Parallelism beyond MapReduce:
* Threads on Multicores

Kai Shen

10/1/2013 CSC 296/576 - Fall 2013

10/1/2013

MapReduce Pro and Con

Pros:
= Easy programming interface;

= The underlying system can automatically support parallelism,
data movement, load balancing, and fault-tolerance.

Cons:
= Programming interface is still restrictive for some applications;
= Too much automation, too little direct control for performance

optimization;

= Not optimal for parallelism in single shared-memory multicore
machine.

10/1/2013 CSC 296/576 - Fall 2013

Threads

m Parallel programming model in a single shared-memory multi-
core machine; without support for data move and management

m Programming model:
= Create bunch of threads, each running something.
= Multiple threads run in parallel on a multi-core.

= All threads share the memory space (each thread can directly
access any data in the memory space). [No direct data sharing in
MapReduce]

= Very flexible and fairly simple without synchronization.

10/1/2013 CSC 296/576 - Fall 2013

Synchronization on Shared Data

Two threads that operate on a shared counter:
= One increases the counter by one;
= The other decreases the counter by one.

Counter increase may be implemented as:
registerl = counter;

registerl = registerl + 1;
counter = registerl;

Counter decrease may be implemented as:
register2 = counter;

register2 = register2 - 1;
counter = register2;

Each counter operation must be protected from concurrent update by the
other (synchronization by mutex locks).

10/1/2013 CSC 296/576 - Fall 2013

10/1/2013

Synchronization to Preserve Task
Ordering (Dependencies)

= Task ordering needed in applications:
= Word counting from individual documents need to complete before
the aggregation of the counts;
= In each iteration of K-means, the cluster assignment of all samples
must happen before new cluster centers are computed and the next

iteration commences.

= Dependencies can be preserved by synchronization (wait/signal).

10/1/2013 CSC 296/576 - Fall 2013

i When to Use Threads?

= When all data fit into memory, and
= Threads is more flexible (than MapReduce) in allowing data sharing
and controlling task ordering
= Threads has less overhead (than MapReduce)

= When threads run in each multi-core machine of a large
MapReduce cluster

10/1/2013 CSC 296/576 - Fall 2013

Threads Programming Steps

= Decompose application into tasks
= Like identify map tasks for MapReduce
= Formalize the dependencies (more flexible than MapReduce)
= How good is the decomposition?
= Exposed parallelism, load balance, required synchronization

= Add synchronization
= Preserve the task dependencies
= Protect shared data structure for concurrent accesses

= Fine-grain vs. coarse-grained decomposition
= Parallelism vs. challenges in control

10/1/2013 CSC 296/576 - Fall 2013

Performance Objectives

= Fast speed

= Assume the sequential is already optimized, we want high
speedup, ideally equaling the number of CPU cores

idea

Q.

>

kel

[

[

joN . .

%) in practice

CPU cores
10/1/2013 CSC 296/576 - Fall 2013

Application: Word Counting

How to support word counting with threads?
= Step 1: Each thread counts a subset of the document
= Step 2: Counts are aggregated after all documents are counted

Parallelism is step 1; dependency between steps 1 and 2

Is it going to work well (good speedup)?

= Good parallelism, reasonable load balancing, little dependency, but
too small compute-to-data ratio

10/1/2013 CSC 296/576 - Fall 2013

10/1/2013

Application: K-means

= How to support K-means with threads?
= Within each iteration, parallelize the sample clustering
= Synchronization between iterations

= s it going to work well (good speedup)?

= Some parallelism, good load balancing, more dependency (compared
to word count), but better compute-to-data ratio (with a large
number of iterations).

10/1/2013 CSC 296/576 - Fall 2013 10

Application: PageRank Computation

A linear system of equations (N variables, N linear equations)
Solved iteratively with a matrix-vector multiplication at each step

How to support PageRank with threads?
= Within each iteration, parallelize the matrix-vector multiplication
= Synchronization between iterations

Is it going to work well (good speedup)?

= Good parallelism, good load balancing, some dependency, good
compute-to-data ratio (with a large number of iterations).

But iterative method doesn’t produce precise solution

10/1/2013 CSC 296/576 - Fall 2013

11

Application: Gaussian Elimination

= Simplification — ignore final solving step and pivoting
= Reduce an equation matrix into an equivalent upper-diagonal
A X R

A, 51
P*A. 1A, _ I +p*1y

forc=1toN
forr=c+1toN
zero out A by adding p*A to A,

10/1/2013 CSC 296/576 - Fall 2013 12

10/1/2013

Application: Gaussian Elimination

A X R
A, f
p*A. 1 +A X _ Iy +p*ry

forc=1toN
forr=c+1to N
zero out A_, by adding p*A, . to A,

m How to parallelize? Dependencies:
= Outer loop instances (e.g., c=2 depends on c=1)?
= Inner loop instances (e.g., r=3 depends on r=2)?
= Within one inner loop instance?

m Task decomposition:
= Row, column, 2-dimensional

10/1/2013 CSC 296/576 - Fall 2013

13

Irregular Parallelism

= Real problems contain large, sparse matrices
= Solve them as dense matrices waste time on zero-element

operations

= Sparse matrix computation

= Load imbalance
= Managing nonzero fillins

10/1/2013 CSC 296/576 - Fall 2013

14

Static vs. Dynamic Task Assignment

m Static task assignment
= No. of tasks = No. of threads = No. of CPU cores
= Each task gets a dedicated thread/CPU and runs to the end

= Dynamic task assignment
= No. of tasks > No. of threads
= Maintain a queue of ready tasks, protected by mutex lock

= Each thread grabs a task and runs it; grabs another one when the
current task completes

= Advantage: good load balancing
= Disadvantage: complex implementation, may hurt data locality

10/1/2013 CSC 296/576 - Fall 2013

15

Speedup

Example Speedup Results

= The speed ratio over the best sequential run

S+, afZ3560, IBM Rogatin

@~ ® ©

5~ M ow o o

10/1/2013 CSC 296/576 - Fall 2013

S, avd 1092, IBM Regatta

16

Performance Considerations

Load balancing
Synchronizations

= your application synchronization and synchronization in the OS
Memory bandwidth

= is the performance bounded by reading from the memory?
1/0

= is the performance bounded by reading from the storage?
Data locality

= cache-efficient algorithms (block-based computation)
Contention on shared resources

10/1/2013 CSC 296/576 - Fall 2013 17

10/1/2013

Multicore Architecture

= Last-level cache becomes a significant part of the chip

= Multicore: add another processor core on the chip (sharing a single
last-level cache)
= Low cost (manufacturing, power)

processor

last-level cache

memory

processor

One chip

f

= Additional benefit: faster processor-to-processor sharing

10/1/2013 CSC 296/576 - Fall 2013 18

Contention on Shared Resources

= Shared resources: cache space, memory bandwidth
= What am | not seeing the speedup | expect?

= Load balancing implication

10/1/2013 CSC 296/576 - Fall 2013 19

