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Abstract

A multi-object operation incurs communication or syn-
chronization overhead when the requested objects are dis-
tributed over different nodes. The object pair correlations
(the probability for a pair of objects to be requested together
in an operation) are often highly skewed and yet stable over
time for real-world distributed applications. Thus, plac-
ing strongly correlated objects on the same node (subject
to node space constraint) tends to reduce communication
overhead for multi-object operations. This paper studies the
optimization of correlation-aware data placement. First,
we formalize a restricted form of the problem as a variant
of the classic Quadratic Assignment problem and we show
that it is NP-hard. Based on a linear programming relax-
ation, we then propose a polynomial-time algorithm that
generates a randomized object placement whose expected
communication overhead is optimal. We further show that
the computation cost can be reduced by limiting the opti-
mization scope to a relatively small number of most impor-
tant objects. We quantitatively evaluate our approach on
keyword index placement for full-text search engines using
real traces of 3.7 million web pages and 6.8 million search
queries. Compared to the correlation-oblivious random ob-
ject placement, our approach achieves 37–86% commu-
nication overhead reduction on a range of optimization
scopes and system sizes. The communication reduction is
30–78% compared to a correlation-aware greedy approach.

1 Introduction

In distributed data-intensive applications, sometimes a
user-level operation needs to access multiple data objects.
For example, in a full-text keyword search engine using
pre-constructed keyword indices, a multi-word search re-
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Figure 1. An illustration on the impor-
tance of object placement strategies in dis-
tributed full-text keyword search. Here “CAR,
DEALER” and “SOFTWARE, DOWNLOAD”
are highly correlated object pairs (requested
together with relatively high frequency).

quest requires access to multiple keyword indices. Simi-
larly, an aggregation query accesses multiple data objects
in a distributed database. When the requested objects are
placed at different nodes, a multi-object operation typically
incurs communication overhead for moving data and syn-
chronizing actions. As demonstrated by the example in
Figure 1, the choice of the object placement strategy can
substantially affect such communication overhead. Specif-
ically, Figure 1(a) suggests that placing correlated objects
on the same node makes more requests locally computable.
In comparison, another object placement scheme in Fig-
ure 1(b) incurs substantially higher communication over-
head due to its oblivion to object correlations.

We define thecorrelation between a pair of objects as
the probability for them to be requested together in any
given operation. As explained above, placing more cor-
related objects on the same node tends to reduce required
communication overhead. However, existing object place-



ment approaches in distributed data-intensive applications
are often oblivious to object correlations in multi-objectop-
erations. At the best, some correlation-aware heuristic ap-
proaches may be employed for object placement with no un-
derstanding on their optimality. In principle, a desirableob-
ject placement strategy must consider complex inter-object
correlations while it is also subject to constraints such as
the available space of each node. In this paper, we ad-
dress the problem of finding the optimal object placement
strategy that minimizes the total communication cost for
multi-object operations with known object correlations, ob-
ject sizes, and per-node space constraints.

The remainder of this paper is organized as follows.
Section 1.1 discusses motivating applications to our stud-
ied problem. In Section 2, we formalize our optimization
problem and show its NP-hardness. Based on a linear pro-
gramming relaxation, we propose a polynomial-time ap-
proximation algorithm that generates a randomized object
placement scheme with an optimalexpectedcommunica-
tion overhead. We also describe related work to our prob-
lem. Section 3 discusses some additional systems issues
for our solution. Section 4 quantitatively evaluates the per-
formance of our algorithm using a case study of keyword
index placement in distributed full-text search engines. We
conclude in Section 5 with a summary of results.

1.1 Motivating Applications

Full-text search engines host inverted indices to support
fast search. An inverted index is a data structure that as-
sociates each keyword with those documents that contain
it, as well as other auxiliary information such as keyword
occurrence locations, document digests, etc. In large-scale
distributed search systems, search indices are partitioned
and placed over multiple nodes1. When answering ak-
keyword search query, typically the inverted indices of all
k keywords need to be accessed. A primary performance
concern is the network communication overhead between
distributed indices for keywords that appear in the same
queries.

Similarly, multi-object operations arise in many dis-
tributed data-driven applications. For instance, a large bio-
logical sequence database may be partitioned and placed on
multiple machines for scalability. A query may search spe-
cific parts of the database depending on user specification

1Search index partitioning can be either keyword-based or document-
based [14]. In keyword-based partitioning, each node hoststhe inverted
indices of some keywords. In document-based partitioning,each node
hosts the inverted indices (of all keywords) for some documents. Both
schemes have distinctive advantages and some hybrid approaches are also
employed. For the simplicity of treating each keyword indexas a data ob-
ject, we consider pure keyword-based partitioning systemsor the keyword
partitioning component of hybrid systems.

and search results from all relevant parts are finally aggre-
gated in a union-like fashion.

The benefit and practicality of our study on correlation-
aware object placement depends on two premises. First, the
distribution of object correlations must beskewedenough
for potentially large benefit of correlation-aware object
placement. Second, the distribution must bestableenough
so that a placement scheme customized to a particular ob-
ject correlation distribution can remain effective for a signif-
icantly long time period. We believe such skewness and sta-
bility hold for many large-scale applications over long-term
deployment. In particular, we show the correlations of key-
words in search queries using a trace of around 29 million
queries from the Ask.com search engine [1]. This trace con-
tains a fraction of Ask.com queries received in a two-month
period (January and February 2006). Trace analysis results
in Figure 2 demonstrate that the distribution of keyword
correlations is highly skewed in multi-keyword queries and
such distribution remains stable across month-long periods.

2 Algorithmic Foundation

In this section, we present our algorithmic contribution
to optimize correlation-aware object placement for multi-
object operations.

2.1 Problem Definition and NP-Hardness

We formulate the correlation-aware object placement
problem as follows. Given two sets,T (data objects) and
N (host nodes), an object size functions, a node capacity
functionc, an object pair correlation functionr, and a com-
munication overhead functionw, the problem is to find an
object placement schemef : T → N that satisfies Figure 3.

minimize
∑

i,j∈T∧f(i) 6=f(j)

r(i, j) · w(i, j) (1)

subject to the constraint:

∀k ∈ N :
∑

i∈T∧f(i)=k

s(i) ≤ c(k) (2)

Figure 3. Original problem definition.

Specifically,s(i) is the size of objecti. c(k) is the space
capacity at nodek. The object pair correlationr(i, j) rep-
resents the probability for objectsi andj to be requested
together in any given user-level operation. For objectsi and
j that are placed on different nodes,w(i, j) represents the
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Figure 2. An illustration on the skewness and stability of ke yword correlations using a trace of
Ask.com [1] search queries during January and February 2006 . (A) shows the skewness of key-
word correlations for the most correlated 1000 keyword pair s in January 2006 queries. Note that the
Y-axis is in logarithmic scale. The most correlated keyword pair is 177 times more correlated than
the 1000th most correlated keyword pair. (B) shows the stabi lity of keyword correlations between
two month-long periods. The closeness between the dots (fre quencies in February 2006 queries)
and the curve (frequencies in January 2006 queries) indicat es high stability. In particular, only 1.2%
keyword pairs have correlation changes that are greater-th an-twice or less-than-half the originals.

communication overhead incurred when objectsi andj are
requested together in an operation. To simplify our prob-
lem formulation and to allow solution with strong analytical
property, we assumew(i, j) is only dependent on inherent
properties of objectsi andj. In other words, we assume the
communication cost between two specific objectsi andj is
deterministic. This assumption has some important impli-
cations:

• The communication cost between two objects is in-
dependent of where they are placed in the distributed
system. This assumption largely holds for local-area
distributed environments in which the communica-
tion latency between nodes are approximately equal.
For wide-area distributed environments, our assump-
tion holds when the optimization goal is to minimize
the combined network communication volume over all
links regardless of the network distance at each link.

• The communication cost between a pair of objects is
independent of other requested objects in an operation
requesting more than two objects. This is a strong as-
sumption which often does not hold in practice. In
these cases our analytical result only applies to two-
object operations. However, we will show later in Sec-
tion 3.2 how the cost of some more-than-two-object
operation can be approximated using the cost of one or

more two-object operations.

Givens, c, r, andw, the optimization goal of (1) mini-
mizes the total communication cost between indices on dif-
ferent nodes while the constraint of (2) ensures that the total
data size at an arbitrary nodek does not exceed the node
space capacity. We call our problemCapacity-Constrained
Assignment(or CCA).

Theorem 1 The CCA problem is NP-hard.

Proof: Let us consider a special case of the CCA prob-
lem. Suppose there aret objects andn nodes witht > n ≥
3 and all nodes have an equal capacity ofc. Suppose the first
n objects have equal size ofc

2 < s < c, which means that
they must be bijectively placed on then nodes. Otherwise
the per-node capacity limit would be exceeded. We also as-
sume that the total size of all other objects is no more than
c − s, which means that these objects can be freely placed
at any node without violating the capacity constraint.

Now the problem becomes a minimumn-way cut prob-
lem with t vertexes,n out of which are pre-determined ter-
minals. Furthermore, by carefully choosingt, n, object
sizes, and node capacities, the above restriction can cover
every possible instance of minimumn-way cut problems.
Consequently, given the known NP-hardness of the mini-
mumn-way cut problem (n ≥ 3), we know that the CCA



problem is NP-hard since one of its special cases is NP-
hard.

2.2 A Polynomial-Time, Randomized So-
lution

We derive a polynomial-time, randomized solution for
the CCA problem, by representing it as an integer program-
ming problem, relaxing it to linear programming, solving
the relaxation in polynomial time, and finally rounding the
solution to integers via a randomized approach. At the
high level, this multi-step process of approximating NP-
hard problems has been used previously [4, 9].

For all i, j ∈ T , k ∈ N : r(i, j), w(i, j), s(i), andc(k) as
we defined earlier are all known. LetS =

∑

i∈T s(i). The
CCA problem as defined in Figure 3 is equivalent to the
linear integer programming problem shown in Figure 4. In
this problem definition, the constraints in (4–8) ensure that
(3) minimizes the total inter-node communication overhead
while (9) maintains the per-node capacity constraint.

The solution to the above linear integer programming
problem provides the optimal object placement for our for-
mulated problem. However, it is generally difficult to find
a solution since integer programming problems are known
to be NP-hard. To address this, we relax the constraint in
(4) to xi,k ≥ 0, which transforms the problem into a lin-
ear programming problem. The solution to this new pro-
gram is polynomial-time computable and it always satisfies
0 ≤ xi,k ≤ 1. This can be viewed as a fractional ob-
ject placement scheme (where an object can be split into
arbitrary parts and placed at different nodes) and needs to
be rounded to an integer solution, with the hope that the
rounding process does not amplify the objective function
too much.

It is obvious that the simple nearest integer rounding
does not work here since it may generate all zeros and vi-
olate (5). An appropriate rounding scheme should choose
exactly one nodek ∈ N for each objecti ∈ T , with prob-
ability xi,k. However, doing so naively without consid-
ering correlations between different objects is insufficient
since it may incur considerable increase in the optimization
target (total communication overhead). For instance, two
objectsi, j with identical fractional node placement prob-
abilities (hence have zero contribution to the optimization
goal in (3)) may be placed at different nodes, which causes
unbounded increase on the optimization target. To address
this, we use the randomized rounding technique in [4] that
places objecti at nodek with probabilityxi,k, while main-
taining the the optimal expected target value. The rounding
approach is illustrated in Algorithm 2.1.

minimize
∑

i,j∈T

r(i, j) · w(i, j) · zi,j (3)

subject to constraints:

∀i ∈ T, ∀k ∈ N : xi,k ∈ {0, 1} (4)

∀i ∈ T :
∑

k∈N

xi,k = 1 (5)

Comment: xi,k are integer variables such thatxi,k = 1
when objecti is placed at nodek andxi,k = 0 otherwise.
(5) enforces that each object is placed at exactly one node.

∀i, j ∈ T, r(i, j) > 0, ∀k ∈ N : yi,j,k ≥ xi,k−xj,k (6)

∀i, j ∈ T, r(i, j) > 0, ∀k ∈ N : yi,j,k ≥ xj,k−xi,k (7)

Comment: The intermediate variableyi,j,k is enforced to
be equal tomax(xi,k − xj,k, xj,k − xi,k) = |xi,k − xj,k|.

∀i, j ∈ T, r(i, j) > 0 : zi,j =
1

2
·
∑

k∈N

yi,j,k (8)

Comment: The intermediate variablezi,j = 0 if objects
i, j are placed on the same node andzi,j = 1 if otherwise.

∀k ∈ N :
∑

i∈T

xi,k · s(i) ≤ c(k)

⇔ ∀k ∈ N :
∑

i∈T,k′ 6=k

xi,k′ · s(i) ≥ S − c(k) (9)

Comment: Capacity constraint.

Figure 4. Linear integer programming prob-
lem definition.

2.3 The Optimality of the Expected Tar-
get Value

Here we will show that the expected optimization target
value of the rounded solution is equal to the optimal target
value of the relaxed linear programming problem.

Lemma 1 After the rounding process, objecti is placed at
nodek with probabilityxi,k.

Proof: In each step, the probability that objecti is placed
at nodek is proportional toxi,k. Furthermore,i must be
placed in some step of the rounding process. Hence after the
whole process,i goes tok with probabilityxi,k no matter
in which stepi is placed.

Lemma 2 For arbitrary objectsi, j, the probability thati, j



Algorithm 2.1: ROUNDING({xi,k})

Input: {xi,k | 0 ≤ xi,k ≤ 1, i ∈ T, k ∈ N}, the
fractional solution to be rounded.
Returns: {x̄i,k | x̄i,k ∈ {0, 1}, i ∈ T, k ∈ N}, the
rounded solution.

Initialize {x̄i,k |i ∈ T, k ∈ N} as all zeros.
while there still exists not-yet-placed objects

do















































r ← a random number in[0, 1]
k ← a node chosen randomly fromN

/* For each not-yet-placed objecti, placei at
nodek with probabilityxi,k */

for each not-yet-placedi ∈ T

do
{

if r ≤ xi,k

then x̄i,k ← 1

return ({x̄i,k})

are placed at different nodes by the rounding process is at
mostzi,j .

Proof: i, j are placed at different nodes only if they are
not placed in the same step. If objecti is placed first, then
we have

Prob(j is not placed wheni is placed)

=
∑

k∈N

Prob(i goes to nodek in a step

∧ j is not placed in that step)

(10)

whereProb(i goes to nodek in a step) is xi,k according to
Lemma 1. The conditional probability:

Prob(j is not placed in that step| i goes to nodek in a step)

≤
max(xi,k − xj,k, 0)

xi,k

(11)

Hence (10) is upper-bounded by:

∑

k∈N

xi,k ·
max(xi,k − xj,k, 0)

xi,k

=
∑

k∈N

max(xi,k − xj,k, 0)

(12)
Similarly, if objectj is placed first, then

Prob(i is not placed whenj is placed)

=
∑

k∈N

Prob(j goes to nodek in a step

∧ i is not placed in that step)

≤
∑

k∈N

max(xj,k − xi,k, 0)

(13)

Given that
∑

k∈N xi,k =
∑

k∈N xj,k = 1 and∀k ∈ N, 0 ≤
xi,k, xj,k ≤ 1, we have

∑

k∈N max(xi,k − xj,k, 0) =
∑

k∈N max(xj,k−xi,k, 0). In addition,
∑

k∈N max(xi,k−
xj,k, 0) +

∑

k∈N max(xj,k − xi,k, 0) =
∑

k∈N |xi,k −
xj,k| = 2zi,j. Hence

∑

k∈N max(xi,k − xj,k, 0) =
∑

k∈N max(xj,k − xi,k, 0) = zi,j . Consequently, no mat-
ter eitheri or j is placed first, the probability thati, j go to
different nodes is upper-bounded byzi,j .

Theorem 2 For the rounded solution generated by Algo-
rithm 2.1, its expected value of the total communication cost
defined in (3) is identical to that of the optimal solution to
the CCA problem defined in (3–9).

Proof: According to Lemma 2, the rounding algorithm
maintains the expected minimization object value of the
fractional solution to the relaxed linear programming prob-
lem (xi,k ∈ {0, 1} relaxed to0 ≤ xi,k ≤ 1). Further-
more, the optimal solution to the relaxed linear program-
ming problem obviously should not incur higher communi-
cation cost than the optimal solution to the original linear
integer programming problem defined in (3–9).

Theorem 2 shows that our algorithm generates a random-
ized object placement scheme whose expected total com-
munication cost is optimal. Note that this is only a proba-
bilistic guarantee. In other words, a particular solution gen-
erated by our randomized rounding may produce worse re-
sults. To achieve a high confidence in the performance of
the produced object placement, we can repeat the random-
ized rounding several times and pick the best solution.

Theorem 3 For the rounded solution generated by Algo-
rithm 2.1, its expected value of total object size at each node
does not exceed the per-node capacity.

Proof: Before the rounding, the fractional solution
({xi,k}) to the relaxed linear programming problem strictly
satisfies the capacity constraint as given in (9) —∀k ∈
N,

∑

i∈T xi,k · s(i) ≤ c(k). According to Lemma 1, the
rounding process places objecti at nodek with probability
xi,k. Consequently, the expected value of the total object
size at nodek is

∑

i∈T

xi,k · s(i) ≤ c(k)

Note that Theorem 3 does not indicate a strict adherence
to the per-node capacity constraint. Instead, it only ensures
that the expected per-node load is below the capacity. To
address this in practice, conservative capacities may be used
for the purpose that a group of placed objects with aggregate
size slightly larger than its node capacity will be tolerated.



2.4 Related Work

The optimization problem studied in this paper is a
variant of the classical Quadratic Assignment (QA) prob-
lem [5], which is known to be NP-hard [10] and no
polynomial-time solution with a constant approximation ra-
tio is known. Givenn facilities andn locations with dis-
tance specified for each pair of locations and the amount
of commodity flow given for each pair of facilities, the QA
problem is to place all facilities to different locations inor-
der to minimize the total flow cost — the sum of the dis-
tances multiplied by the corresponding flows.

The QA problem can be tailored to model our optimiza-
tion problem, where facilities, locations, and supply flows
become data objects, nodes, and inter-node communica-
tions in our studied scenario. On the one hand, our prob-
lem is more complex in that the number of data objects and
the number of nodes may not be equal. Multiple objects at
one node is allowed in our case as long as the node capacity
permits it. On the other hand, we make a simplification that
the varying distances between different node pairs do not
play a role in the optimization target — the overall commu-
nication cost. This simplification allows us to develop an
randomized approximation solution with its expected target
value guaranteed to be optimal.

Our studied problem also has close connections with
other NP-hard problems, including minimumk-way cut
(k ≥ 3) and balanced uniform metric labeling. The mini-
mumk-way cut problem can be viewed as a simplified case
of our problem in which there arek nodes (terminals), each
with one pre-placed object, and the problem is to find an
optimal placement scheme for other not-yet-placed objects.
The best known approximation ratio for the minimumk-
way cut problem is1.5 − 1

k
[2]. The balanced uniform

metric labeling problem [9] is a class of metric labeling
problems [4] with uniform distance metrics and label ca-
pacities, i.e., there is an upper-limit on how many objects
can receive a label. The best known polynomial-time solu-
tion has an approximation ratio ofO(log n) (n is the num-
ber of nodes) while maintaining bounded number of objects
placed to each label [9]. In comparison, we seek a random-
ized solution that optimizes the expected target value, rather
than improving the approximation ratio of exact solutions.

Our problem is also similar to a variant of the task assign-
ment problem [6, 7, 12], which allocates a number of tasks
to a distributed system of heterogeneous processors such
that the total execution and communication cost are min-
imized while per-processor constraints are satisfied. Task
assignment problems typically have heuristic solutions that
focus on online efficiency for small problem sizes. Con-
sequently, they are not directly applicable to our problem,
which seeks the offline optimal assignment scheme for a
large number of data objects.

3 Additional Systems Issues

3.1 Offline Computation Overhead

We examine the offline computation overhead for the
linear programming problem under realistic problem sizes.
Let T denote the set of objects. LetN denote the set of
nodes. LetE = {(i, j)|i, j ∈ T ∧r(i, j) > 0}, wherer(., .)
indicates the object pair correlation. Let us consider the lin-
ear program defined in (3–9) withxi,k relaxed toxi,k > 0.
The total number of variables (xi,k ’s, yi,j,k ’s, andzi,j ’s) is
obviously

|T | · |N |+ |E| · |N |+ |E|.

We believe that in many large-scale data-intensive applica-
tions, there are often only a few other objects with non-
trivial correlation with a given object. In other words,E is a
sparse set overT ×T with E = O(|T |). Therefore the total
number of variables can be viewed asO(|T | · |N |). Based
on the same assumption, the number of program constraints
in (4–9) is

|T | · |N |+ |T |+ 2|N | · |E|+ |E|+ |N | = O(|T | · |N |)

In summary, the number of variables and constraints used
in our linear program isO(|T | · |N |).

Even with the assumption ofE = O(|T |), there may
still be many variables and constraints in the linear program
for large-scale applications. This may require a significant
amount of offline computation time to generate the optimal
object placement scheme on current linear programming
software. Fortunately, due to the high skewness of object
popularity in many applications (e.g., Zipf-like popularity
distribution for web objects), we may not have to deal with
all objects in the dataset. By limiting the scope of place-
ment optimization on a small number of important objects
(dominant in access frequency and/or object size) and using
random placement for others, we may trade communication
overhead savings for less offline computation. We call this
important-object partial optimization. In Section 4, we will
quantitatively evaluate the effectiveness of our proposedob-
ject placement strategy with varying optimization scopes.

3.2 More-Than-Two-Object Operations

Our solution derived in Section 2 assumes that the com-
munication cost between a pair of objects is independent
of other requested objects in an operation requesting more
than two objects. This is a strong assumption which may
not hold in practice. Therefore our analytical result effec-
tively only applies to two-object operations. However, with
more knowledge on the nature of multi-object operations
and how they are performed, we may approximate the cost



of some more-than-two-object operation using the cost of
one or more two-object operations.

Some multi-object operations perform intersection-like
aggregation over multiple sets. For example in full-text
keyword search engines, inverted indices answer a multi-
keyword query by returning the ranked document list of the
intersection of all keywords’ corresponding indices. Simi-
larly, a database join query intersects row sets of multiple
tables. Intersection-like operations typically process two
smallest objects first and their intersection result tends to
become so small that further intersections require little com-
munication. Under such schemes, we can approximate the
communication cost of a multi-object operation as that of an
operation that requests only the two smallest objects. Cor-
respondingly, we adjust our definition of object pair corre-
lation to be the probability that they are the two smallest
objects requested in any given operation.

Some other multi-object operations perform union-like
aggregation over multiple objects. An example is the union
of search results from multiple datasets. In a simplistic fash-
ion, we transfer all objects to the node at which the largest
object is located and then perform the union locally. In
this case, we can approximate the communication cost of
a multi-object operation using the aggregate cost of a se-
quence of two-object operations, each of which involves the
largest object and each other requested object in the opera-
tion.

3.3 Other Node Capacity Constraints

In addition to the storage capacity constraint explicitly
considered in our problem definition, other node capacity
constraints such as network bandwidth and CPU process-
ing capability may also be present. In principle, we can
address these problems by introducing more capacity con-
straints into our linear programing problem in a way similar
to (9), e.g., ensuring that the total resource usage at each
node does not exceed the per-node bandwidth limit or CPU
processing capability. Thus the general framework of our
solution should still be applicable. A quantitative consider-
ation on these additional capacity constraints falls beyond
the scope of this paper.

4 A Quantitative Case Study

We experimentally evaluate our proposed correlation-
aware object placement using a case study on distributed
keyword index placement for full-text search engines. Our
experimental study is driven by real-world web document
datasets and query traces. More specifically, we evaluate
the feasibility of important-object partial optimizationto
achieve manageable offline computation cost (Section 4.2).
We then provide evaluation results on the effectiveness of

our proposed algorithm in reducing communication over-
head (Section 4.3).

4.1 Evaluation Setup

Our evaluation dataset contains 3.7 million web pages
and 6.8 million web queries. The web pages are crawled
based on URL listings of the Open Directory Project [3].
The queries are from a partial query log at the Ask.com
search engine [1] over the week of January 6–12, 2002 and
there are an average of 2.54 keywords per query. The com-
plete vocabulary consists of the 253,334 words that appear
in our query log. The web pages are preprocessed by re-
moving HTML tags and trivially popular words using the
stopword list of the SMART software package [11]. After
pre-processing, the average number of distinct words per
page is approximately 114.

In our implemented inverted indices, each item of an in-
verted index contains an 8-byte page ID (the MD5 digest of
the corresponding page URL). Note that inverted indices in
real search engines usually contain other information such
as keyword frequencies, keyword occurrence locations, and
page digests. We omit them here because these information
only help ranking the search results, which is not the focus
of this study. The index size of each keyword can be easily
computed based on our implemented inverted indices. With
the knowledge of keyword index sizes and the query log, we
can estimate the inter-keyword communication overhead of
inverted index intersection.

We implement a prototype search engine to evaluate the
communication cost saving of our proposed correlation-
aware object placement. Driven by the query log, the pro-
totype locates the nodes that contain the inverted indices of
the queried keywords, performs intersection operations to
generate search results, and logs the communication over-
head incurred during this process for comparison purposes.
We do not consider the communication cost of returning the
final ranked search results because the sizes of these com-
munications are relatively small and their exact sizes are
determined by other factors independent of the index place-
ment.

We consider three strategies for placing keyword indices
at nodes.

• Random hash-based index placement. In this strategy,
the inverted index of each keyword is placed at a node
based on its MD5 hash code. More specifically, we di-
vide the hash code by the number of nodes and use the
remainder as the ID of the placed node. Random hash-
based index placement or its variants are commonly
employed in practice today.

• Correlation-aware index placement using linear pro-
gramming with randomized rounding (or LPRR). This



strategy follows our proposed algorithm in Section 2.
Due to potentially large cost of linear programming
computation, we consider a variant of this scheme that
only optimizes a small subset of most important key-
words (as explained in Section 3.1). The remaining
keyword indices will be placed using random hashing.
For each more-than-two-keyword search query, we ap-
proximate its cost using a two-keyword search query
on the two keywords with smallest inverted indices
(as explained in Section 3.2). An important concern
for LPRR is that the communication reduction must
be achieved by a balanced placement, without caus-
ing excessively above-average load at particular nodes.
We achieve this by setting a per-node index size capac-
ity constraint in our linear programming optimization.
Specifically, our constraint is set at two times the av-
erage per-node index size, i.e., no more than twice the
average per-node load is allowed at each node.

• Correlation-aware index placement using a greedy
heuristic. This strategy places indices by considering
keyword correlations in a greedy way. Specifically, we
examine keyword pairs in the descending order of their
query correlations and always place the most corre-
lated pair on the same node as long as the node capac-
ity permits it. The greedy approach serves as a compar-
ison basis that uses simple correlation-aware heuris-
tics.

Note that when correlation-aware index placement is
used, each node should maintain a look-up table of key-
word index locations. The storage consumption and look-
up time of such tables are not a performance concern when
the keyword vocabulary size is moderate (253,334 on our
dataset). Further, the proposed limited-scope partial opti-
mization also reduces overhead associated with this look-up
table since the table only needs to contain those important
keywords within the optimization scope.

4.2 Feasibility of Important-Object Par-
tial Optimization

In the ideal case, our correlation-aware index placement
should consider all keywords. However, as explained in
Section 3.1, this would result in tens of millions variables
and constraints in the linear programming calculation. For-
tunately, real-life datasets exhibit high skewness so that
only a very small number of keywords may cover the vast
majority of the inter-keyword communication cost2 (the op-
timization target of our linear programming) and keyword
index size (the capacity constraint of our linear program-
ming). By only considering these important keywords, the

2Here the communication cost between keywordi and j is r(i, j) ·

w(i, j), as defined in Section 2.1.
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Figure 5. The dominance of most important
keywords in cumulative keyword index sizes
and inter-keyword communication cost.

offline computation cost for the linear programming opti-
mization would not be too excessive.

We assess such object skewness using a simplekeyword
importance rankingscheme. In this scheme, we first rank
all keyword pairs according to their inter-keyword commu-
nication cost. The keyword appearance order in this key-
word pair ranking is then considered as our keyword im-
portance ranking. Those keywords that do not involve any
inter-keyword communications (e.g., those never queried
together with other keywords) are ranked last.

Figure 5 shows that a few most important keywords both
cover a large proportion of total communication overhead
and account for a large proportion of the total index size.
This justifies the feasibility of important-object partialop-
timization, which limits the optimization scope to a small
number of most important keywords and applies random
placement for other keywords. Compared to the full opti-
mization, such a strategy is expected to achieve diminished
yet still significant communication savings. Furthermore,
the placement strategy generated by partial optimization
tends to also maintain space constraints as keywords with
large index sizes are mostly considered in the placement.

We use LPsolve [8], a popular linear programming soft-
ware, to implement our algorithm and compute object
placement schemes for the important keywords. The com-
putation takes no more than 48 hours when we consider up
to 10000 most important keywords — a manageable offline
computation cost for large-scale search systems. For the re-
maining keywords, we simply determine their host nodes
using random hash-based placement.
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Figure 6. Communication overhead reduction
of correlation-aware object placements. Re-
sults are with a range of varying optimization
scopes (the number of most important key-
words that are subject to correlation-aware
index placement). Those keywords not in
the optimization scope are placed using ran-
dom hash-based node assignment. The dis-
tributed system consists of 10 nodes.

4.3 Communication Overhead Reduction

We compare the communication overhead of our LPRR
correlation-aware index placement scheme with those of
greedy index placement and random hash-based placement.
Our evaluation is performed at a variety of optimization
scopes (1000–10000 most important keywords subject to
optimization) and at a range of different system sizes (10–
100 nodes).

Results with varying optimization scopes Figure 6
shows that a significant amount of communication saving
can be achieved even when only a small number of most
important keywords are subject to correlation-aware index
placement. For example, 78% communication saving can
be realized when only the most important 10000 keywords
are subject to LPRR correlation-aware placement. Further-
more, compared with our proposed correlation-aware place-
ment strategy, the simple correlation-aware heuristic can
achieve diminished yet still significant communication re-
duction (up to 44% savings)

Results with varying system sizes Figure 7 shows that
our LPRR index placement scheme achieves 73–86% com-
munication reduction compared to random hash placement.
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Figure 7. Communication overhead reduction
of correlation-aware object placements. Re-
sults are with a range of different system
sizes. The optimization scope is set at the
most important 10000 keywords.

Specifically, when the system size is small (less than 40
nodes), the communication savings increase as the number
of nodes grows. This is because the keywords can be well
clustered into a small number of co-placed groups (with low
inter-group communication) by using our optimization ap-
proach. Moreover, under such a small system size, increas-
ing the number of nodes significantly increase the commu-
nication cost of random index placement — onn nodes,
two keywords lie on different nodes with probabilityn−1

n
,

which increases quickly whenn is small. When the system
size becomes large (at or over 50 nodes), the communica-
tion reduction of our LPRR object placement scheme di-
minishes as the number of nodes increases. This is because
our optimization is less effective in achieving low commu-
nication clustering on a large number of nodes while ran-
dom index placement receives little effect from the number
of nodes whenn is large. We also note that greedy index
placement is effective only when the number of nodes is
small — when per-node space capacity is large. This is
because greedy index placement can only discover tightly
correlated keyword groups with large group sizes. It is more
likely to get trapped into a local optimum when pursuing a
finer grouping granularity (more nodes).

5 Summary

Multi-object operations arise in many distributed data-
intensive applications. The object placement affects the per-



formance of these operations due to communication over-
head required when requested objects are placed on differ-
ent nodes. In this paper, we identify the problem of finding
optimal correlation-aware object placement for multi-object
operations. We represent the problem as a network resource
allocation problem that seeks a balanced allocation scheme
with minimum communication overhead. We show that the
problem is NP-hard and propose a polynomial-time, ran-
domized solution that optimizes theexpectedvalue of the
optimization target. More specifically, we approximate an
integer linear programming problem using a relaxed regu-
lar linear programming problem followed by a randomized
rounding of the solutions.

We experimentally evaluate the effectiveness and feasi-
bility of our scheme using a trace-driven case study on dis-
tributed keyword index placement for full-text search en-
gines. Taking advantage of a high skewness in the dataset,
we can limit the scope of our optimized placement only
to a small number of most important keywords. This will
help realize a moderate offline computation cost for gener-
ating the placement strategy. Over a variety of optimization
scopes and system sizes, our proposed correlation-aware
placement achieves 37–86% communication reduction over
the baseline random hash-based placement and 30–78% re-
duction over a simple heuristic of greedy correlation-aware
placement.

This work is related to our other studies of using known
object popularity information to customize object replica-
tion degrees [15] and Bloom filter object hash counts [13].
Together, our results demonstrate substantial system adap-
tation benefits by exploiting skewed but stable data access
distributions in real-world data-intensive applications.
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