Web Page Quality Ranking

Kai Shen

PageRank

- PageRank ...
 - “works by counting the number and quality of links to a page to determine a rough estimate of how important the website is. The underlying assumption is that more important websites are likely to receive more links from other websites.”

- Count of in-links is important; the quality of the sources of in-links are also important
 - http://upload.wikimedia.org/wikipedia/commons/6/69/PageRank-hi-res.png

- Originated at Google, though may not be heavily relied upon by Google now

Web Page Quality Ranking

- Inverted web indexes help locate matching pages of search words
 - But there are too many matches and humans can’t read all

- Both relevance and quality are important in web search

- What is a high-quality web page?

- How to identify a high-quality web page?
 - Hard to spam

- Related to identifying high-quality scientific publications
 - But much bigger dataset

PageRank

- PageRank scores each page
 - the score is the converged probability for a random web surfer to arrive at the page

- Scores transfer through links (random click by the surfer):
 - If pages B, C are the pages that link to A, then
 \[PR(A) = PR(B)/L(B) + PR(C)/L(C) \]

- Damping factor (for stability):
 - The surfer has a tendency to stay at where he/she is
 \[PR(A) = \frac{(1-d)}{N} + d(PR(B)/L(B) + PR(C)/L(C)) \]

- A linear system of equations (N variables, N linear equations)
How to compute it?

- How to solve a linear system of equations?
- Big data \(\Rightarrow \) large matrix (50 billion \(\times \) 50 billion)
 - Parallelizing it is essential

Gaussian Elimination

- Simplification – ignore final solving step and pivoting
- Reduce an equation matrix into an equivalent upper-diagonal

\[
\begin{align*}
A & \xrightarrow{pA_1 + A_2} X \\
pA_1 + A_2 & \quad r_1 + p^*r_1 \\
& \quad X = R
\end{align*}
\]

for \(c=1 \) to \(N \)
for \(r=c+1 \) to \(N \)
zero out \(A_{c,r} \) by adding \(p^*A_{c,r} \) to \(A_{c,r} \)

Parallelizing Gaussian Elimination

- How to parallelize? Dependencies:
 - Outer loop instances (e.g., \(c=2 \) depends on \(c=1 \))?
 - Inner loop instances (e.g., \(r=3 \) depends on \(r=2 \))?
 - MapReduce? Does it scale?
 - Traditional parallel programming is fine, but hard to program correctly, robustly with high performance and scalability

Iterative Solver

- \(PR(A) = (1-d)/N + d(PR(B)/L(B) + PR(C)/L(C)) \)

- Iterative solver:
 - Start from an initial PR vector (1/N for each page)
 - Compute a new PR vector by the above linear transformation
 - Keep repeating the linear transformation until the PR converges (very small change after further linear transformation)
 - Even with the large, complex web graph, often converging after dozens of iterations
 - Each iteration is a matrix-vector multiplication, so the whole computation is a series of matrix-vector multiplication
Parallelizing the Iterative Solver

- The whole computation is a series of matrix-vector multiplication
- How to parallelize?
 - MapReduce?
 - Does it scale?

Load Distribution

- One row (or a few rows) per task:

```
  A  B  C
  X  =  X
```
- Or one block per task:

```
  A  B  C
  X  =  X
```

Load Balancing

- Matrix vector multiplication
 - Load balancing by distributing equal-size blocks of A to each map task
 - But matrix is extremely sparse \(\Rightarrow \) equal-size blocks doesn't mean equal amount of work
 - More map tasks than the number of nodes; rely on dynamic load balancing in MapReduce

Topic-Sensitive PageRank

- Web page quality ranking is sometimes affected by interest on a particular topic
- Original PageRank score
 - Start from a PR vector (1/N for each page)
 - Compute a new PR vector by the link-based linear transformation
 - \(PR(A) = (1-d)/N + d(PR(B)/L(B) + PR(C)/L(C)) \)
 - Keep repeating the above until the PR converges
- Topic-sensitive PageRank:
 - Start from a PR vector (1/n for each topic-matching page, 0 otherwise), n is the number of topic-matching page
 - In iterative computation, \(PR(A) \)'s damping factor is (1-d)/n if it is a topic-matching page, 0 otherwise
 - Effect: the random surfer always starts from a topic-matching page, and has an extra staying probability if it is on such a page
Topic-Sensitive PageRank

- A great way to return searches online searches
- Can it be done that quickly?

Hubs and Authorities

- Fundamentally wrong to think that web pages are of one kind
 - Existence of hubs, pages with many links to good pages (even though they are not linked by others very well)
 - In original PageRank computation, these pages have very low scores and their out-links are even less effective (since they have many links)
- HITS [Kleinberg 1999]
 - Each page has two scores—authority score is like the traditional quality score; hub score indicates the strength of the page linking to high-quality page
 - \[a = Lh \]
 - \[h = L^T a \]
 - Solved iteratively, can use MapReduce

Disclaimer

- Preparation of this class was helped by materials in the online book “Mining of Massive Datasets” by Rajaraman, Leskovec, and Ullman.