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Parallel Data Processing Models

= Single-machine shared memory
= Data must fit in one machine

= Multiple threads, each can access the entire memory space
(shared memory actually makes programming easy)

= Synchronization to protect shared data and enforce dependency

= Weaknesses:
= Limited scalability
= Limited 1/0 capacity (even if the computing capability is sufficient)
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Parallel Data Processing Models

= Distributed data processing
= Data is partitioned and distributed

= Tasks run on different machines on different data partitions;
collaboration through network communication

= Weaknesses:
= Inconvenience for not being able to access all the data
= Slower data communication
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Programming for Distributed Data
Processing

= MapReduce: simple programming (load balancing, data
movement, fault tolerance is automated) but restrictive in
semantics

= MPI (Message Passing Interface)
= General distributed data processing
= Make use of idle resources (where you can find them)

= Not required assignment on any beyond MapReduce
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Message Passing Interface

= De facto standard programming interface for message passing-
based parallel programs
= think of threads for shared memory parallel programming

= You write a single program, multiple copies of which will run on
multiple machines
= Assumption: all processes do mostly similar things
= Different parts distinguish through process ID

= Communications
= Point-to-point: send/receive
= Group communications: broadcast, gather, scatter, reduce, barrier

= It has a variety of implementations that we won’t go into

10/3/2013 CSC 296/576 - Fall 2013

MPI Send/Receive

Matching send/receive:
= Process x sends a message to process y
= Processy receives a message from process x

Nonblocking send
Synchronous send

Nonblocking receive
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MPI Group Communications

= Barrier
= All processes wait until all have arrived

= Broadcast
= One process (root) sends a message to be received by others

= Reduce (just like reduce in MapReduce)

= A function (MAX, SUM, ...) is applied to data supplied by all processes;
result is returned at one process (root)

= Function is evaluated following process rank order
= Reduce(Ry, R,) = Ry, Reduce(R;,, R3) = Ryy3, ...
= Can be optimized if associative and/or commutative
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MPI Applications

Word counting
= Divide the documents into partitions
= Each MPI task counts words in its own partition
= Reduce at the end

K-means
= Divide the samples into subsets
= In each iteration, an MPI task assigns samples in its partition

= Barrier between iterations (re-computation of cluster centers is a
bit tricky)
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MPI Applications

PageRank / matrix-vector multiplication

= Divide the matrix into blocks/rows, all nodes have a copy of the
vector

= Each MPI task computes matrix-vector multiplication for its own
data

= All-to-all broadcast between iterations, new pagerank vector is
distributed to all

Gaussian Elimination
= Divide the matrix into blocks/rows
= ...can be done, but somewhat complex
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MPI vs. MapReduce

= Ease of programming
= complexity of interface specification

= Automatic system support
= forload balancing, data movement, and fault tolerance

= Flexibility
= in supporting complex application semantics
= in custom data distribution and transfer

= MPI is still restrictive
= in communication modes
= in custom performance optimization

10/3/2013 CSC 296/576 - Fall 2013 10

General Distributed Data Processing

As usual, we first divide the data into partitions
Individual per-partition data processing runs on each machine

Tasks communicate through sockets (TCP/IP)
= Send/receive
= Asynchronous Send/receive
Implement everything else on top of the above
= MPI synchronous send?
= Reduce, data aggregation?

Most flexible, and most efficient (if done right), but requiring
most programming work
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Communication Performance

= Direct data accesses on a shared memory machine
= TCP/IP on a shared memory machine
= TCP/IP over a cluster

Short message latency Long message throughput
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Communication Performance

= Long communication latency (vs. high bandwidth)

= our Ethernet cluster: 250us latency, 80MB/sec bandwidth
if 1KB per synchronization, effective bandwidth is 4MB/sec

= synchronize/wait as few times as possible

» Performance issues with TCP/IP
= Connection establishment
= Congestion control
= UDP or raw IP with some error detection management
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Custom Fast Communications

Fast local area network (Myrinet, infiniband, ...)
= No need to support Internet communications (TCP/IP)

Large multiprocessors from Cray, IBM, ...
= Each processor (or processor group) has some local memory
= Fast access to remote memory through fast system bus
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Load Balancing

= With most flexibility, you also must take care of all
performance optimization and fault/anomaly management

= Dynamic load balancing
= Implement master (in MapReduce) or TaskTracker (in Hadoop)
= Maintain more tasks than machines; assign tasks to machines

= Reactive assignment: assign one more task to a machine that
just informed me it has completed its current assignment

= Proactive assignment: poll the load situation at machines and
assign more to those with low load (don’t have to poll all
frequently)

= Observe data locality as much as possible
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Parallel Data Aggregation

How to implement reduce()?
All data sent to the one node; reduced at that node
Tree-ordered parallel reduction (if reduction op is associative)

Adaptive order based on progress at each node (if reduction op
is commutative)
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Performance Outliers

= Performance of your application is bounded by the slowest task
= Many reasons for a particularly slow task (even if load appears
to be balanced):
= awful data locality
= long network switch distance
= OS daemons run at unfortunate time
= disk/SSD remapped data layouts (due to wear) hinder 1/0 speed

= Monitor the progress of tasks, and re-launch a redundant task
(at a different machine) if necessary
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Deadlocks

= Why does my distributed program get stuck?

= The MapReduce system support typically ensures progress is always
made

= Possible reasons
= Receive without a matching send (or a matching send cannot be
reached)
= Group communications are not called by all in the group
= Send blocked by insufficient buffer space

= Debugging
= Find out where each process is blocked at

= How does it conflict with design? What’s wrong with
implementation?
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Fault Tolerance

s Checkpointing and restart
= Checkpointed state (a distributed state) is a consistent state

= A consistent state is one that can be reached (after freezing the
execution of all nodes at once) in some real execution

= Easy to do for MapReduce

= Since each map or reduce task does not send data or interact with
others til completion, wiping out the partial work of one task still
reaches a consistent state (as if the task execution has been
extremely slow, actually made no progress since start)

= Challenging for general distributed applications

= If Ais checkpointed before sending out a message (dest. B), then
B should be checkpointed before receiving the message
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Utilizing Idle Resources

Motivation: lots of machines are mostly idle in a University lab or
across the Internet

= We distribute work to those machines (screen saver download)
and have them done when the machine is idle

n SETI@home

= Distributed task: a data partition to process
Brute-force password cracking

= Distributed task: passwords to try

= Realization:
= Data/work must be easily partitionable without interdependencies
= Must tolerate potentially long network delays
= Must deal with unpredictable response time of tasks
= Must be un-annoying

= Is it worth doing?
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