage Examples

- Big data machine learning
- An example: K-means clustering
 - Each iteration of K-means: given K centers, each sample is grouped into the nearest center
 - Can be done in MapReduce
 - Map: find the nearest center for one or a few samples
 - Reduce: aggregate the results
MapReduce Implementations

- MapReduce has multiple implementations
- Original MapReduce implementation at Google
 - Not shared with the public
 - Implemented in C/C++, but support many interfaces including Java
- Hadoop
 - Open source implementation
 - Implemented in Java, only support Java interface?
- Phoenix
 - Also open source
 - MapReduce on a single multi-core machine
 - Does it make sense? MapReduce vs. threads?

Applications that don’t fit

- MapReduce supports limited semantics
 - The key success of MapReduce depends on the assumption that the dominant part of data processing can be divided into a large number of independent map tasks
- What applications don’t fit this?
 - Those with complex dependencies --- Gaussian Elimination to solve a linear system of equations; k-means actually wasn’t a great fit; other iterative machine learning computations, ...

Alternative Parallel Data Processing

- Good old ways:
 - Distributed applications (synchronized over sockets) to process data on multiple machines
 - Multi-threaded processing to take advantage of multiple CPU cores on a single machine
- Something in between---ideally to have a programming interface and system support such that:
 - the interface is easy to program;
 - the programming interface is suitable for many big data processing applications;
 - the underlying system can automatically support data movement, load balancing, and fault-tolerance behind this interface.