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1. INTRODUCTION
Large cloud-computing datacenters now host a wide

range of business applications, ranging from e-commerce
websites to search engines to data mining. Increasingly,
these datacenters use renewable energy from wind tur-
bines or solar panels to reduce their dependence on costly
and less clean energy from the grid [17, 4, 1]. This pa-
per argues that datacenter management should be re-
vised to maximize the use of such off-grid renewables.1

Our argument is similar in spirit to the case for energy-
efficient management [18, 7, 11]. But efficiency alone
may not take full advantage of renewables. For instance,
energy-efficient management may batch writes so disks
can sleep for long durations. But sometimes renewables
are intermittently unavailable, long sleeps may miss op-
portunities to use them.

Operating systems and cluster management software
already manage energy, CPU cycles, and other low-level
resources. To be sure, many past techniques will prob-
ably carry over to renewables. However, unlike other
managed resources, renewables are available only when
the wind blows or the sun shines. Such intermittency
makes it hard for datacenters to use renewables effec-
tively. For example, windy nights that follow calm af-
ternoons would produce renewables only during tradi-
tionally light workload times for datacenters [15, 2]. In
the first part of this paper, we model a datacenter that
gets power from intermittent wind renewables. Our re-
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1A renewable is an electrical joule converted from solar/wind
energy.
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sults highlight challenges in managing an uncontrollable
power resource that is intermittently unavailable.

As systems researchers, we believe that coordinated
resource management could help datacenters use clean
renewable energy, but only if managing uncontrollable
and intermittent resources becomes a research priority.
Table 1 shows that opportunities to manage renewables
more effectively are widespread, ranging from the OS
to cluster-wide tools. These opportunities share a com-
mon approach to deal with intermittency: they resched-
ule or migrate work based on the availability of renew-
ables. They also share a common challenge: their poli-
cies for scheduling and migration must adapt to uncon-
trollable changes in the availability and abundance of re-
newables. For instance, one opportunity (#3) is to send
user requests to datacenters that have excess renewables.
If the production of renewables at the target datacenter
decreases (e.g., lower wind speeds), management must
adapt by sending fewer requests. But precisely how
many and which user requests should be migrated? The
second part of this paper describes our ongoing work
on request-level power and energy profiling. Our goal
is to provide precise accounting of per-request energy
consumption as a guide for budgeting renewables.

This paper outlines a research agenda for managing
renewables in the datacenter. Our agenda compliments
ongoing efforts to integrate renewables into the grid.
However, intermittency presents an even greater chal-
lenge for grid workloads, because (for the most part)
they can not be rescheduled or migrated. Even today’s
most integrated grids can satisfy only 19% of their work-
load from renewable sources [3]. We believe that the
unique characteristics of datacenter workloads have the
opportunity to further reduce their dependence on non-
renewable energy.

2. INTERMITTENCY
In this section, we present a datacenter model in which

renewable energy sources, e.g., wind turbines and solar
panels, can power a datacenter. When renewables are
intermittently unavailable, datacenters must get power
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Opportunities to Use Renewables More Effectively Adjustments During Intermit-
tent Outages

Capacity planning Power certain machines only when renewables are available.
Plan the geographic location of datacenter sites according to intermittency
patterns.

Turn off some machines.
Connect some sites to the grid.

Load balancing Route requests to datacenters with unused renewables.
Move entire services to datacenters that expect long periods of renewable
power.

Route fewer requests.
Re-migrate services to other data-
centers.

Job scheduling Aggressively prefetch from HDD before expected outages. Prefetch less data.

System maintenance Delay SSD erasures until renewables are available. Further delay erasures.

Table 1: Opportunities to improve datacenter management of renewables grouped by management function. Time-shifting
opportunities delay work until renewables are available. Renewable-aware migration moves work to areas where renew-
ables are available.
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Figure 1: Power transfer system for a datacenter that uses
energy from a wind turbine, the grid, and a backup gener-
ator.

from other energy sources. A power transfer system
safely manages energy sources by 1) isolating the elec-
tricity from different sources, and 2) ensuring that the
datacenter gets enough power. Figure 1 depicts the key
elements in a power transfer system. Automatic transfer
switches (ATS) are connected to primary and secondary
power sources. If power supply from the primary source
falls below a preset threshold, the power-transfer thresh-
old, the ATS disconnects from the primary source (for
isolation) and connects to a secondary energy source.
When the primary source can meet the power-transfer
threshold again, the ATS disconnects from the secondary
source and reconnects to the primary source. An unin-
terrupted power supply (UPS) ensures continuous power
delivery to the actual computing equipment.

The power-transfer threshold affects the use of renew-
ables and system reliability. On one hand, a threshold
that exceeds the datacenter’s actual power draw may dis-
able capable renewable energy sources. On the other
hand, thresholds that are too low can cause brownouts.
We believe the power-transfer threshold is an impor-
tant research problem for the architecture and depend-
ability communities. An ideal architecture would avoid

brownouts during periods of high power draw, while
using all available renewables as if the threshold were
zero.

Some energy sources, like the grid, can provide power
any time and on demand, but renewable sources, like
wind turbines, can provide power only intermittently.
In this sense, renewable joules are truly precious sys-
tem resources [18], because at times they can be scarce
or entirely unavailable. Unfortunately, datacenters op-
erating under light, low-energy workloads may not use
every available renewable. Without massive and costly
energy storage, these precious joules are lost.

To quantify the effects of intermittency, power-transfer
threshold, and workload patterns, we modeled the con-
sumption of renewables for the datacenter in Figure 1.
We assumed that the turbine’s peak production and the
datacenter’s peak power consumption were 1 MW. We
used 10-minute snapshots of monitored wind turbines
to characterize renewable power production. The snap-
shots came from the National Renewable Energy Lab [12],
and were taken from 2004 to 2006. We studied snap-
shots from the following turbine sites:

• MT: Site #26943 produced at peak power for 25% of the sam-
pled snapshots. It produced some power for 42% of the sam-
pled snapshots.

• CA: Site #11558 produced at peak power for 16% of the sam-
pled snapshots. It produced renewable power for 27% of the
sampled snapshots.

Figure 2 shows that the durations of intermittent out-
ages followed a heavy-tail distribution. Outages that
lasted longer than 20 minutes would most likely last
longer than 500 minutes. Such long-lasting outages ex-
ceed the capacity of affordable, datacenter-scale energy
storage. Datacenters with continuous power draw re-
quire backup energy sources that can fill such long out-
ages. Figure 2 also shows that the durations of continu-
ous power production were heavy tail too. Long-lasting
continuous power production presents a challenge for
datacenter management to use every precious renewable,
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Figure 2: Histograms of outage durations in the MT tur-
bine. An outage occured when wind speeds were below the
cut-in or above the cut-out speeds.

even as user-supplied workload fluctuates.
Table 2 shows how many renewables our datacenter

would use from each turbine. The columns compare a
1-MW power-transfer threshold, which conservatively
guards against brownouts, to a zero power-transfer thresh-
old. The conservative threshold caused a 61–65% drop
in the consumption of renewables. A lower threshold al-
lows datacenters to avoid losing these renewables if they
can keep their actual power draw below power produc-
tion levels. Section 3 presents request-level energy/power
profiles to manage such changing budgets for renew-
ables.

The rows in Table 2 compare different average data-
center workloads when renewables are available (in KW).
Under a conservative threshold, workload increases lin-
early increased the consumption of renewables. This is
expected since the entire workload fits within the thresh-
old. Under a zero power-transfer threshold, workload
increases had less than linear effect. This is because
power production is not always sufficient to handle the
entire workload.

We also assessed the economic feasibility of our hy-
pothetical datacenter. The primary costs for wind tur-
bines and solar panels are capital expenses, offering an
opportunity for economies of scale in the production re-
newables. A 1-MW turbine connected directly to a data-
center would cost about $1.6M USD [8].2 Maintenance
costs are around 2% annually. To outperform the aver-
age price for commercial electricity from the US grid
($0.10 KW-hour), the datacenter would need to use 24M

2Based on an exchange rate of 1 Euro for $1.34.

Power-Transfer Threshold
Loc. Workload 1 MW Zero

100 KW 0.24M KW-Hrs 0.68
MT 400 KW 0.98 1.92

700 KW 1.72 2.89

100 KW 0.15 0.41
CA 400 KW 0.63 1.29

700 KW 1.11 1.93

Table 2: The consumption of renewables across turbines,
workloads, and power-transfer thresholds. Results are in
millions of kilowatt-hours. In the bolded scenarios, renew-
ables cost less that $0.10 KW-H.

KW-hours over the turbine’s 20-year lifetime. Both the
MT and CA turbines could meet this goal under heavy
workloads and low power-transfer thresholds. The MT
turbine could achieve energy costs as low $0.04 KW-
hour.

3. REQUEST-LEVEL POWER/ENERGY
PROFILING

Section 2 showed that datacenters risk brownouts when
they aggressively utilize intermittent renewable energy
sources. To avoid brownouts, it is essential to under-
stand the system power draw levels under different work-
load conditions. Although workload profiling can be
done at different levels, here we focus on the request-
level power/energy management. A request is a basic
unit of work in most datacenters; it is the aggregate of
server system executions in response to an external user
demand (e.g., browsing an online catalog or querying
database tables for an answer). Requests are a conve-
nient abstraction for dealing with intermittency because
they can be distributed on arrival to datacenters where
renewables happen to be available.

The measurement of full system energy usage allows
calculation of the per-request average (e.g., about 1K Joules
on average for a Google search [9]). However, it is chal-
lenging to profile fine-grained power draw or energy
consumption for individual requests. Part of the chal-
lenge lies in the difficulty of identifying request activi-
ties in complex server systems. Another part of the chal-
lenge lies in modern hardware (e.g., processors, mem-
ory, and I/O) that have fluctuating and workload-dependent
power demands. Today, a mechanism for fine-grained
power measurement is not available from off-the-shelf
systems. In the remainder of this section, we present
preliminary work on request-level power/energy profil-
ing by combining two existing techniques.

Request-Level Event Profiling.
In a multi-component server system, a request may

flow through multiple system components and online



request-level profiling must track these context propa-
gations. Past research [5, 14] has shown that request
context propagations can be tracked by analyzing or tag-
ging operating system events. Specifically, techniques
developed in our earlier work [14] allow us to collect
per-request event statistics, including request CPU us-
age and hardware event counts available on modern pro-
cessors. Coupled with an event-driven power model (de-
scribed next), we can estimate per-request power and
energy statistics.

Event-Driven Power Modeling.
Bellosa suggested that fine-grained processor and mem-

ory power draw may be estimated using a linear model
on hardware event counts [6]. The rationale is that these
event counts indicate the intensity of power-relevant ac-
tivities on system components. Following this rationale,
we perform a case study on a set of typical datacenter
workloads.

Our case study uses a machine with two dual-core
(four cores total) Intel Xeon 5160 3.0 GHz Woodcrest
processors. Each core is equipped with two general-
purpose event counting registers and a few fixed coun-
ters [10]. We configured the performance counters to as-
semble three predictor metrics for our power model: L2
cache requests per CPU cycle (Ccache), memory trans-
actions per CPU cycle (Cmem), and the ratio of non-halt
CPU cycles (Cnonhalt). These metrics indicate the inten-
sity of activities on the L2 cache, memory, and CPU
respectively. Formally, the power is modeled as:

Pidle +Pcache ·
Ccache

Cceil
cache

+Pmem · Cmem

Cceil
mem

+Pnonhalt ·
Cnonhalt

Cceil
nonhalt

,

(1)
where P ’s are coefficient parameters for the linear model.
Cceil

cache, Cceil
mem, and Cceil

nonhalt are constants that approximate
ceiling values for the predictor metrics. We use mi-
crobenchmarks to determine that Cceil

cache=0.1569, Cceil
mem=0.0178,

and Cceil
nonhalt=1.0.

We use several workloads to calibrate the model pa-
rameters. They include six microbenchmarks: 1) idle;
2) CPU spinning with no access to cache or memory;
3/4) Apache web server with either short requests (no
more than 1 KB files) or long requests (files of 100 KB–
1 MB); 5/6) OpenSSL RSA encryption/decryption us-
ing either a small key or a large key. We also use four
full server workloads: 7) TPC-C running on the MySQL
database; 8) TPC-H running on the MySQL database;
9) RUBiS [13]; 10) WeBWorK [16]. Since our mod-
eling focuses on the processor and memory power, we
avoid disk I/O during the calibration by configuring the
datasets to fit in the memory.

Using the least-square fit regression, the model cali-
bration results for Equation 1 are:

• Pcache = 8.3 Watts;

• Pmem = 20.1 Watts;

• Pnonhalt = 27.9 Watts;

• the idle power is 223.0 Watts for the whole system, or 55.8 Watts
per-core.

As an indication of high regression accuracy, the result’s
R2-statistic is 0.995. In other words, the relative aggre-
gate square error is 1 − R2 = 0.005.

Results.
With request-level event accounting and event-driven

power modeling, we can construct the power/energy pro-
files for individual requests. Figure 3 shows the distri-
bution of request power draw for TPC-H, RUBiS, and
WeBWorK. The power for a request is calculated as
the average power during the request’s execution. Fig-
ure 4 shows the request energy usage distributions for
the three workloads. Results show a small variation on
the power draw of different requests. At the same time,
the request energy consumption exhibits much larger
variations, which are mainly attributed to the varying
execution time of different requests.

We demonstrate a promising approach for request-level
power/energy profiling. However, the results of our case
study is still preliminary while additional validations and
experiments in realistic datacenter environments are needed
in the future.

4. EXAMPLE SCENARIO
Consider MakeItRain.com, a fictional cloud-computing

provider that runs large datacenters for Internet services.
MakeItRain.com replicates each service across several
datacenters for load balancing and fault tolerance. User
requests for the hosted services are routed to datacenters
in a weighted round robin fashion. To support elastic
workload growth, MakeItRain.com must over-provision
server resources such that datacenters are not completely
used during normal operation.

MakeItRain.com has also invested in energy-related
optimizations for its datacenters. First, each datacenter
uses PowerNap and a redundant array of power supplies
to make the datacenter’s actual power draw proportional
to its request processing workload [11]. Second, some
datacenters have been equipped with renewable sources
of energy (like in Figure 1).

This paper makes two key observations related to the
management of MakeItRain’s datacenters. First, work-
load distribution (i.e., request routing policies) should
be aware of the availability of renewable energy at dif-
ferent datacenters. Datacenters with excess renewables
should process a greater share of the user requests, in-
creasing their power draw. The second key observation
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Figure 3: Request power draw distributions in histograms. Results are synthesized from 1000 TPC-H requests, 4000
RUBiS requests, and 1000 WeBWorK requests. For TPC-H, requests are issued for Q2, Q3, Q4, Q5, Q6, Q7, Q8, Q9, Q11,
Q12, Q13, Q14, Q15, Q17, Q19, Q20, and Q22 in a round robin fashion.
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Figure 4: Request energy usage distributions in histograms.

is that it is possible to build request-level power/energy
profiles that could potentially guide fine-grained request
routing. For instance, the profiles could be used to dis-
tribute energy-hungry requests, identified by type, to dat-
acenters with excess renewables.

This is just one example of renewable-aware manage-
ment. Our ongoing work is comprehensively revisiting
many aspects of datacenter management to deal with in-
termittent renewable resources. We will continue to ex-
plore renewable-aware request distribution, but we are
also investigating other opportunities listed in Table 1.
We are also exploring architectural trade offs for low-
threshold power transfer systems.
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