Parallelism beyond MapReduce: Threads on Multicores

Kai Shen

MapReduce Pro and Con

Pros:
- Easy programming interface;
- The underlying system can automatically support parallelism, data movement, load balancing, and fault-tolerance.

Cons:
- Programming interface is still restrictive for some applications;
- Too much automation, too little direct control for performance optimization;
- Not optimal for parallelism in single shared-memory multicore machine.

Threads

- Parallel programming model in a single shared-memory multi-core machine; without support for data move and management
- Programming model:
 - Create bunch of threads, each running something.
 - Multiple threads run in parallel on a multi-core.
 - All threads share the memory space (each thread can directly access any data in the memory space). [No direct data sharing in MapReduce]
 - Very flexible and fairly simple without synchronization.

Synchronization on Shared Data

- Two threads that operate on a shared counter:
 - One increases the counter by one;
 - The other decreases the counter by one.
- Counter increase may be implemented as:
  ```
  register1 = counter;
  register1 = register1 + 1;
  counter = register1;
  ```
- Counter decrease may be implemented as:
  ```
  register2 = counter;
  register2 = register2 - 1;
  counter = register2;
  ```
- Each counter operation must be protected from concurrent update by the other (synchronization by mutex locks).
Synchronization to Preserve Task Ordering (Dependencies)

- Task ordering needed in applications:
 - Word counting from individual documents need to complete before the aggregation of the counts;
 - In each iteration of K-means, the cluster assignment of all samples must happen before new cluster centers are computed and the next iteration commences.
- Dependencies can be preserved by synchronization (wait/signal).

When to Use Threads?

- When all data fit into memory, and
 - Threads is more flexible (than MapReduce) in allowing data sharing and controlling task ordering
 - Threads has less overhead (than MapReduce)
- When threads run in each multi-core machine of a large MapReduce cluster

Threads Programming Steps

- Decompose application into tasks
 - Like identify map tasks for MapReduce
 - Formalize the dependencies (more flexible than MapReduce)
 - How good is the decomposition?
 - Exposed parallelism, load balance, required synchronization
- Add synchronization
 - Preserve the task dependencies
 - Protect shared data structure for concurrent accesses
- Fine-grain vs. coarse-grained decomposition
 - Parallelism vs. challenges in control

Performance Objectives

- Fast speed
 - Assume the sequential is already optimized, we want high speedup, ideally equaling the number of CPU cores
Application: Word Counting

- How to support word counting with threads?
 - Step 1: Each thread counts a subset of the document
 - Step 2: Counts are aggregated after all documents are counted
- Parallelism is step 1; dependency between steps 1 and 2
- Is it going to work well (good speedup)?
 - Good parallelism, reasonable load balancing, little dependency, but too small compute-to-data ratio

Application: K-means

- How to support K-means with threads?
 - Within each iteration, parallelize the sample clustering
 - Synchronization between iterations
- Is it going to work well (good speedup)?
 - Some parallelism, good load balancing, more dependency (compared to word count), but better compute-to-data ratio (with a large number of iterations).

Application: PageRank Computation

- A linear system of equations (N variables, N linear equations)
- Solved iteratively with a matrix-vector multiplication at each step
- How to support PageRank with threads?
 - Within each iteration, parallelize the matrix-vector multiplication
 - Synchronization between iterations
- Is it going to work well (good speedup)?
 - Good parallelism, good load balancing, some dependency, good compute-to-data ratio (with a large number of iterations)
- But iterative method doesn’t produce precise solution

Application: Gaussian Elimination

- Simplification – ignore final solving step and pivoting
- Reduce an equation matrix into an equivalent upper-diagonal

\[\begin{align*}
 A & \rightarrow X \\
 p^*A_{c,c} + A_{r,c} & \rightarrow X \\
 X & = r_1 + p^*r_2 \\
 \text{for } c=1 \text{ to } N \\
 \text{for } r=c+1 \text{ to } N \\
 \text{zero out } A_{r,c} \text{ by adding } p^*A_{r,c} \text{ to } A_{r,r}
\end{align*} \]
Application: Gaussian Elimination

\[
p^* A_{c,1} + A_{c,1}^* + A_{c,2}^* = R_{c,2} + p^* c_1
\]

for \(c=1\) to \(N\)
for \(r=c+1\) to \(N\)
zero out \(A_{c,r}\) by adding \(p^* A_{c,1}\) to \(A_{c,r}\)

- **How to parallelize? Dependencies:**
 - Outer loop instances (e.g., \(c=2\) depends on \(c=1\))?
 - Inner loop instances (e.g., \(r=3\) depends on \(r=2\))?
 - Within one inner loop instance?

- **Task decomposition:**
 - Row, column, 2-dimensional

Irregular Parallelism

- Real problems contain large, sparse matrices
- Solve them as dense matrices waste time on zero-element operations
- Sparse matrix computation
 - Load imbalance
 - Managing nonzero fillins

Static vs. Dynamic Task Assignment

- **Static task assignment**
 - No. of tasks = No. of threads = No. of CPU cores
 - Each task gets a dedicated thread/CPU and runs to the end

- **Dynamic task assignment**
 - No. of tasks > No. of threads
 - Maintain a queue of ready tasks, protected by mutex lock
 - Each thread grabs a task and runs it; grabs another one when the current task completes
 - Advantage: good load balancing
 - Disadvantage: complex implementation, may hurt data locality

Example Speedup Results

- The speed ratio over the best sequential run
Performance Considerations

- Load balancing
- Synchronizations
 - your application synchronization and synchronization in the OS
- Memory bandwidth
 - is the performance bounded by reading from the memory?
- I/O
 - is the performance bounded by reading from the storage?
- Data locality
 - cache-efficient algorithms (block-based computation)
- Contention on shared resources

Multicore Architecture

- Last-level cache becomes a significant part of the chip
 ⇒ Multicore: add another processor core on the chip (sharing a single last-level cache)
 - Low cost (manufacturing, power)

- Additional benefit: faster processor-to-processor sharing

Contention on Shared Resources

- Shared resources: cache space, memory bandwidth
- What am I not seeing the speedup I expect?
- Load balancing implication