
Power Containers: An OS Facility for Fine-Grained
Power and Energy Management on Multicore Servers

Kai Shen∗ Arrvindh Shriraman† Sandhya Dwarkadas∗ Xiao Zhang§ Zhuan Chen∗

∗ University of Rochester † Simon Fraser University § Google

{kshen, sandhya, zchen}@cs.rochester.edu ashriram@cs.sfu.ca xiaozhang@google.com

Abstract

Energy efficiency and power capping are critical concerns in server
and cloud computing systems. They face growing challenges due
to dynamic power variations from new client-directed web appli-
cations, as well as complex behaviors due to multicore resource
sharing and hardware heterogeneity. This paper presents a new op-
erating system facility called “power containers” that accounts for
and controls the power and energy usage of individual fine-grained
requests in multicore servers. This facility relies on three key
techniques—1) online model that attributes multicore power (in-
cluding shared maintenance power) to concurrently running tasks,
2) alignment of actual power measurements and model estimates
to enable online model recalibration, and 3) on-the-fly application-
transparent request tracking in multi-stage servers to isolate the
power and energy contributions and customize per-request control.
Our mechanisms enable new multicore server management capa-
bilities including fair power capping that only penalizes power-
hungry requests, and energy-aware request distribution between
heterogeneous servers. Our evaluation uses three multicore proces-
sors (Intel Woodcrest, Westmere, and SandyBridge) and a variety
of server and cloud computing (Google App Engine) workloads.
Our results demonstrate the high accuracy of our request power
accounting (no more than 11% errors) and the effectiveness of
container-enabled power virus isolation and throttling. Our request
distribution case study shows up to 25% energy saving compared
to an alternative approach that recognizes machine heterogeneity
but not fine-grained workload affinity.

Categories and Subject Descriptors D.4.1 [Operating Systems]:
ProcessManagement—Multiprocessing/multiprogramming/multitasking;
D.4.8 [Operating Systems]: Performance—Measurements, Model-
ing and prediction

General Terms Design, Experimentation, Measurement, Perfor-
mance, Reliability

Keywords Multicore, power modeling, power virus, hardware
counters, server and cloud computing, operating system

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

ASPLOS’13, March 16–20, 2013, Houston, Texas, USA.
Copyright c© 2013 ACM 978-1-4503-1870-9/13/03. . . $15.00

1. Introduction

Designers of data centers and server systems place high priority
on improving energy efficiency, controlling peak power draw, and
monitoring resource usage anomalies. Online applications are con-
tinuously evolving with new features and some rely on end users
to supply content or even content-generating code. For instance,
cloud computing platforms run user applications at third-party
hosting centers. Online collaboration software (such as the WeB-
WorK homework management system [37]) allows users (teachers
in WeBWorK) to supply scripting programs to run at servers. The
workload diversity and dynamic client-directed processing result
in large power fluctuations on modern multicore processors with
substantial hardware resource sharing and increasing power pro-
portionality [8]. Our measurements found that the idle power is
only about 5% of the total CPU package power on a recent Intel
SandyBridge processor (the idle power proportion is 32% when
counting the full machine power consumption).

Modern processors also exhibit highly varying power consump-
tion during execution, depending on the scope and level of activity
in the CPU cores as well as in uncore components such as the mem-
ory interconnect. At the same (full) CPU utilization on our Sandy-
Bridge processor, a cache/memory-intensive application consumes
49% more power than a CPU spinning program does. On these ma-
chines, extreme power-consuming tasks (or “power viruses”) [19]
may appear accidentally or be devised maliciously. Isolating per-
client power attribution to identify such tasks so as to cap the sys-
tem power draw in a fair fashion is highly desirable. Further, rec-
ognizing the energy usage of individual requests helps inform the
full costs of web use, under grid power as well as renewable en-
ergy sources [35]. Additionally, the economics of incremental up-
grades, along with low-power specialization, lead to widespread
heterogeneity in server clusters. Exploiting the diverse workload
affinity to heterogeneous platforms is beneficial for realizing high
energy efficiency.

This paper presents a new operating system facility, called
power containers, to account for and control the power and energy
usage of individual requests in multicore servers. Previous research
(particularly, Resource Containers [6], Magpie [7], and our hard-
ware counter modeling [32, 33]) has recognized the need for profil-
ing and isolating per-request resource usage in a server. However,
they do not include power or energy as a resource. Fine-grained
power and energy management on multicore servers is challenging
due to their complex relationship with resource utilization. Concur-
rent task executions, varying power consumption among resources,
and dynamic hardware component sharing in a multicore processor
lead to complex per-task power behaviors. Request executions in a
concurrent, multi-stage server contain fine-grained activities with
frequent context switches, and direct power measurements on such
spatial and temporal granularities are not available on today’s sys-

tems. Hence, request-level power and energy management requires
agile, low-cost control to ensure isolation and achieve efficiency.

The characterization of request power and energy behaviors
provides a detailed understanding of the server system power
profile, and facilitates fine-grained attribution of energy usage to
clients and their individual requests. We develop three key tech-
niques to support our power containers facility:

• We attribute the multicore power consumption to individual
tasks running concurrently on a multicore system. We extend
previous event-driven power models [9, 10, 25] to capture
shared multicore maintenance power and dynamically attribute
it to actively running tasks at runtime. For low overhead, the
power accounting is performed independently at each CPU core
without global coordination.

• Power modeling inaccuracy [26] may result from different char-
acteristics between calibration workloads and production work-
loads, particularly for unusually high-power applications. On-
line power measurements can help recalibrate power model-
ing but measurement results often arrive with some delays. We
align power measurements and modeling estimates using signal
processing cross-correlation.

• Utilizing an application-transparent, online request context
tracking mechanism, we isolate the power consumption con-
tribution of each individual request, and enable client/request-
oriented accounting of power and energy usage. Online request
context tracking also allows the selective adoption of power and
energy control mechanisms for certain requests. Such resource
accounting and control is also desirable in cloud computing,
especially for those (like the Google App Engine) that do not
adopt heavy virtual machine-based isolation.

Our power containers enable the first-class management of mul-
ticore server power and energy resources in new ways. In par-
ticular, we can pinpoint the sources of power spikes and anoma-
lies, and further condition the request power consumption in a fair
fashion—throttling the execution of power viruses (using processor
duty-cycle modulation) while allowing normal requests to run at
full speed. Furthermore, we improve energy efficiency in a hetero-
geneous environment through container heterogeneity-aware load
distribution. Specifically, request energy profiles on different ma-
chines are used to understand each request’s cross-machine relative
energy affinity and direct its execution accordingly. The rest of this
paper will present the design and implementation of our power con-
tainers and evaluate its accuracy and effectiveness in several man-
agement case studies.

2. Related Work

Power Measurement and Modeling Per-hardware-component
power can be measured through elaborate embedded instruments
(as in LEAP [27]). However, it is difficult to directly measure per-
core power on a multicore chip due to shared use of components
such as cache and memory interconnect. Bellosa [9] estimated
the processor and memory power using a linear model on hard-
ware event counts. Additional research has supported event-based
power phase modeling [10, 25]. On the negative side, McCullough
et al. [26] identified high power model errors due to multicore
complexities and hidden device states. Event-based power mod-
eling has also been included in processor designs like the IBM
POWER7 [38] and Intel SandyBridge [30]. Most recently, Huang
et al. [24] proposed a firmware-level power proxy that estimates
per-core power by utilizing specialized activity counters in the
IBM POWER7+ chip hardware. Direct measurement or hardware
event-based modeling alone is limited by their inability to identify

and isolate software-level concurrent resource principals in server
and cloud computing environments.

System-Level Energy Accounting By coordinating the external
power measurement with interrupt-triggered program sampling,
Flinn and Satyanarayanan [16] were able to profile the energy us-
age of application processes and procedures. Chang et al. [12]
further enhanced the statistical sampling accuracy using energy-
driven sampling intervals. ECOSystem [39] is a unified framework
of whole-system energy accounting to support energy management
policies. In ECOSystem, the CPU power consumption is assumed
to be constant during busy periods. Quanto [18] combined the infor-
mation of component power states, high-resolution energy meter-
ing, and causal tracking of system activities to profile energy usage
in embedded network devices. The Cinder operating system [31]
employed new control abstractions (isolation, delegation, and sub-
division) to account for and manage energy in mobile devices. In
comparison to these techniques, our work tackles the challenges
of power attribution in two new dimensions—over shared-resource
multicore processors and among concurrently running fine-grained
requests.

Data Center Power Management In light of the load bursti-
ness at large-scale service sites, Chase et al. [13] and Pinheiro
et al. [29] proposed to consolidate services to a subset of servers
at load troughs while the remaining servers can be shut down
to conserve energy usage. In terms of data center power provi-
sioning, Fan et al. [15] and Govindan et al. [20] suggested that
the power provisioning should take into account the independence
as well as correlation of power fluctuations at individual servers.
PowerNap [28] enables fast transitioning between active state and
minimum-power nap state, which results in very low server idle
power. Research [14, 23] has also recognized the energy effects
of load placement in a heterogeneous server cluster. Our power
containers are complementary to these techniques. In particular,
we enable more fine-grained (request-level) multicore server power
tracking and control, a need not addressed by previous techniques.

3. Design and Implementation

We propose a new operating system facility that accounts for and
controls the power and energy usage of individual requests in a
multicore server. We tackle the challenges of power attribution and
control in two new dimensions—1) over concurrent executions on
a shared-resource multicore and 2) among fine-grained requests in
a multi-stage server application. To tackle the first challenge, we
model per-task power consumption from core-level activities and
shared multicore chip power (Section 3.1). In addition, we align on-
line power measurements and modeling estimates to recalibrate the
power model for better accuracy (Section 3.2). To tackle the second
challenge, we build operating system mechanisms (Section 3.3) to
track multi-stage request executions on-the-fly, account for request
power and energy usage, and apply request-grained power control.
We also present container-enabled new multicore server power and
energy analysis and management cases (Section 3.4).

3.1 Power Attribution to Concurrent Tasks

While previous work has extensively explored system power mod-
eling [9, 10, 25, 26, 38] and devised on-chip power estimation reg-
isters [30], their focus is largely on coarse-grained whole system
or full processor power. Since multiple tasks may run concurrently
in a multicore system and each task may belong to a distinct user
request, there is a clear need for separate accounting. We present
new techniques to attribute the power consumption to individual
tasks running concurrently on a multicore system. This section fo-
cuses on the processor and memory power attribution while the I/O
resource accounting will be briefly discussed in Section 3.3.

Our first approach follows Bellosa [9]’s model in that the pro-
cessor/memory power consumption is linearly correlated with the
frequency of relevant hardware events. Example metrics of inter-
ests include the core utilization or the ratio of non-halt core cy-
cles over elapsed cycles (Mcore), retired instructions per CPU cy-
cle (Mins), floating point operations per cycle (Mfloat), last-level
cache requests per cycle (Mcache), and memory transactions per
cycle (Mmem). The constant power term (Cidle) in the linear re-
lationship represents the idle power consumed when zero values
for all metrics are observed. The remaining active (full minus idle)
power can be modeled as:

Pactive = Ccore · Mcore + Cins · Mins + Cfloat · Mfloat

+ Ccache · Mcache + Cmem · Mmem

(1)

where C’s are coefficient parameters for the linear model that can
be calibrated offline (once for each target machine configuration).
Equation 1 models the full system active power if M’s capture the
summed event metrics over all cores. We can also use it to account
for the active power of an individual task ifM’s capture the metrics
on the CPU core where the target task is currently running.

We implement such event-based power accounting in the oper-
ating system. Each core performs accounting for its local task inde-
pendently without cross-core synchronization or coordination. We
acquire per-core system metrics (M’s) online by reading proces-
sor hardware counters and computing relevant event frequencies.
The continuous maintenance of the power model and hardware
counter statistics requires periodic counter sampling. We config-
ure the core-local Programmable Interrupt Controller for threshold-
based event counter overflow interrupts. Specifically, we set the in-
terrupt intervals to a desired number of non-halt core cycles. Non-
Halt cycle-based triggers have the benefit of suppressing the inter-
rupts when the CPU core has no work to do (so it can continuously
stay in the low-power idle state).

The above approach assumes that the power accounting for a
task only depends on core-level physical events. On a multicore
chip with intricately shared hardware resources, however, chip-
wide environmental factors also affect per-core power account-
ing. In particular, the maintenance of shared multicore resources
(including clocking circuitry, voltage regulators, and other uncore
units [21]) consumes some active power as long as one core is run-
ning, which does not change proportionally with core-level event
rates. Figure 1 illustrates this symptom using a simple CPU spin-
ning microbenchmark. This workload scales perfectly on a multi-
core so all event metrics scale proportionally with the CPU core uti-
lization. The Equation 1 model would suggest a linear relationship
between the core utilization and power. However, measurements on
the quad-core SandyBridge machine show that the power increment
from idle to one utilized core is substantially larger than further
power increments, which suggests an active power component that
does not scale with core-level physical events. The same experi-
ment on a dual-socket machine (with two dual-core Woodcrest pro-
cessors) shows that the power increments from idle to two utilized
cores are higher than further increments. This indicates that both
sockets become active when two cores are utilized, which matches
the Linux operating system (used in our experiments)’s multicore
scheduling policy that maximizes performance.

We evenly attribute the chip maintenance power at each time
instant to the currently running tasks. The system utilization level
fluctuates over time in production server environments [8]. Proper
accounting and attribution of shared chip maintenance power is
challenging because one task’s share may change depending on
activities (or the lack thereof) on other cores. We use a new metric
Mchipshare (0.0≤Mchipshare≤1.0) to denote the proportion of a given
task’s share of on-chip maintenance power. If a core is busy while
all siblings are idle, the full chip power should be attributed to

0

5

10

15

20

idle →
 1 core

1 →
 2 cores

2 →
 3 cores

3 →
 4 cores

In
c
re

m
e
n
ta

l
p
o
w

e
r

(i
n
 W

a
tt
s
) Machine with a quad−core SandyBridge

0

5

10

15

20

idle →
 1 core

1 →
 2 cores

2 →
 3 cores

3 →
 4 cores

In
c
re

m
e
n
ta

l
p
o
w

e
r

(i
n
 W

a
tt
s
) Machine with two dual−core Woodcrests

Figure 1. Incremental (per-core) power consumption increases on
two machines (one with a quad-core SandyBridge processor and
the other with two dual-core Woodcrest processors).

the task on the busy core (Mchipshare=1.0). If multiple (k) cores
are busy, then each running task on one of the busy cores has
Mchipshare=

1.0

k
. Our new active power model adds the shared chip

maintenance power to the original model:

Pactive = Ccore · Mcore + Cins · Mins + Cfloat · Mfloat

+ Ccache · Mcache + Cmem · Mmem

+ Cchipshare · Mchipshare

(2)

Unlike the core-level event metrics that can be simply acquired
through hardware counters on the CPU core, the chip power share
Mchipshare does not correspond to any processor hardware counter.
Further, precise sharing information in a dynamic system depends
on time-synchronized global activities across multiple cores. In our
implementation, each core independently makes an approximate
estimation in order to avoid expensive global coordination or cross-
core interrupts. We discretize the computation of Mchipshare over
time intervals that match the hardware counter sampling periods for
collecting core-level events. We approximate the number of busy
sibling cores using the sum of the latest core utilization ratios at all
siblings on the multicore chip. Formally, on an n-core processor,
the task currently running on CPU core c has:

Mchipshare(c) = Mcore(c) ·
1

1 +
P

1≤i≤n,i6=c
Mcore(i)

, (3)

where Mcore(x) indicates the core utilization ratio on CPU core x.
We check a sibling’s core utilization by reading its most recent

hardware counter sample in memory. We do so without any cross-
core synchronization for efficiency. Note that each core performs
independent sampling at non-halt cycle-triggered interrupts, which
stop when the core is idle. Therefore an idle sibling may have
stale sample statistics. To address this problem, we check whether
the OS is currently scheduling the idle task on a sibling core and
consider its current activity rate as zero if so.

Our discussion so far applies to the power modeling of a single
multicore chip. On a multi-socket machine with more than one
multicore chips, each chip’s power will be modeled using our
approach described above and the full power will include the power
from all multicore chips on the machine.

3.2 Measurement Alignment for Recalibration

Despite the wide uses of event-based power models [9, 10, 25,
38], we found that large errors may arise in practice. Recent re-
search [26] has also raised questions on the accuracy of event-based
power models. Beyond superficial problems like insufficient cover-
age of modeled events, significant modeling inaccuracy also results
from differing characteristics between calibration workloads and
production workloads. This is particularly the case for unusually
high power-consuming production workloads that demand careful

−100 −80 −60 −40 −20 0 20 40 60 80 100
Hypothetical measurement delay (in milliseconds)

C
ro

s
s
 c

o
rr

e
la

ti
o
n

(A) Intel Sandy Bridge power sensor alignment

0 200 400 600 800 1000 1200 1400 1600 1800 2000
Hypothetical measurement delay (in milliseconds)

C
ro

s
s
 c

o
rr

e
la

ti
o
n

(B) Wattsup meter alignment

Figure 2. Measurement/model alignment cross-correlation for the
Intel SandyBridge on-chip power meter (A) and a Wattsup power
meter (B). High correlation peaks are specially marked.

attention in server system power management. To address the mod-
eling inaccuracy, we utilize online power measurements to adjust
and recalibrate the offline-constructed power models.

While whole-system power can be measured through off-the-
shelf meters, measurement results may arrive with some lag time
due to the meter reporting delay and data I/O latency (e.g., through
a USB interface). On the other hand, processor event counter-based
power models can be maintained at the much shorter latency of
reading CPU registers and computing simple statistics. In order to
use the power measurements to identify modeling errors and recal-
ibrate the model, the measurement results and modeling estimates
need to be properly aligned.

While a poorly calibrated power model may not accurately pre-
dict the power consumption, it may still identify power transitions
and phases quite well. In other words, aligned power measurements
should follow the fluctuation patterns of real-time power model es-
timates. We therefore employ a signal processing approach to align
measurement samples and model estimates. Specifically, we com-
pute the cross-correlation metric between measurement and model
power samples at different hypothetical measurement delays. A
higher cross-correlation would indicate better matching of the mea-
surement/model fluctuation patterns.

Formally, let Pmeasure(1), Pmeasure(2), · · · be the sequence of
recent power measurement samples (Pmeasure(1) is the most recent).
Let Pmodel(1), Pmodel(2), · · · be the sequence of recent modeling
samples at the same sampling frequency. Then the cross-correlation
at a hypothetical measurement delay t is:

Cross-corr.(t) =

number of matching samples
X

i=1

Pmeasure(i)·Pmodel(i+t). (4)

Figure 2 shows a case example of alignment cross-correlation
over hypothetical measurement delays. The highest point of the
correlation curve (specially marked in the figure) indicates the
likely measurement delay. Our results show about 1msec delay for
the Intel SandyBridge on-chip power meter and about 1.2 second
(1200msecs) delay for aWattsup power meter. Longer delay for the
Wattsup meter is due to its coarse-grained measurements and data
propagation latency through an external USB connection. Figure 3
shows the aligned measurement/model power samples for the Intel
SandyBridge on-chip power meter. Note that the measured power
(whether using the SandyBridge’s power meter or using off-chip
instruments) is for the whole system, necessitating the per-core/per-
request model we have designed for fine-grained online control.

Aligned power measurements can identify modeling errors for
the currently running workload and help recalibrate our multicore

0 100 200 300 400 500 600
20

40

60

Progress of execution (in msecs)

P
o
w

e
r

(i
n
 W

a
tt

s
)

Modeled power Measured power

Figure 3. Aligned measurement/model power traces for the Intel
SandyBridge on-chip power meter.

power model in Equation 2. The recalibration intuitively means
adding new online samples of aligned system metrics and corre-
sponding power measures to the original offline model parame-
ter calibration. We perform online least-square-fit linear regression
to recalibrate the model parameters when new online samples are
available. Our parameter recalibration includes both offline work-
load samples and current online measurements, weighed equally in
the square error minimization target. The short measurement delay
(about 1msec) for the SandyBridge on-chip power meter makes it
suitable for real-time model adjustment and power control.

3.3 Request Power Accounting

We construct operating system mechanisms to support request-
level power containers in a server system. Our first goal is to ac-
count for request power consumption and cumulative energy us-
age. Our second goal is to enable request-specific power and energy
control (e.g., speed throttling) according to request-level policies on
resource usage and quality-of-service. The online control requires
each request’s power container to be maintained on-the-fly—while
the request executes.

Our OS support tracks request execution contexts so that power-
relevant metrics can be properly attributed and control mechanisms
can be properly applied. A request context coincides with a pro-
cess (or thread) context in some cases. However, a request execu-
tion may flow through multiple processes in a multi-stage server.
For instance, a PHP web processor propagates the request context
into a database thread through a socket message. Such a socket
connection can be persistent in a high-throughput server when
each server process can repeatedly serve multiple requests and one
socket connection is reused by multiple request propagations over
time. The past approach of Resource Containers [6] requires ap-
plications to explicitly pass request context bindings across server
stages. Google’s Dapper tracing infrastructure [34] assumes that
applications use a unified RPC framework that can be easily in-
strumented. Magpie [7] recognizes request context propagations in
a server system but it does so out-of-band, which is sufficient for
trace analysis but not for applying per-request power control online.

The X-Trace framework [17] is closest to our needs of system-
level in-band request context tracking. However, X-Trace was de-
signed for general network systems tracing and we specifically tar-
get high-throughput server systems. We highlight two particular
differences. First, our request tracking is implemented entirely in
the operating system requiring no application change. While the
X-Trace propagation primitives provide flexible application con-
trol, our transparent mechanism can easily support a large variety
of complex (even closed-source) server applications. We achieve
application transparency by recognizing key request propagation
channels in server systems. Fundamentally, the operating system
may recognize request context propagation events as those that in-
dicate causal dependences through data and control flows, specifi-
cally, socket communications, IPCs, and process forking. OS-only
management, however, cannot track user-level request stage trans-

fers in an event-driven server or a server that employs user-level
threads. This is an important limitation, but our mechanism is ap-
plicable to a large number of real-world server applications that do
not employ an event-driven model (for easier programming with
threads and processes) or user-level threads (to avoid performance
anomalies due to complex user/kernel thread mapping and lack of
full visibility by the OS scheduler and I/O management). Past re-
search [11] suggests that some user-level request stage transfers
may be OS-observable by trapping accesses to critical synchroniza-
tion data structures. We leave its implementation for possible future
work. We include a variety of applications supported by our frame-
work in our evaluation in Section 4.2.

We also make efforts to support request tracking over a per-
sistent socket connection in high-throughput servers. We tag each
socket message with the sender’s request context identifier. We
store the identifier in a new TCP option field for protocol compat-
ibility (it will be safely ignored if the message reaches a different
machine that does not support our request container mechanism). If
the message arrives at the destination socket but the receiver has not
made the read() call, the message has to be buffered. In a naive
implementation, the destination socket simply inherits the request
context tag of the buffered message and the receiver will acquire
the socket’s request context when it calls read(). This, however, is
unsafe in a persistent connection when the context tag for a new re-
quest may arrive before the previously arrived message is read by a
receiver (in which case the receiver incorrectly inherits the new re-
quest context). Therefore, multiple data segments in a socket buffer
must be individually tagged with the corresponding request con-
text. A receiver process will inherit the proper context according to
the data it reads.

Our implementation builds on our past work of server system
hardware counter modeling [32, 33], with new mechanisms for
power and energy accounting. During the course of a request ex-
ecution, our system samples cumulative processor hardware event
counters including elapsed non-halt CPU cycles, retired instruc-
tions, floating point operations, last-level cache reference counts,
and memory transactions. It samples at multiple moments and cal-
culates the counter metric for each period between consecutive
sampling. To maintain per-request event metrics, we sample the
counter values at the request context switch time to properly at-
tribute the before-switch and after-switch event counts to the re-
spective requests. A request context switch on a CPU occurs in
two scenarios—1) when two processes bound to different request
contexts switch on the CPU; 2) when the running process receives
a new context binding (e.g., by an arriving socket message). Fig-
ure 4 illustrates a captured request execution and power and energy
attribution in a realistic multi-stage server application containing
Apache PHP processing, MySQL database, and various external
file manipulation processes.

In addition to context switch sampling, we sample at periodic
interrupts (triggered by a desired number of non-halt core cycles)
to capture fine-grained behavior variations that affect power. With
per-request event sampling, our power model in Equation 2 spec-
ifies the contribution from collected metrics to the request power.
Beyond the processor/memory power, our full system power ac-
counting also considers power-consuming peripheral devices for
disk and network I/O. The OS can identify requests responsible
for I/O operations by tracking the requests that consume the data
received at I/O interrupts. With the estimation of request power at
each sampling period, the cumulative energy usage can be simply
calculated as the integral of power consumption over time.

3.4 Container-Enabled Management

By identifying and isolating the power and energy contribution of
individual requests in the multicore server, we enable new first-

Apache httpd

16.8W, 0.29J

MySQL thread

14.7W, 0.04J

Apache httpd

14.5W, 1.78J Shell

14.4W, 0.07J
“latex” process

14.4W, 0.53J

“dvipng” process

16.3W, 0.29J

Request

from client

socket

socket

T
im

e
lin

e

... … … ...

socket

fork

fork

wait4exit

wait4exit

fork

wait4exit

socket

socket

socket

socket

socketResponse

to client

fork

wait4exit

exit

exit

exit

exit

exit

Figure 4. A captured request execution that involves Apache PHP
processing, MySQL database, and various external operations on
content and image rendering. We mark the attributed power (in
Watts) and energy (in Joules) at each request stage. This request
is from the WeBWorK online homework system [37]. Identified
data and control flows between server components are marked with
arrows. Darkened portions of a component timeline indicate active
executions (while the rest represent blocking waits).

class management of server power and energy resources for effi-
ciency and fairness. We present two particular management cases
here.

Fair Request Power Conditioning The infrastructure cost to pro-
vision for the system peak power usage is substantial in data cen-
ters [15, 22]. While research has looked into cluster-wide load man-
agement to control system power [15, 20], a complementary effort
would be to condition each server’s power consumption to a target
level. The system power consumption can be controlled by throt-
tling CPU execution. Specifically, on Intel processors, the OS can
specify a portion (a multiplier of 1/8 or 1/16) of regular CPU cycles
as duty cycles. During each non-duty-cycle period (on the order of
microseconds [1]), the processor is effectively halted and no mem-
ory operations are issued. This would lead to fewer activities (in-
cluding memory transactions) and consequently lower power con-
sumption, at the cost of slower application execution. The duty-
cycle modulation can be independently adjusted on a per-core ba-
sis. It also exhibits a simple (approximately linear) relationship be-
tween the duty-cycle level and active power consumption, which
eases the control policy decision.

CPU duty-cycle modulation can control surging power con-
sumption. However, indiscriminate full-machine throttling would
lead to slowdowns of all running requests regardless of their power
use. In particular, the occurrence of a power virus could force speed
reductions on all concurrently running normal requests. Our power
container provides two mechanisms to enable power conditioning
in a fair fashion—1) request power accounting can detect sources
of power spikes; 2) container-specific power control can precisely
throttle execution of power-hungry requests. In practice, we main-
tain a power consumption target for each request. Those that ex-
ceed the specified target will be subject to request-specific CPU

duty-cycle modulation while other requests will run at full speed. In
our implementation, we apply a particular CPU duty-cycle modu-
lation level to a given request execution according to its power con-
sumption. We also track the request power consumption variations
after each periodic counter sampling (typically once per millisec-
ond), and then change the CPU duty-cycle level if desirable. When
the CPU core switches to run another request, the core duty-cycle
level will be adjusted according to the policy setting and power
consumption of the new request.

Heterogeneity-Aware Request Distribution Past work has tack-
led the problem of energy management in a server cluster, pri-
marily through server consolidation [13, 15, 20, 29] to shut down
unneeded machines at load troughs. A production server cluster
may contain different models of machines because it is not eco-
nomical to upgrade all servers at once in a data center. Another
possible reason is that each of the machine models has unique
characteristics desired in certain workload scenario. In a heteroge-
nous server cluster, the load placement and distribution on avail-
able machines (probably after consolidation) may affect the system
energy efficiency. Previous research [14, 23] has recognized the
importance of energy efficiency optimization in a heterogeneous
system. However, heterogeneity-aware request distribution across
multicore servers is further made difficult by the need to identify
workload cross-machine energy usage tradeoffs during concurrent
multicore executions. Our power containers directly address this
challenge by capturing fine-grained request energy usage profiles,
which can later enable the preferential placement of each request
on a machine where its relative energy efficiency is high.

A request container can be maintained over multiple machines
in a server cluster using socket message-based request context
propagation described in Section 3.3. When a socket message
crosses the machine boundary, we tag it with local request statistics
including the cumulative runtime, cumulative energy usage, and
most recent power usage. Additional information about request ex-
ecution control may also be included. By tagging request messages,
a dispatcher machine can pass container identifier and control pol-
icy settings to the server machines. By tagging response messages,
server machines can pass cumulative power and energy usage in-
formation to the dispatcher machine for comprehensive resource
accounting.

3.5 Overhead Assessment

We implemented a prototype power container facility including
per-request hardware counter sampling, power modeling, and
statistics maintenance in Linux 2.6.30. Online container mainte-
nance introduces overhead in the system. A container maintenance
operation typically includes reading the hardware counter values,
computing modeled power values, and updating request statistics.
We measure its overhead on a machine with a quad-core Sandy-
Bridge processor. Results show that one container maintenance op-
eration takes about 0.95 µsec. If the maintenance (hardware counter
sampling) occurs at the frequency of once every millisecond (suf-
ficiently fine-grained for many accounting and control purposes),
the overhead is only around 0.1%.

Besides the overhead, the hardware counter sampling and statis-
tics maintenance also produces additional activities (and energy us-
age) that do not belong to the inherent application behaviors. This
behavior, called the observer effect, introduces perturbation in the
generated power and energy profiles. We measure the maintenance-
induced event metrics and find that an average container mainte-
nance operation uses 2948 cycles, 1656 instructions, 16 floating
point operations, 3 last-level cache references, and no measurable
memory transactions. Assuming all four cores are busy (1/4 chip
share), the average energy usage for a container maintenance is
about 10 micro-Joules according to our active power model. To mit-

igate the observer effect in the collected statistics, we subtract the
maintenance-induced additional event counts from the measured
event counts of each sampling period.

The measurement alignment and model recalibration (Sec-
tion 3.2) also introduce online overhead. The measurement align-
ment does not need to occur frequently because the measurement
lag time on a given system is unlikely to change dynamically. Our
least-square fit model recalibration requires linear algebra com-
putation that consumes about 16 µsecs per calibration. Its online
overhead is negligible if it is performed at a rate of no more than
once every 10msecs.

For container power control, configuring the CPU duty-cycle
level requires reading and then writing a control register. The
read/write operations take about 265 and 350 cycles respectively,
or less than 0.2µsec on a 3.0GHz machine.

Note that the reported overhead above is incurred on a per-
CPU-core (hardware counter sampling, container maintenance, and
duty-cycle adjustment) or whole-system basis (model recalibra-
tion), rather than for each request in the system. In particular, the
hardware counter sampling only occurs for the request that is run-
ning on the CPU core at the moment of sampling. Active requests
that are not currently running only consume space (but not CPU
runtime) costs. This is important for the scalability of our system.

We also report the memory space cost of our system. In our im-
plementation, the state of an active power container is encapsulated
in a 784-byte data structure that includes cumulative event counters
and statistics, locks, flags, and a reference counter. The data struc-
ture is released when all tasks linked to the container exit (when
the reference counter is zero) so it does not leak in a long-running
server. The space cost is modest and it should not affect the server
scalability even if thousands of active power containers exist in the
server at the same time.

4. Experimental Evaluation

Our evaluation uses three different machines. The first is a multi-
chip/multicore machine with two dual-core (four cores total) Intel
Xeon 5160 3.0GHz “Woodcrest” processors. Two cores on each
processor chip share a single 4MB L2 cache. The second ma-
chine contains two six-core (12 cores total) Intel Xeon L5640 (“L”
for low-power) 2.26GHz “Westmere” processors. The six cores on
each processor chip share a 12MB L3 cache. The third machine
contains a quad-core Intel Xeon E31220 3.10GHz “SandyBridge”
processor. The four cores share an 8MB L3 cache. The three pro-
cessors were publicly released in 2006, 2010, and 2011 respec-
tively. Both Westmere and SandyBridge processors utilize the re-
cent 32 nm technology. We configure hardware event counting reg-
isters on each processor to assemble the input metrics for our power
model in Equation 2.

We employ two power measurement instruments. First, each
machine uses a Wattsup meter that reports the whole machine
power once a second. The Wattsup measurements are fed back to
the target machine through the USB interface. In addition, we use
the on-chip power meter available on the SandyBridge machine,
which measures power for the processor socket package includ-
ing all cores, the uncore components (e.g., Last-Level-Caches), the
memory controller, and quickpath interconnects. The SandyBridge
meter tracks many (order of 100) microarchitecture events and ap-
plies active energy costs to each event [30]. Specifically, it reports
accumulated energy once per millisecond and the power is then
calculated as the rate of energy changes. Our evaluations sample
the SandyBridge power once every 10 milliseconds. Note that the
SandyBridge on-chip meter does not report per-core power and
it cannot identify and isolate concurrent resource principals in a
server environment.

The full power includes a constant idle power consumed when
the server exhibits no activity. On the SandyBridge machine, the
idle power (26.1Watts) is about 32% of the full machine power at
an observed high load scenario. The idle power ratio goes down
to 5% if we only consider the CPU package power (including un-
core components, the memory controller, and quickpath intercon-
nects), indicating excellent energy proportionality [8] for the pro-
cessor sub-system. We note that the idle power is of little interest
to modeling or resource provisioning since it is a constant. Includ-
ing it in the power metric would make modeling errors look arti-
ficially small. Therefore we present most evaluation results on the
active (full minus idle) power. When using the SandyBridge on-
chip power meter, we report the full power reading since its idle
component is very small.

The rest of this section will first present the power model cal-
ibration results. We will then evaluate the accuracy of our re-
quest power and energy accounting using several realistic appli-
cations. We will also present two power container-enabled server
management case studies—fair request power conditioning and
heterogeneity-aware request distribution.

4.1 Power Model Calibration

Our multicore server model in Section 3.1 requires offline cali-
bration to acquire the coefficient parameters. This calibration is
performed once for a target machine configuration but is subject
to measurement-based online recalibration as described in Sec-
tion 3.2. We design a set of microbenchmarks that stress different
parts of the system (including raw CPU spin, CPU spin with high
instruction rate, CPU spin with high floating point operations, high
last-level cache access, high memory access, high disk I/O, high
network I/O, and a benchmark with a mixture of different workload
patterns). For each microbenchmark, we use several different load
levels (100%, 75%, 50%, and 25% of the peak load) to produce
calibration samples. We use the least-square-fit linear regression to
calibrate the coefficients for Equation 2.

As an example, we list the coefficient parameters of the cali-
brated offline model for the SandyBridge machine. While a model
coefficient C is not intuitively meaningful, C·Mmax (whereMmax is
the maximum observed value for the metric for the whole machine
including all cores) represents the maximum active power impact
of the metric—

Cidle = 26.1Watts;
Ccore · M

max
core = 33.1Watts;

Cins · M
max
ins = 12.4Watts;

Ccache · M
max
cache = 13.9Watts;

Cmem · Mmax
mem = 8.2Watts;

Cchipshare · M
max
chipshare = 5.6Watts;

Cdisk · M
max
disk = 1.7Watts;

Cnet · M
max
net = 5.8Watts.

4.2 Request Model Evaluation

Our evaluation uses the following server and cloud computing
workloads:

• RSA-crypto is a synthetic security processing workload. Each
request runs multiple RSA encryption/decryption procedures
from OpenSSL 0.9.8g. It contains three types of requests: each
uses one of the three encryption keys provided as examples in
OpenSSL.

• Solr [2] is a popular, open-source search platform from the
Apache project. It uses the Lucene Java search library as the
core for full-text indexing and searching. The search server runs
within a Servlet container such as Tomcat. Our deployment uses
Solr 3.6.1 and Tomcat 6.0.35 software. We construct a search
workload from the Wikipedia data dumps [5]. Our workload

has the raw data size of 5.6GB and indexed data size of 1.7GB
that the Solr search server runs on. The indexed data fits into the
memory of our search server. Client queries in our workload are
generated by randomly selecting and sequencing article titles in
the Wikipedia data dump.

• WeBWorK [37] is a web-based teaching application hosted at
the Mathematical Association of America and used by over
240 colleges and universities. WeBWorK lets teachers post sci-
ence problems for students to solve online. It is unique in its
user (teacher)-created content—considered by some a distinc-
tive “Web 2.0” feature [36]. Our installation runs Apache 2.2.8
web server, a variety of Perl PHP modules, and MySQL 5.5.13
database. Tests are driven by around 3,000 teacher-created
problem sets (ranging from pre-calculus to differential equa-
tions) and user requests logged at the real site.

• Stress, or Stressful Application Test [3], is a benchmark that
runs the Adler-32 checksum algorithm over a large segment
of memory with added floating point operations. It stresses
the CPU core units, floating point unit, and cache/memory ac-
cesses simultaneously. It generates higher-than-normal power
consumption, particularly on our Westmere processor-based
machine. We adapted it to a server-style workload with requests
each running for about 100msecs.

• GAE-Vosao. Google App Engine (GAE) provides a Platform-
as-a-Service cloud computing infrastructure that enables users
to build, maintain, and scale web applications. We install the
GAE Java software development kit including a Java web
server that simulates the GAE runtime environment with a lo-
cal datastore. On our local GAE setup, we deploy the Vosao
content management application [4], which supports collabo-
rative building of dynamic web sites. Our tests use a work-
load that models the collaborative web content editing using
the published revision history of the “Harry Potter” article at
Wikipedia. We adopt a 9:1 read/write ratio to mimic the typical
higher rate of reads in a mixed read/write scenario.

• GAE-Hybrid contains a mixture of GAE-Vosao requests and
some artificial GAE-based power viruses. Our power virus de-
sign is not optimized as in previous work [19]. Instead, our goal
is to show the impact of a very simple power virus that one can
easily create. Specifically, our power virus (about 200 lines of
Java code) repeatedly writes one of every four bytes over a 16-
MByte block. Our measurements find that this workload pattern
keeps the cache/memory and instruction pipelining units simul-
taneously busy. We also use statically allocated data blocks to
minimize the impact of Java garbage collection. In our hybrid
workload composition, approximately half the load is generated
by Vosao requests and power viruses respectively.

Most of our workloads contain only open-source software. One
exception is the GAE Java web server, which is released in the form
of Java byte code by Google.

Figure 5 shows the measured active power consumption for all
the application workloads on the three machines. Our experiments
employ a test client that can send concurrent requests to the server
at a desired load level. We show results at two load levels—peak
load when the target server is fully utilized, and half load when the
server utilization is about 50%.

WeBWorK uses multi-stage server architectures including the
database. The web server in WeBWorK also pools many request
executions on each worker process. Both the Solr search engine and
Google App Engine (GAE) workloads run on the Java virtual ma-
chine and use Servlets. Our power container facility properly tracks
individual request activities and attributes request power consump-
tion during concurrent multicore execution. Figure 6 shows the dis-

0

20

40

60

80

R
SA−crypto (peak load)

R
SA−crypto (half load)

Solr (peak load)

Solr (half load)

W
eBW

orK (peak load)

W
eBW

orK (half load)

Stress (peak load)

Stress (half load)

G
AE−Vosao (peak load)

G
AE−Vosao (half load)

G
AE−H

ybrid (peak load)

G
AE−H

ybrid (half load)

A
c
ti
v
e
 p

o
w

e
r

(i
n
 W

a
tt
s
)

Machine with two dual−core Woodcrest processors

0

20

40

60

80

R
SA−crypto (peak load)

R
SA−crypto (half load)

Solr (peak load)

Solr (half load)

W
eBW

orK (peak load)

W
eBW

orK (half load)

Stress (peak load)

Stress (half load)

G
AE−Vosao (peak load)

G
AE−Vosao (half load)

G
AE−H

ybrid (peak load)

G
AE−H

ybrid (half load)

A
c
ti
v
e
 p

o
w

e
r

(i
n
 W

a
tt
s
)

Machine with two six−core Westmere processors

0

20

40

60

80

R
SA−crypto (peak load)

R
SA−crypto (half load)

Solr (peak load)

Solr (half load)

W
eBW

orK (peak load)

W
eBW

orK (half load)

Stress (peak load)

Stress (half load)

G
AE−Vosao (peak load)

G
AE−Vosao (half load)

G
AE−H

ybrid (peak load)

G
AE−H

ybrid (half load)

A
c
ti
v
e
 p

o
w

e
r

(i
n
 W

a
tt
s
)

Machine with a quad−core SandyBridge processor

Figure 5. Measured active power of application workloads on three machines and two load levels.

0 5 10 15 20

Mean request power (in Watts)

P
ro

b
a

b
ili

ty
 d

e
n

s
it
y

Solr search engine

0 5 10 15 20

G
A

E
−

V
o

s
a

o

G
A

E
 p

o
w

e
r

v
ir
u

s

Mean request power (in Watts)

P
ro

b
a

b
ili

ty
 d

e
n

s
it
y

GAE−Hybrid

Figure 6. Mean request power distributions (in histograms) for
the Solr search engine and GAE-Hybrid workloads on the Sandy-
Bridge machine. The mean power for a request is its average power
consumption over the course of the request execution. For the
GAE-Hybrid workload, we label the major distribution masses for
Vosao and power virus requests respectively. Results were collected
when each workload runs at half server load. We intentionally do
not show the quantitative Y values (histogram heights) in the fig-
ures because these values have no inherent meaning and they sim-
ply depend on (inversely proportional to) the width of each bin in
the distribution histogram.

tributions of mean request power for Solr and GAE-Hybrid (mix-
ture of GAE-Vosao and power viruses) workloads on the Sandy-
Bridge machine. We observe varying request power consumption
for the GAE workload. Specifically, power viruses consume sub-
stantially higher power than Vosao requests due to their intense
CPU/memory activities. Figure 7 further shows the request energy
usage distributions. The varying request energy usage is due both
to request power variation (primarily for GAE-Hybrid) and to their
execution time difference (primarily for Solr).

Validation By Summing Request Energy Usage A direct valida-
tion of our power container modeling is infeasible without a way
to measure power attribution to concurrently running tasks on a
hardware resource-sharing multicore. Even if such a measurement
mechanism exists, it must coordinate with fine-grained request ac-
tivities (particularly, frequent context switches) to directly measure
the power profile for individual requests. Given such difficulties,
we adopt an indirect validation approach. Our power containers
can profile the energy usage of all request executions that fall into
a given time duration. The sum of all request energy usage, divided
by the time duration, will produce an estimate of the average sys-
tem power consumption. We validate the accuracy of our request
power and energy profiles by comparing this estimate against mea-
sured system power.

0 0.5 1 1.5 2

Request energy usage (in Joules)

P
ro

b
a

b
ili

ty
 d

e
n

s
it
y

Solr search engine

0 0.5 1 1.5 2

Request energy usage (in Joules)

P
ro

b
a

b
ili

ty
 d

e
n

s
it
y

GAE−Hybrid

Figure 7. Request energy usage distributions (in histograms) for
the Solr search engine and GAE-Hybrid on the SandyBridge ma-
chine.

During this experiment, we identified some substantial back-
ground processing by the Google App Engine (GAE) that presents
no traceable connections to application request executions. We sus-
pect that these background processes are related to the GAE secu-
rity management, although we are unable to verify without access
to the GAE source code. We account for the resource usage of these
background processes in a special power container and include it in
our energy usage sum.

To understand the benefits of our proposed techniques, we com-
pare the validation accuracy over three different approaches:

• Approach #1 (described in Section 3.1) employs a linear power
model on core-level event metrics. It does not consider the
shared chip maintenance power.

• Approach #2 (also presented in Section 3.1) additionally ac-
counts for the multicore chip maintenance power and attributes
it to concurrent requests.

• Approach #3 (presented in Section 3.2) further employs
measurement-aligned online model recalibration to mitigate
the power model errors.

Validation results in Figure 8 show that our techniques are
effective in producing accurate request power and energy profiles.
Across all workloads, the approach of only modeling core-level
events exhibits 29%, 41%, and 20%worst-case validation errors for
the three machines respectively. Attributing shared multicore power
reduces the worst-case validation errors to 18%, 35%, and 13%
for the three machines. The measurement-aligned online model
recalibration further reduces the worst-case errors to 8%, 9%, and
6% on the three machines. The measurement-aligned recalibration
is particularly effective in improving the request profiling accuracy
of high-power workloads like Stress.

0

10%

20%

30%

40%

V
a

lid
a

ti
o

n
 e

rr
o

r

Machine with two dual−core Woodcrest processors

R
SA−crypto (peak load)

R
SA−crypto (half load)

Solr (peak load)

Solr (half load)

W
eBW

orK (peak load)

W
eBW

orK (half load)

Stress (peak load)

Stress (half load)

G
AE−Vosao (peak load)

G
AE−Vosao (half load)

G
AE−H

ybrid (peak load)

G
AE−H

ybrid (half load)

Only modeling core−level events Attribution of shared chip power Measurement−aligned online recalibration

0

10%

20%

30%

40%

R
SA−crypto (peak load)

R
SA−crypto (half load)

Solr (peak load)

Solr (half load)

W
eBW

orK (peak load)

W
eBW

orK (half load)

Stress (peak load)

Stress (half load)

G
AE−Vosao (peak load)

G
AE−Vosao (half load)

G
AE−H

ybrid (peak load)

G
AE−H

ybrid (half load)
V

a
lid

a
ti
o

n
 e

rr
o

r

Machine with two six−core Westmere processors

0

10%

20%

30%

40%

R
SA−crypto (peak load)

R
SA−crypto (half load)

Solr (peak load)

Solr (half load)

W
eBW

orK (peak load)

W
eBW

orK (half load)

Stress (peak load)

Stress (half load)

G
AE−Vosao (peak load)

G
AE−Vosao (half load)

G
AE−H

ybrid (peak load)

G
AE−H

ybrid (half load)

V
a

lid
a

ti
o

n
 e

rr
o

r

Machine with a quad−core SandyBridge processor

Figure 8. The accuracy of different approaches to estimate system active power from aggregate profiled request energy usage. The error is

defined as
| aggregate profiled request power − measured system active power |

measured system active power
.

Measured Modeled power
0

10

20

30

40

Background

Sum of requests

A
c
ti
v
e
 p

o
w

e
r

(i
n
 W

a
tt
s
)

GAE−Vosao (peak load)

Measured Modeled power
0

10

20

30

40

Background

Sum of requests

A
c
ti
v
e
 p

o
w

e
r

(i
n
 W

a
tt
s
)

GAE−Vosao (half load)

Figure 9. Resource usage of background processes in Google App
Engine systems (GAE-Vosao peak load and half load) on the ma-
chine with a quad-core SandyBridge processor.

Our evaluation also allows us to understand the significance of
GAE background processing on the total system resource usage.
Figure 9 illustrates the modeled active power due to sum of requests
and due to background processes respectively for GAE-Vosao on
our SandyBridge machine. Our power model shows that almost
one third of the total system active power can be attributed to
background processing in a GAE system.

Prediction At New Request Composition The above validation
shows that nearly all measured energy usage is accounted for and
attributed. However, it does not validate whether the request power
and energy attribution is properly done. We address this issue by
validating power prediction at new request compositions. Specif-
ically, we can learn the energy profiles of different types of re-
quests from a running system. By assembling such per-request en-
ergy profiles, we can predict the system power in new, hypothetical
workload conditions (different composition/ratios of request types,
as well as different request rates). A successful validation of this
prediction would indicate that the profiled per-request energy us-
age was accurate. Here we assume that the energy usage for each
type of request does not change from the profiled system to new
workload conditions. Note that this assumption does not hold for
workloads (like Stress) that exhibit dynamic behaviors at different
resource contention levels on the multicore.

For comparison, we consider two alternative approaches to
predicting system active power at hypothetical request compo-
sitions/rates. The request-rate-proportional approach simply as-
sumes that all requests have a uniform effect on the total system
energy usage so the active power consumption is exactly propor-
tional to the request rate. The other approach, CPU-utilization-

proportional, assumes that the active power consumption is propor-
tional to the CPU utilization level. Note that this approach requires
profiling the CPU usage of individual requests through careful re-
quest context tracking [6, 7].

We perform evaluation on new RSA-crypto and WeBWorK
workload conditions by changing their request type composition.
For RSA-crypto, the original workload contains requests with three
different encryption keys. The newworkload only contains requests
with the largest key among the three. For the WeBWorK appli-
cation, the original problem-solving workload includes thousands
of science problem sets used in the real site. We consider a new
workload with only the 10 most popular problem sets. Figure 10
shows the predicted power and measured power at several load
levels between median and high load. Results show that our re-
quest energy profile-enabled prediction achieves higher accuracy
than the two alternatives (particularly at high load). Our approach
has up to 11% prediction error, compared to up to 19% error for the
CPU-utilization-proportional approach and up to 56% error for the
request-rate-proportional approach.

4.3 Fair Request Power Conditioning

We evaluate the effectiveness of fair power conditioning using
container-specific CPU throttling (presented in Section 3.4). We ex-
periment with our Google App Engine (GAE)-enabled cloud com-
puting workloads. The GAE-Vosao workload fully utilizes all four
cores on the SandyBridge machine. In the middle of the experi-
mentation, we inject high-power requests to mimic power viruses.
Our GAE power viruses arrive in a sporadic fashion at an aver-
age rate of one per second. Each power virus occupies a CPU
core for about 100msecs. Figure 11(A) shows that the introduc-
tion of power viruses lead to substantial power spikes. We apply
our container-based fair power conditioning with a system active
power target of 40Watts. If all four cores are being utilized, the
per-core active power target is 10Watts when the system is fully
busy. Figure 11(B) shows that our request container-enabled power
conditioning can effectively keep power consumption at or below
the target level despite the power viruses. It does so by throttling
the core running the request that contains the power virus.

While capping the full system power, we further show that the
CPU speed adjustment has been applied fairly to each request. Fig-
ure 12 plots the applied CPU duty-cycle ratio and original request
power (before throttling) for each request. Since a request power
consumption may fluctuate over its execution, different duty-cycle
levels may be applied over time. We show the time-averaged duty-

0

10

20

30

40

Median load (~50% CPU)

Median−high load (~65% CPU)

High load (~80% CPU)

A
c
ti
v
e
 p

o
w

e
r

(i
n
 W

a
tt
s
)

RSA−crypto new request composition

0

10

20

30

40

A
c
ti
v
e
 p

o
w

e
r

(i
n
 W

a
tt
s
)

WeBWorK new request composition

Median load (~50% CPU)

Median−high load (~65% CPU)

High load (~80% CPU)

Measured power

Power containers prediction

CPU−utilization−proportional

Request−rate−proportional

Figure 10. Accuracy of our power containers-produced request energy profiles (and alternative approaches) to predict power at newworkload
conditions. Experiments were performed on the SandyBridge machine.

0 5 10 15 20
30

32

34

36

38

40

42

44

46

C
P

U
 p

a
c
k
a

g
e

 p
o

w
e

r
(i
n

 W
a

tt
s
)

Introduction of power viruses

←

(A) Behavior of the original system

0 5 10 15 20
30

32

34

36

38

40

42

44

46

C
P

U
 p

a
c
k
a

g
e

 p
o

w
e

r
(i
n

 W
a

tt
s
)

Progress of execution (in seconds)

Introduction of power viruses

←

(B) Behavior of the power container−controlled system

Figure 11. Measured power for original and power-conditioned
executions of Google App Engine with power viruses. Experiments
were performed on the SandyBridge machine and power is mea-
sured using its on-chip power meter. Power viruses are introduced
at the 10-second time.

cycle ratio for each request. We also estimate its power consump-
tion in the original system (assuming a linear relationship between
active power and CPU duty-cycle level). Results show that low-
power GAE-Vosao requests suffer minor CPU speed slowdown
(averaged at about 2%). At the same time, the power viruses are
subject to substantial (33% on average) slowdown. It may appear
surprising that a few power viruses (at Figure 12’s top-right corner)
are not significantly throttled. This is because they happen to run
when some CPU core(s) are idle so each request at the time has
a higher-than-10Watts budget when maintaining the whole system
power target of 40Watts.

Without our container-enabled fair power conditioning, alterna-
tively the peak power can be reduced through full-machine throt-
tling. A full-machine duty-cycle level of 7/8 would be required
for such throttling, leading to about 13% slowdown of all requests
(low-power normal requests as well as power viruses).

7 8 9 10 11 12 13 14 15 16 17
4/8

5/8

6/8

7/8

8/8

←

Normal requests

Power viruses →

←

Power viruses when some core(s) are idle

Original request power (in Watts)

D
u
ty

 c
y
c
le

 r
a
ti
o

Google App Engine with power viruses

Figure 12. Original power and duty-cycle throttling for Google
App Engine with power viruses. Each point represents a sample
request. X-coordinate indicates the original (before throttling) re-
quest power consumption. Y-coordinate indicates the CPU duty-
cycle ratio applied to the request.

4.4 Heterogeneity-Aware Request Distribution

We evaluate container profiling-enabled energy-efficient request
distribution in a heterogeneous server cluster (presented in Sec-
tion 3.4). We start by assessing the energy efficiency heterogeneity
across different machines. While recent processors (e.g., Sandy-
Bridge) are generally more energy-efficient than older models
(e.g., Woodcrest), some applications or application requests may
see more substantial cross-machine energy efficiency difference
than others do. Our energy container profiling can quantify such
workload-specific relative energy efficiency. Figure 13 shows the
cross-machine (SandyBridge over Woodcrest) active energy us-
age ratio for different workloads. In this evaluation and analysis,
we measure the active energy usage that does not include the idle
power consumption. We consider the constant idle power as part of
the fixed system overhead that is of little interest to our adaptive en-
ergy management. Figure 13 shows that the cross-machine energy
usage ratio can be as high as 0.91 (for the Stress workload) and as
low as 0.22 (for RSA-crypto). When distributing some load from
SandyBridge to Woodcrest becomes necessary, placing a Stress re-
quest on Woodcrest would be four times more energy-efficient than
placing a RSA-crypto request.

We evaluate request distribution over a small heterogeneous
cluster consisting of two machines—the newer (more energy-
efficient) SandyBridge and the older Woodcrest-based machine

RSA−crypto Solr WeBWorK Stress GAE−Vosao
0

0.2

0.4

0.6

0.8

1

C
ro

s
s
−

m
a
c
h
in

e
 a

c
ti
v
e
 e

n
e
rg

y
 u

s
a
g
e
 r

a
ti
o

Energy efficiency heterogeneity over different workloads

Figure 13. Cross-machine active energy usage ratio (energy usage
on SandyBridge over that on Woodcrest) for different workloads.
The energy usage on each machine is measured at the peak load
level.

from our experimental platform. Our goal is to achieve low overall
system energy usage without overloading the more energy-efficient
machine. We compare three load distribution approaches:

• Simple load balance balances the server load by directing an
equal amount of load to each of the two machines. It is oblivious
to the energy efficiency heterogeneity in the cluster.

• Machine heterogeneity-aware approach loads up the more
energy-efficient SandyBridge to a healthy high utilization
(about 70% CPU utilization to prevent overloading) before
loading Woodcrest. It is oblivious to workload energy profiles
so it distributes the exact same input request composition to
both machines.

• Workload heterogeneity-aware approach also first loads up the
more energy-efficient SandyBridge. Beyond that, it recognizes
the request energy usage profiles using our power containers
and it preferentially places requests with higher relative energy
efficiency (lower energy usage ratio in Figure 13) on Sandy-
Bridge.

Our experiment utilizes a combined GAE-Vosao and RSA-crypto
workload (with an approximately 50%–50% load composition).
The volume of incoming work in our experiment is the maxi-
mum volume that can be supported (without excessive timeout)
under the simple load balance. Figure 14 shows the energy us-
age rate under the three load distribution approaches. Our work-
load heterogeneity-aware approach saves 30% in combined two-
machine energy usage compared to the simple load balance. The
saving is 25% compared to the machine heterogeneity-aware ap-
proach that cannot recognize diverse workload-to-machine affinity.
Our container-enabled request distribution achieves these energy
savings by preferentially loading each machine with requests of
high relative energy efficiency.

Beyond high energy efficiency, our workload heterogeneity-
aware approach also maintains high performance. Table 1 shows
the average request response time for GAE-Vosao and RSA-crypto
under the three request distribution approaches. Both heterogeneity-
aware approaches achieve good performance by keeping the ma-
chines under healthy utilization levels. The simple load balance
suffers from poor performance because it fails to consider machine
heterogeneity and overloads the Woodcrest machine.

5. Conclusion

This paper presents an operating system facility (power contain-
ers) to account for and control the power and energy usage of
individual requests in multicore servers and cloud computing
platforms. Power containers utilize an online per-core power es-

0

20

40

60

80

100

120

SandyBridge energy usage

Woodcrest energy usage

Simple load balance

Machine heterogeneity−aware

Workload heterogeneity−aware

A
c
ti
v
e

 e
n

e
rg

y
 u

s
a

g
e

 r
a

te
 (

in
 J

o
u

le
s
 /

s
e

c
)

A combined GAE−Vosao/RSA−crypto workload

Figure 14. Measured active energy usage rate under three request
distribution approaches in a heterogeneous server cluster. Usage for
the two machines are marked in different colors.

Load distribution approach GAE-Vosao RSA-crypto
Simple load balance 537msecs 1,728msecs
Machine heterogeneity-aware 159msecs 66msecs
Workload heterogeneity-aware 131msecs 50msecs

Table 1. Average request response time for the two applications
under three request distribution approaches in a heterogeneous
server cluster.

timation model that includes cross-core environmental effects,
measurement-aligned online recalibration, and mechanisms within
the operating system to isolate request-level power for accounting
and control. Our system incurs low overhead (on the order of 0.1%
for a typical setup). Validation shows that with the help of online
re-calibration, the acquired request power and energy usage pro-
files can be aggregated to match measured system power (with no
more than 9% error) and predict system power at new, hypothetical
workload request compositions (with no more than 11% error).

Power containers enable the OS to better manage online ap-
plications with dynamic power profiles as well as new hardware
platforms with resource sharing and heterogeneity. When running
a Google App Engine-based cloud computing workload, our power
containers can cap the system power in a fair fashion—throttling
power viruses (using processor duty-cycle modulation) while al-
lowing normal requests to run at almost full speed. Further, the ac-
quired request energy profiles enable energy-efficient request dis-
tribution on heterogeneous server clusters, saving up to 25% energy
usage compared to an alternative approach that recognizes machine
heterogeneity but not fine-grained workload affinity.

Acknowledgments

This work was supported in part by the U.S. National Science
Foundation grants CNS-0834451, CCF-1016902, CNS-1217372,
CCF-1217920, CNS-1239423. Kai Shen was also supported by a
Google Research Award. Arrvindh Shriraman was supported by
the Canadian NSERC Discovery grant, CRD 614093/569226, and
Strategic 612142.

References

[1] Intel Core2 Duo and Dual-Core thermal and mechanical design guide-
lines. http://www.intel.com/design/core2duo/documentation.htm.

[2] Apache Solr search server. http://lucene.apache.org/solr/.

[3] Stressful application test. http://code.google.com/p/stressapptest.

[4] Vosao content management system. http://www.vosao.org.

[5] Wikipedia data dumps. http://dumps.wikimedia.org/enwiki/.

[6] G. Banga, P. Druschel, and J. Mogul. Resource containers: A new
facility for resource management in server systems. In Third USENIX
Symp. on Operating Systems Design and Implementation (OSDI),
pages 45–58, New Orleans, LA, Feb. 1999.

[7] P. Barham, A. Donnelly, R. Isaacs, and R. Mortier. Using Magpie for
request extraction and workload modeling. In 6th USENIX Symp. on

Operating Systems Design and Implementation (OSDI), pages 259–
272, San Francisco, CA, Dec. 2004.

[8] L. Barroso and U. Hölzle. The case for energy-proportional comput-
ing. IEEE Computer, 40(12):33–37, Dec. 2007.

[9] F. Bellosa. The benefits of event-driven energy accounting in power-
sensitive systems. In ACM SIGOPS EuropeanWorkshop, pages 37–42,
Kolding, Denmark, Sept. 2000.

[10] R. Bertran, M. Gonzalez, X. Martorell, N. Navarro, and E. Ayguade.
Decomposable and responsive power models for multicore processors
using performance counters. In 24th ACM Int’l Conf. on Supercom-

puting (ICS), pages 147–158, Tsukuba, Japan, June 2010.

[11] A. Chanda, A. Cox, and W. Zwaenepoel. Whodunit: Transactional
profiling for multi-tier applications. In Second EuroSys Conf., pages
17–30, Lisbon, Portugal, Mar. 2007.

[12] F. Chang, K. I. Farkas, and P. Ranganathan. Energy-driven statisti-
cal sampling: Detecting software hotspots. In Second Workshop on

Power-Aware Computer Systems, pages 110–129, Cambridge, MA,
Feb. 2002.

[13] J. S. Chase, D. C. Anderson, P. N. Thakar, A. M. Vahdat, and R. P.
Doyle. Managing energy and server resources in hosting centers. In
18th ACM Symp. on Operating Systems Principles (SOSP), pages 103–
116, Banff, Canada, Oct. 2001.

[14] B.-G. Chun, G. Iannaccone, G. Iannaccone, R. Katz, G. Lee, and
L. Niccolini. An energy case for hybrid datacenters. In Workshop

on Power Aware Computing and Systems, Big Sky, MT, Oct. 2009.

[15] X. Fan, W.-D. Weber, and L. Barroso. Power provisioning for a
warehouse-sized computer. In 34th Int’l Symp. on Computer Archi-

tecture (ISCA), pages 13–23, San Diego, CA, June 2007.

[16] J. Flinn and M. Satyanarayanan. Energy-aware adaptation for mobile
applications. In 17th ACM Symp. on Operating Systems Principles

(SOSP), pages 48–63, Kiawah Island, SC, Dec. 2001.

[17] R. Fonseca, G. Porter, R. H. Katz, S. Shenker, and I. Stoica. X-Trace:
A pervasive network tracing framework. In 4th USENIX Symp. on

Networked Systems Design and Implementation (NSDI), Cambridge,
MA, Apr. 2007.

[18] R. Fonseca, P. Dutta, P. Levis, and I. Stoica. Quanto: Tracking energy
in networked embedded systems. In 8th USENIX Symp. on Operating

Systems Design and Implementation (OSDI), pages 323–338, San
Diego, CA, Dec. 2008.

[19] K. Ganesan, J. Jo, W. L. Bircher, D. Kaseridis, Z. Yu, and L. K. John.
System-level max power (SYMPO): a systematic approach for escalat-
ing system-level power consumption using synthetic benchmarks. In
19th Int’l Conf. on Parallel Architecture and Compilation Techniques

(PACT), pages 19–28, Vienna, Austria, Sept. 2010.

[20] S. Govindan, J. Choi, B. Urgaonkar, A. Sivasubramaniam, and A. Bal-
dini. Statistical profiling-based techniques for effective power provi-
sioning in data centers. In 4th EuroSys Conf., pages 317–330, Nurem-
berg, Germany, Apr. 2009.

[21] V. Gupta, P. Brett, D. Koufaty, D. Reddy, S. Hahn, K. Schwan, and
G. Srinivasa. The forgotten ’uncore’: On the energy-efficiency of
heterogeneous cores. In USENIX Annual Technical Conf., Boston,
MA, June 2012.

[22] J. Hamilton. Where does the power go in high-scale data centers?
Keynote speech at SIGMETRICS, June 2009.

[23] T. Heath, B. Diniz, E. V. Carrera, W. Meira Jr., and R. Bianchini.
Energy conservation in heterogeneous server clusters. In 10th ACM

Symp. on Principles and Practice of Parallel Programming (PPoPP),
pages 186–195, Chicago, IL, June 2005.

[24] W. Huang, C. Lefurgy, W. Kuk, A. Buyuktosunoglu, M. Floyd, K. Ra-
jamani, M. Allen-Ware, and B. Brock. Accurate fine-grained proces-
sor power proxies. In 45th Int’l Symp. on Microarchitecture (MICRO),
pages 224–234, Vancouver, Canada, Dec. 2012.

[25] C. Isci and M. Martonosi. Phase characterization for power: Evaluat-
ing control-flow-based and event-counter-based techniques. In 12th

Int’l Symp. on High-Performance Computer Architecture (HPCA),
pages 121–132, Austin, TX, Feb. 2006.

[26] J. C. McCullough, Y. Agarwal, J. Chandrasheka, S. Kuppuswamy,
A. C. Snoeren, and R. K. Gupta. Evaluating the effectiveness of
model-based power characterization. In USENIX Annual Technical

Conf., Portland, OR, June 2011.

[27] D. McIntire, K. Ho, B. Yip, A. Singh, W. Wu, and W. Kaiser. The
low power energy aware processing (LEAP) embedded networked
sensor system. In 5th Int’l Conf. on Information Processing in Sensor

Networks, pages 449–457, Nashville, TN, Apr. 2006.

[28] D. Meisner, B. Gold, and T. Wenisch. PowerNap: Eliminating server
idle power. In 14th Int’l Conf. on Architectural Support for Program-

ming Languages and Operating Systems (ASPLOS), pages 205–216,
Washington, DC, Mar. 2009.

[29] E. Pinheiro, R. Bianchini, E. V. Carrera, and T. Heath. Dynamic
cluster reconfiguration for power and performance. In Compilers and

Operating Systems for Low Power, pages 75–93, 2003.

[30] E. Rotem, A. Naveh, D. Rajwan, A. Ananthakrishnan, and E. Weiss-
mann. Power Management Architecture of the 2nd Generation Intel
Core microarchitecture, formerly codenamed Sandy Bridge. In Hot

Chips: A Symposium on High Performance Chips, Aug. 2011.

[31] A. Roy, S. M. Rumble, R. Stutsman, P. Levis, D. Mazières, and
N. Zeldovich. Energy management in mobile devices with the Cinder
operating system. In 6th EuroSys Conf., pages 139–152, Salzburg,
Austria, Apr. 2011.

[32] K. Shen. Request behavior variations. In 15th Int’l Conf. on Archi-

tectural Support for Programming Languages and Operating Systems

(ASPLOS), pages 103–116, Pittsburg, PA, Mar. 2010.

[33] K. Shen, M. Zhong, S. Dwarkadas, C. Li, C. Stewart, and X. Zhang.
Hardware counter driven on-the-fly request signatures. In 13th Int’l

Conf. on Architectural Support for Programming Languages and Op-

erating Systems (ASPLOS), pages 189–200, Seattle, WA, Mar. 2008.

[34] B. H. Sigelman, L. A. Barroso, M. Burrows, P. Stephenson, M. Plakal,
D. Beaver, S. Jaspan, and C. Shanbhag. Dapper, a large-scale dis-
tributed systems tracing infrastructure. Technical report, Google, Apr.
2010.

[35] C. Stewart and K. Shen. Some Joules are more precious than others:
Managing renewable energy in the datacenter. In Workshop on Power

Aware Computing and Systems, Big Sky, MT, Oct. 2009.

[36] C. Stewart, M. Leventi, and K. Shen. Empirical examination of a
collaborative web application. In IEEE Int’l Symp. on Workload

Characterization, Seattle, WA, Sept. 2008.

[37] The Mathematical Association of America. WeBWorK: Online home-
work for math and science. http://webwork.maa.org/.

[38] M. Ware, K. Rajamani, M. Floyd, B. Brock, J. C. Rubio, F. Raw-
son, and J. B. Carter. Architecting for power management: The IBM
POWER7 approach. In 16th Int’l Symp. on High-Performance Com-

puter Architecture (HPCA), Bangalore, India, Jan. 2010.

[39] H. Zeng, C. S. Ellis, A. R. Lebeck, and A. Vahdat. ECOSystem: Man-
aging energy as a first class operating system resource. In 10th Int’l

Conf. on Architectural Support for Programming Languages and Op-

erating Systems (ASPLOS), pages 123–132, Boston, MA, Oct. 2002.

