

Content-Based Recommendation

- Identify user/item profiles and match them for recommendation
- Search ads
 - Item profiles are categories and keywords for ads
 - User profiles are the keywords user provided for search

9/17/2013

CSC296/576 - Fall 2013

5

Discover Features of Documents

- Too much information: a document contains many words (terms)
 - A term appearing many times tends to describe the document better
 - But not always the case
 ⇒ if it occurs in every document ("the"), then it isn't really descriptive
- TF.IDF: term frequency—inverse document frequency
 - Raw count, boolean, logarithmic
- Similarity of documents
 - Jaccard distance: intersection size divided by the union's size
 - Cosine distance: normalize the vectors and then compute inner products

9/17/2013 CSC296/576 - Fall 2013

Obtain Item Features from Tags

- Too little descriptive information: images
 - Tagging
- How to tag images?
 - Computer vision
 - Mapreduce?
 - Web crawling and mining
 - Image tagging from computer games

9/17/2013

CSC296/576 - Fall 2013

Obtain User Profiles

- Probably the most valuable data are those that contain user activities or behaviors
- Direct: search keywords, filing out profiles/surveys
- Indirect inference:
 - blogposts, tweets
 - browsing history (offer free content to attract users, infer their profiles, and show targeted recommendation)
 - offer free entertainment (games) to attract users, ...
 - ·

9/17/2013

CSC296/576 - Fall 2013

10

12

Making Recommendation

- Similarity of user/item profiles
 - Jaccard distance, cosine distance, ...
- Machine learning: train a decision tree
 - http://en.wikipedia.org/wiki/Decision tree learning
 - How to train? Iterative Dichotomiser 3.
 - Not so great result, but fast decision

9/17/2013

CSC296/576 - Fall 2013

7

Collaborative Filtering

- Find similar users for a given target user and identify preferred items by similar users as recommendation
- Clustering users

9/17/2013 CSC296/576 - Fall 2013

Big Data Recommendations

- A large amount of data, many users (so data can still be sparse)
- Similarity matching against a large dataset
 - Given a user profile (set of keywords), find the best matches with existing items (products, ads, movies, ...)
 - Mapreduce: each task finds matches within a partition of the items
 - Not scalable: N users, M items ⇒ total efforts proportional to N×M

9/17/2013

CSC296/576 - Fall 2013

11

Big Data Recommendations

- Clustering (k-means)
 - Each iteration of K-means: given K centers, each sample is grouped into the nearest center
 - Can be done in MapReduce
 - Map: find the nearest center for one or a few samples
 - Reduce: aggregate the results

9/17/2013

CSC296/576 - Fall 2013

14

16

Big Data Recommendations

- Decision tree (ID3)
 - Iterative process to identify the most descriptive parameter and partition the dataset
 - Each iteration of ID3: within the current dataset, find the parameter to produce most information gain
 - Can be done in MapReduce?
 - Map: find the information gain of using each parameter to partition the dataset
 - Reduce: find the best parameter
 - Problem: each task needs the whole dataset ⇒ poor locality
 - Map task within a data partition?

9/17/2013

CSC296/576 - Fall 2013

13

15

9/17/2013 CSC296/576 - Fall 2013

Offline/online Recommendation

- Offline recommendation
 - Have data about items and users
 - Identify recommendations and mail them out
- Online recommendation
 - Have data about items and past users
 - For a new user with a bit of usage data, identify recommendation quickly and show on screen
- Optimized online recommendation
 - Optimize certain goal (profit) with additional conditions (advertiser constraints and offer)

9/17/2013

CSC296/576 - Fall 2013

Disclaimer

 Preparation of this class was helped by materials in the online book "Mining of Massive Datasets" by Rajaraman, Leskovec, and Ullman.

9/17/2013

CSC296/576 - Fall 2013