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ABSTRACT
Several message passing-based parallel solvers have been de-
veloped for general (non-symmetric) sparse LU factorization
with partial pivoting. Due to the fine-grain synchronization
and large communication volume between computing nodes
for this application, existing solvers are mostly intended to
run on tightly-coupled parallel computing platforms with
high message passing performance (e.g., 1–10 µs in message
latency and 100–1000 Mbytes/sec in message throughput).
In order to utilize platforms with slower message passing,
this paper investigates techniques that can significantly re-
duce the application’s communication needs. In particular,
we propose batch pivoting to make pivot selections in groups
through speculative factorization, and thus substantially de-
crease the inter-processor synchronization granularity. We
experimented with an MPI-based implementation on sev-
eral message passing platforms. While the speculative batch
pivoting provides no performance benefit and even slightly
weakens the numerical stability on an IBM Regatta mul-
tiprocessor with fast message passing, it improves the per-
formance of our test matrices by 28–292% on an Ethernet-
connected 16-node PC cluster. We also evaluated several
other communication reduction techniques and showed that
they are not as effective as our proposed approach.

1. INTRODUCTION
The solution of sparse linear systems [9] is a computa-

tional bottleneck in many scientific computing problems.
Direct methods for solving non-symmetric linear systems of-
ten employ partial pivoting to maintain numerical stability.
At each step of the LU factorization, the pivoting process
performs row exchanges so that the diagonal element has
the largest absolute value among all elements of the corre-
sponding pivot column. Parallel sparse LU factorization has
been extensively studied in the past. Several solvers (e.g.,
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SuperLU [8, 18], WSMP [16], and PARDISO [23]) were de-
veloped specifically to run on shared memory machines and
inter-processor communications in them take place through
access to the shared memory. Some other solvers (e.g.,
van der Stappen et al. [28], S+ [24, 25], MUMPS [1], and
SuperLU DIST [19]) employ explicit message passing which
allows them to run on non-cache-coherent distributed mem-
ory computing platforms.

Despite the apparent portability of message passing-based
parallel code, existing solvers were mostly intended to run
on tightly-coupled parallel computing platforms with high
message passing performance, such as the Cray T3E and
the IBM SP2. This is because parallel sparse LU factoriza-
tion with partial pivoting requires fine-grain synchronization
and large communication volume between computing nodes.
In particular, since different rows of the matrix may reside
on different processors, the column-by-column pivot selec-
tion and accompanied row exchanges result in significant
message passing overhead. This paper focuses on improv-
ing the performance of sparse LU factorization on parallel
platforms with relatively poor message passing performance
(we call them “second-class” platforms). These platforms
may be constrained by the communication capabilities of
the network hardware as in PC clusters. The message pass-
ing speed may also be slowed down by software overhead
such as TCP/IP processing.

The key to improve the performance of parallel sparse LU
factorization on second-class message passing platforms is to
reduce the inter-processor synchronization granularity and
communication volume. In this paper, we examine the mes-
sage passing overhead in parallel sparse LU factorization
with two-dimensional data mapping and investigate tech-
niques to reduce such overhead. Our main finding is that
such an objective can be achieved with a small amount of
extra computation and slightly weakened numerical stabil-
ity. Although such tradeoffs would not be worthwhile when
running on systems with high message passing performance,
these techniques can be very beneficial for second-class mes-
sage passing platforms.

In particular, we propose a novel technique called specu-
lative batch pivoting, under which large elements for a group
of columns at all processors are collected at one processor
and then the pivot selections for these columns are made
together through speculative factorization. These pivot se-
lections are accepted if the chosen pivots pass a numeri-
cal stability test. Otherwise, the scheme would fall back
to the conventional column-by-column pivot selection for
this group of columns. Speculative batch pivoting substan-



tially decreases the inter-processor synchronization granu-
larity compared with the conventional approach. This re-
duction is made at the cost of increased computation (i.e.,
the cost of speculative factorization).

The rest of this paper is organized as follows. Section 2
introduces some background knowledge on parallel sparse
LU factorization. Section 3 assesses the existing applica-
tion performance on parallel computing platforms with dif-
ferent message passing performance. Section 4 describes
techniques that can improve the application performance on
second-class message passing platforms. Section 5 presents
experimental results of performance and numerical stabil-
ity on several different message passing platforms. We also
provide a direct comparison between our approach and an-
other message passing-based solver. Section 6 discusses the
related work and Section 7 concludes the paper.

2. BACKGROUND
LU factorization with partial pivoting decomposes a non-

symmetric sparse matrix A into two matrices L and U , such
that PA = LU , where L is a unit lower triangular matrix,
U is an upper triangular matrix, and P is a permutation
matrix containing the pivoting information. Combined with
the forward and backward substitution, the result of LU
factorization can be used to solve linear system Ax = b. In
this section, we describe some key components in parallel
sparse LU factorization.

Static symbolic factorization. In sparse LU factorization,
some zero elements may become nonzeros at runtime due to
factorization and pivoting. Predicting these elements (called
fill-ins) can help avoid costly data structure variations dur-
ing the factorization. The static symbolic factorization [15]
can identify the worst case fill-ins without knowing numeri-
cal values of elements. The basic idea is to statically consider
all possible pivoting choices at each step of the LU factoriza-
tion and space is allocated for all possible nonzero entries.
In addition to providing space requirement prediction, static
symbolic factorization can also help identify dense compo-
nents in the sparse matrix for further optimizations.

Since static symbolic factorization considers all possible
pivoting choices at each factorization step, it might over-
estimate the fill-ins which leads to unnecessary space con-
sumption and extra computation on zero elements. Our
past experience [24, 25] shows that the static symbolic fac-
torization does not produce too many fill-ins for most matri-
ces. For the exceptions, our previous work proposed several
space optimization techniques to address the problem of fill-
in overestimation [17].

L/U supernode partitioning. After the fill-in pattern of a
matrix is predicted, the matrix can be partitioned using a
supernodal approach to identify dense components for bet-
ter caching performance. In [18], a non-symmetric supern-
ode is defined as a group of consecutive columns, in which
the corresponding L part has a dense lower triangular block
on the diagonal and the same nonzero pattern below the
diagonal. Based on this definition, the L part of each col-
umn block only contains dense subrows. Here by “subrow”,
we mean the contiguous part of a row within a supernode.
After an L supernode partitioning has been performed on
a sparse matrix A, the same partitioning is applied to the
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Figure 1: Example of a partitioned sparse matrix.

rows of A to further break each supernode into submatrices.
Since coarse-grain partitioning can produce large submatri-
ces which do not fit into the cache, an upper bound on the
supernode size is usually enforced in the partitioning.

After the L/U supernode partitioning, each diagonal sub-
matrix is dense, and each nonzero off-diagonal submatrix
in the L part contains only dense subrows, and further-
more each nonzero submatrix in the U part of A contains
only dense subcolumns. This is the key to maximize the
use of BLAS-3 subroutines, which is known to provide high
caching performance. Figure 1 illustrates an example of a
partitioned sparse matrix and the black areas depict dense
submatrices, subrows, and subcolumns.

Data mapping. After symbolic factorization and matrix
partitioning, a partitioned sparse matrix A has N ×N sub-
matrix blocks. For example, the matrix in Figure 1 has 8×8
submatrices. For notational differentiation, we use capital
letter symbols to represent block-level entities while we use
lowercase letter symbols for element-level entities. For ex-
ample, we use ai,j to represent A’s element in row i and
column j while AI,J denotes the submatrix in A with row
block index I and column block index J . We also let LI,J

and UI,J denote a submatrix in the lower and upper trian-
gular part of matrix A respectively.

For block-oriented matrix computation, one-dimensional
(1D) column block cyclic mapping and two-dimensional (2D)
block cyclic mapping are commonly used. In 1D column
block cyclic mapping, a column block of A is assigned to
one processor. In 2D mapping, processors are viewed as
a 2D grid, and a column block is assigned to a column of
processors. Our investigation in this paper focuses on 2D
data mapping because it has been shown that 2D sparse LU
factorization is substantially more scalable than 1D data
mapping [12]. In this scheme, p available processors are
viewed as a two dimensional grid: p = pr × pc. Then block
AI,J is assigned to processor PI mod pr, J mod pc . Note that
each matrix column is scattered across multiple processors in
2D data mapping and therefore pivoting and row exchanges
may involve significant inter-processor synchronization and
communication.

Program partitioning. The factorization of supernode par-
titioned sparse matrix proceeds in steps. Step K (1 ≤ K ≤
N) contains three types of tasks: Factor(K), SwapScale(K),
and Update(K).

• Task Factor(K) factorizes all the columns in the Kth
column block and its function includes finding the piv-



for K = 1 to N

Perform task Factor(K) if this processor owns a

portion of column block K;

Perform task SwapScale(K);

Perform task Update(K);

endfor

Figure 2: Partitioned sparse LU factorization with
partial pivoting at each participating processor.

oting sequence associated with those columns and up-
dating the lower triangular portion (the L part) of col-
umn block K. The pivoting sequence is held until the
factorization of the Kth column block is completed.
Then the pivoting sequence is applied to the rest of
the matrix. This is called “delayed pivoting”.

• Task SwapScale(K) does “row exchanges” which ap-
plies the pivoting sequence derived by Factor(K) to
submatrices AK:N, K+1:N . It also does “scaling” that
uses the factorized diagonal submatrix LK,K to scale
row block UK .

• Task Update(K) uses factorized off-diagonal column
block K (LK+1,K , · · · , LN,K) and row block K
(UK,K+1, · · · , UK,N ) to modify submatrices AK+1:N, K+1:N .

Figure 2 outlines the partitioned LU factorization algorithm
with partial pivoting at each participating processor.

3. PERFORMANCE ON DIFFERENT MES-
SAGE PASSING PLATFORMS

We assess the existing parallel sparse LU solver perfor-
mance on three different message passing platforms support-
ing MPI:

• PC cluster: A cluster of PCs connected by 1 Gbps
Ethernet. Each machine in the cluster has a 2.8 Ghz
Pentium-4 processor, whose double-precision BLAS-3
GEMM performance peaks at 1382.3MFLOFS. The
BLAS/LAPACK package on PC is built on the source
release from http://www.netlib.org/lapack/ using
the GNU C/Fortran compilers with the optimization
flags “-funroll-all-loops -O3”. The PC cluster runs
MPICH [21] with the TCP/IP-based p4 communica-
tion device.

• Regatta/MPICH: An IBM p690 “Regatta” multipro-
cessor with 32 1.3 Ghz Power-4 processor, whose peak
double-precision BLAS-3 GEMM performance is
970.9 MFLOPS. The BLAS/LAPACK package on Re-
gatta is built using the IBM C/Fortran compilers with
the optimization flag “-O”. This platform also runs
MPICH with the p4 communication device.

• Regatta/shmem: The IBM Regatta using shared memory-
based message passing. Although MPICH provides a
shared memory-based communication device, it does
not yet support the IBM multiprocessor running AIX.
For the purpose of our experimentation, we use a mod-
ified version of MPICH that uses a shared memory
region to pass messages between MPI processes.

Figure 3 depicts the message passing performance of the
three parallel platforms using an MPI-based ping-pong mi-
crobenchmark. We use the single-trip latency to measure the
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Figure 3: Message passing performance of three par-
allel computing platforms using an MPI-based ping-
pong microbenchmark. Note that we use different
metrics for short messages (latency) and long mes-
sages (throughput).
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Figure 4: The performance of S+ for solving two ma-
trices (wang3 and av41092) on three message pass-
ing platforms.

short message performance and data transfer rate to mea-
sure the long message performance because the message size
does not play a dominant role in the overall performance for
short messages. Results in Figure 3 show that the short mes-
sage latency for the three platforms are around 4 µs, 35 µs,
and 250 µs respectively while the long message throughputs
are around 980 Mbytes/sec, 190Mbytes/sec, and 67Mbytes/sec
respectively. Compared with Regatta/shmem, the relatively
poor performance of Regatta/MPICH is mainly the result
of extra software overhead such as the TCP/IP processing.
The message passing performance of the PC cluster is fur-
ther slowed down by the hardware capability of the Ether-
net.

We use the S+ solver [24, 25] to demonstrate the per-
formance of parallel sparse LU factorization on platforms
with different message passing performance. S+ uses static
symbolic factorization, L/U supernode partitioning, and 2D
data mapping described in Section 2. In addition, it employs
a new scheduling scheme that asynchronously exploits the
parallelism available in the application. The comparison of
S+ with some other solvers was provided in [5, 25].

Figure 4 illustrates the S+ performance for solving two
matrices on the three message passing platforms. Detailed
statistics about these two matrices and others in our test col-
lection are provided later in Section 5.1. Results in Figure 4
show significant impact of the platform message passing
speed on the application performance and such impact grows
more substantial at larger scales (i.e., with more processors).
Despite the better BLAS performance of the PC processor,
the performance on Regatta/shmem is about three times
that on the PC cluster at 16 processors.



for each column k in column block K

Find largest local element ai,k (i ≥ k) in the

column as local pivot candidate;

Gather all local pivot candidate rows at PE;

if (I am PE) then

Select the pivot as the globally largest;

endif

Broadcast the pivot row from PE to all processors;

Swap row if the chosen pivot is local;

Use the pivot row to update the local portion of

the column block K;

endfor

Figure 5: Illustration of key steps in Factor(K). PE
can be any designated processor, such as the one
owning the diagonal submatrix.

4. IMPROVING THE PERFORMANCE ON
SECOND-CLASS PLATFORMS

The key to support efficient parallel sparse LU factoriza-
tion on platforms with slow message passing is to reduce the
inter-processor synchronization granularity and communica-
tion volume. At each step of a solver with 2D data mapping
(e.g., step K in Figure 2), there are primarily three types of
message passing between processors:

1. Within Factor(K), the pivot selection for each column
requires the gathering of local maximums from partici-
pating processors at a designated processor (called PE)
and the broadcast of final selection back to them. Row
swaps within the column block K is then performed if
necessary. Note that such communication occurs in a
column-by-column fashion because the column block
needs to be updated between the pivoting of any two
consecutive columns. Figure 5 illustrates the key steps
in Factor(K).

2. Within SwapScale(K), “row exchanges” are performed
to apply the pivoting sequence derived by Factor(K)
to submatrices AK:N, K+1:N .

3. Before Update(K) can be performed, the factorized
off-diagonal column block K (LK+1,K , · · · , LN,K) and
row block K (UK,K+1, · · · , UK,N ) must be broadcast
to participating processors.

It is difficult to reduce the column and row block broad-
cast for Update() (type 3 communication) without changing
the semantics of the LU factorization. However, the other
two types of communications can be reduced by using differ-
ent pivoting schemes. In Section 4.1, we describe the previ-
ously proposed threshold pivoting that decreases the num-
ber of “row exchanges” in SwapScale(). Sections 4.2 and 4.3
present techniques that can lower the synchronization gran-
ularity in Factor() through batch pivoting.

4.1 Threshold Pivoting
Threshold pivoting was originally proposed for reducing

fill-ins in sparse matrix factorization [9]. It allows the pivot
choice to be other than the largest element in the pivot col-
umn, as long as it is within a certain fraction (u ≤ 1) of
the largest element. In other words, after the pivoting at
column k, the following inequality holds:

|ak,k| ≥ u · max
i>k

{|ai,k|}. (1)

A smaller u would allow more freedom in the pivot selec-
tion, however it might also lead to weakened numerical sta-
bility. Several prior studies have empirically examined the
appropriate choice for the threshold parameter such that the
numerical stability is still acceptable [6, 27]. In particular,
Duff recommends to use u = 0.1 after analyzing results from
these studies [9].

With more freedom in the pivot selection, there is more
likelihood that we are able to choose a pivot element residing
on the same processor that contains the original diagonal el-
ement, and consequently the row exchange for this pivoting
step can be performed locally. In this way threshold piv-
oting can reduce the inter-processor communication volume
on row exchanges. This idea was proposed previously for
dense LU factorization by Malard [20].

4.2 Large Diagonal Batch Pivoting
Among the three types of message passing (listed in the

beginning of this section) for 2D parallel sparse LU factor-
ization, the pivoting in Factor(k) incurs less communication
volume compared with the other two types. However, it re-
quires much more frequent inter-processor synchronization
since the pivoting selection is performed in a column-by-
column fashion while the other types of message passing
occur on a once-per-block (or once-per-supernode) basis. In
this section and the next, we investigate techniques that
allow the pivoting to be performed together for groups of
columns (ahead of the numerical updates) such that each
group requires only a single round of message passing. Low-
ering the message frequency would produce significant per-
formance benefit on platforms with long message latency.

Duff and Koster investigated row and column permuta-
tions such that entries with large absolute values are moved
to the diagonal of sparse matrices [10, 11]. They suggest
that putting large entries in diagonal ahead of the numer-
ical factorization allows pivoting down the diagonal to be
more stable. The large diagonal permutation was adopted
in SuperLU DIST [19] by Li and Demmel. It allows a priori
determination of data structures and communication pat-
terns in parallel execution.

Motivated by these results, we employ large diagonal row
permutations for the purpose of pivoting in groups, and thus
reducing the inter-processor synchronization frequency in
Factor(). The objective is to select pivots for a group of
columns (e.g., those belonging to one column block or su-
pernode) ahead of the numerical updates, such that for each
column k in the group:

|ak,k| ≥ max
i>k

{|ai,k|}. (2)

Below we describe an approach (we call large diagonal batch
pivoting) that follows this idea. First each participating pro-
cessor determines the local pivot candidates for all columns
in a column block. Then the pivot candidate sets from all pr

participants are gathered at a designated processor (called
PE) and the globally largest element for each column is se-
lected as its pivot. Subsequently the pivots for all columns in
the column block are broadcast to participating processors
in one message. Batch pivoting requires a single gather-
broadcast synchronization for the whole column block. In
comparison, the conventional approach requires one gather-
broadcast per column.

Except in the case of diagonal dominance, having large
elements in the diagonal cannot guarantee the numerical



for each column k in column block K

Find largest local element ai,k (i ≥ k) in the column as local pivot candidate;

endfor

Gather all local pivot candidate rows for all columns in block K at PE;

if (I am PE) then

Select the pivot for each column as the globally largest;

Assemble the new diagonal submatrix using the selected pivot rows for all columns in block K;

Perform factorization on the new diagonal submatrix without any additional row swaps;

for each column k in column block K

if (
|ak,k| after the factorization
|ak,k| before the factorization ≤ ε) then prepare for abort;

endfor

endif

Broadcast the selected pivot rows for all columns in block K (or the abort signal) to all processors;

if (abort) then

Roll back all changes made and call the original Factor(K) with column-by-column pivoting;

else

for each column k in column block K

Swap row if the chosen pivot is local;

Use the pivot row k to update the local portion of the column block K;

endfor

endif

Figure 6: Illustration of Factor(K) using large diagonal batch pivoting. PE is a designated processor.

stability of LU factorization. For example, the factorization
of the following block with large elements on the diagonal is
numerically unstable without additional row swaps:









12 0 8 0
0 12 8 0
9 9 12 1
0 0 1 12









The reason for this is that a large diagonal element may
become very small or even zero due to updates as the LU
factorization proceeds. To address this problem, we conduct
a test on the stability of the large diagonal batch pivoting
before accepting pivots produced by it. Our approach is to
assemble the new diagonal submatrix with large diagonal
pivots and perform factorization on the submatrix without
any additional row swaps. We then check whether the abso-
lute value of each factorized diagonal element is larger than
an error threshold, specified as a small constant (ε) times the
largest element in the corresponding column before the fac-
torization (which also happens to be the diagonal element).
If this inequality does not hold for any column, we consider
the large diagonal batch pivoting as unstable and we will fall
back to the original column-by-column pivoting to maintain
the numerical stability. Figure 6 illustrates the key steps in
Factor(K) under this approach.

Note that the large diagonal batch pivoting can be com-
bined with threshold pivoting, in which case we add a thresh-
old parameter u into the right hand size of the inequality (2).
This change allows more freedom in pivot selections and
consequently we can choose more pivots such that inter-
processor row swaps are not required.

4.3 Speculative Batch Pivoting
When the large diagonal batch pivoting can maintain the

desired numerical stability for most or all column blocks,
the approach can significantly reduce the application syn-
chronization overhead. If it often fails the stability test,
however, it must fall back to the original column-by-column
pivoting and therefore it merely adds overhead for the appli-

cation. In order for any batch pivoting scheme to be success-
ful, there must be a high likelihood that its pivot selections
would result in numerically stable factorization.

We attempt to achieve a high level of numerical stability
by determining the pivots for a group of columns through
speculative factorization. The first part of this approach
is the same as that of the large diagonal batch pivoting.
Each participating processor determines the local pivot can-
didates for the group of columns and then the pivot candi-
date sets from all pr participants are gathered at a desig-
nated processor (called PE). If there are CK columns in the
column block K, then all candidate pivot rows would form
a submatrix with CK · pr rows and CK columns at PE. We
then perform full numerical factorization on such a subma-
trix and determine the pivots for each of the CK columns
one by one. For each column, the element with the largest
absolute value is chosen as the pivot. This approach is differ-
ent from the large diagonal batch pivoting because elements
in subsequent columns may be updated as the numerical
factorization proceeds column-by-column. We call this ap-
proach batch pivoting through speculative factorization, or
speculative batch pivoting in short.

The pivot selection factorization at PE is performed with
only data that has already been gathered at PE. Therefore
no additional message passing is required for the pivot se-
lections. The factorization incurs some extra computation
overhead. However, such cost is negligible compared with
the saving on the communication overhead when running
on second-class message passing platforms.

The pivot sequence chosen by the speculative batch piv-
oting is likely to be numerically more stable than that of the
large diagonal batch pivoting because it considers numerical
updates during the course of LU factorization. However, it
still cannot guarantee the numerical stability because some
rows are excluded in the factorization at PE (only local pivot
candidates are gathered at PE). This limitation is hard to
avoid since gathering all rows at PE would be too expen-
sive in terms of communication volume and the computa-
tion cost. To address the potential numerical instability, we



Matrix Order |A| Floating point ops Application domain

olafu 16146 1015156 9446.3 million Structure problem
ex11 16614 1096948 33555.6 million Finite element modeling
e40r0100 17281 553562 7133.6 million Fluid dynamics
shermanACb 18510 145149 26154.6 million Circuit and device simulation
raefsky4 19779 1328611 26887.9 million Container modeling
af23560 23560 484256 23272.0 million Navier-Stokes Solver
wang3 26064 177168 171900.5 million Circuit and device simulation
av41092 41092 1683902 130474.5 million Partial differential equation

Table 1: Test matrices and their statistics.

examine the produced pivots before accepting them. During
the pivot selection factorization at PE, we check whether the
absolute value of each factorized diagonal element is larger
than a specified error threshold. The threshold is specified
as a small constant (ε) times the largest element in the corre-
sponding column before the factorization. If this inequality
does not hold for any column, we consider the speculative
batch pivoting as unstable and we will fall back to the orig-
inal column-by-column pivoting to maintain the numerical
stability. The structural framework of Factor(K) under this
approach is similar to that of the large diagonal batch piv-
oting illustrated in Figure 6. We do not show it specifically
in another figure to save space.

5. EXPERIMENTAL EVALUATION
We have implemented the communication reduction tech-

niques described in the previous section using MPI. The
implemented code (S+ version 1.1) can be downloaded from
the web [26]. The main objective of our evaluation is to
demonstrate the effectiveness of these techniques on parallel
computing platforms with difference message passing perfor-
mance. Section 5.1 describes the evaluation setting in terms
of the application parameters, platform specifications, and
properties of test matrices. Sections 5.2 and 5.3 present the
overall performance and numerical stability of the imple-
mented code respectively. Section 5.4 shows direct effects of
individual techniques described in this paper. Finally, Sec-
tion 5.5 provides a direct comparison of our approach with
another message passing-based solver SuperLU DIST [19].

5.1 Evaluation Setting

Application parameters. The parallel sparse LU factor-
ization code in our evaluation uses 2D data mapping. p
available processors are viewed as a two dimensional grid
p = pr × pc such that pr ≤ pc and they are as close as
possible. For example, 16 processors are organized into a
4-row 4-column grid while 8 processors are arranged into a
2-row 4-column grid. In our code, the threshold pivoting
parameter u = 0.1. For the two batch pivoting schemes,
the numerical test error threshold parameter ε = 0.001. We
specify that a supernode can contain at most 25 columns.
Note that many supernodes cannot reach this size limit since
only consecutive columns/rows with the same (or similar)
nonzero patterns can be merged into a supernode. All our
experiments use double precision numerical computation.

Our experiments compare the performance of several dif-
ferent versions of the application:

#1. ORI: the original S+ [24, 25] without any techniques
described in Section 4.

#2. TP: the original version with threshold pivoting.

#3. TP+LD: the original version with threshold pivoting
and large diagonal batch pivoting.

#4. TP+SBP: the original version with threshold pivoting
and speculative batching pivoting.

Platform specifications. The evaluations are performed
on three MPI platforms: a PC cluster, an IBM Regatta run-
ning MPICH p4 device, and the IBM Regatta using shared
memory message passing. The specifications of these plat-
forms were given earlier in Section 3.

Statistics of test matrices. Table 1 shows the statistics of
the test matrices used in our experimentation. All matrices
can be found at Davis’ UF sparse matrix collection [7]. Col-
umn 2 in the table lists the number of columns/rows for each
matrix and Column 3 shows the number of nonzeros in the
original matrices. In column 4, we show the number of float-
ing point operations required for factorizing each of these
matrices when the ORI version of our code is employed.
Note that due to the overestimation of the symbolic fac-
torization, the floating point operation count includes some
on zero elements. Therefore the FLOPS numbers shown in
this paper are not directly comparable to those produced by
solvers that do not employ the static symbolic factorization
(e.g., SuperLU). However, this should not affect our objec-
tive of evaluating communication reduction techniques on
platforms with difference message passing performance.

5.2 Overall Performance
We examine the overall GFLOPS performance of all test

matrices with up to 16 processors. Figures 7, 8, and 9 illus-
trate such performance on Regatta/shmem, Regatta/MPICH,
and the PC cluster respectively.

Due to the high message passing performance on
Regatta/shmem, results in Figure 7 show very little benefit
for any of the communication reduction techniques (thresh-
old pivoting, large diagonal batch pivoting, or speculative
batch pivoting). Moreover, we even found performance degra-
dation of threshold pivoting for matrix raefsky4 (up to 25%),
and to a lesser extent for matrices shermanACb (up to 13%)
and wang3 (up to 9%). Further measurement shows that
such performance degradation is attributed to different amount
of computation required for different pivoting schemes. More
specifically, pivoting schemes that produce more nonzeros
in the pivot rows would require more computation in subse-
quent updates. Although it is possible to control the number
of nonzeros in the pivot rows with threshold pivoting, such
control would require additional inter-processor communi-
cations. We plan to investigate such an issue in the future.



1 2 4 8 12 16
0

1.5

3

4.5

6

7.5

Number of processors

G
F

LO
P

S
 r

at
e

olafu

ORI
TP
TP+LD
TP+SBP

1 2 4 8 12 16
0

2

4

6

8

10

Number of processors

G
F

LO
P

S
 r

at
e

ex11

ORI
TP
TP+LD
TP+SBP

1 2 4 8 12 16
0

1.5

3

4.5

6

7.5

Number of processors

G
F

LO
P

S
 r

at
e

e40r0100

ORI
TP
TP+LD
TP+SBP

1 2 4 8 12 16
0

2

4

6

8

10

Number of processors

G
F

LO
P

S
 r

at
e

shermanACb

ORI
TP
TP+LD
TP+SBP

1 2 4 8 12 16
0

2

4

6

8

10

Number of processors

G
F

LO
P

S
 r

at
e

raefsky4

ORI
TP
TP+LD
TP+SBP

1 2 4 8 12 16
0

1.5

3

4.5

6

7.5

Number of processors

G
F

LO
P

S
 r

at
e

af23560

ORI
TP
TP+LD
TP+SBP

1 2 4 8 12 16
0

3

6

9

12

15

Number of processors

G
F

LO
P

S
 r

at
e

wang3

ORI
TP
TP+LD
TP+SBP

1 2 4 8 12 16
0

2

4

6

8

10

Number of processors

G
F

LO
P

S
 r

at
e

av41092

ORI
TP
TP+LD
TP+SBP

Figure 7: LU factorization performance on the IBM Regatta using a shared memory-based MPI runtime
system. ORI stands for the original S+; TP stands for Threshold Pivoting; LD stands for Large Diagonal

Batch Pivoting; and SBP stands for Speculative Batch Pivoting.

Figure 8 shows the application GFLOPS performance on
Regatta/MPICH, whose message passing performance is be-
tween those of Regatta/shmem and the PC cluster. The re-
sult for threshold pivoting is similar to that on Regatta/shmem
— no benefit and even performance degradation on some
matrices. By comparing TP+SBP and TP, we find the ef-
fectiveness of speculative batch pivoting is quite significant
for some test matrices. Particularly for olafu, e40r0100, and
af23560 at 16 processors, the speculative batch pivoting im-
proves the application performance by 47%, 48%, and 33%
respectively. In contrast, the large diagonal batch pivoting
is not very effective in enhancing the performance. This is
because many batch pivotings under LD do not pass the nu-
meric stability test and must fall back to column-by-column
pivoting.

Figure 9 illustrates the results on the PC cluster, which
supports much slower message passing compared with Re-
gatta/shmem (up to 60 times longer message latency and
around 1/15 of its message throughout). By comparing
TP+SBP and TP, the speculative batch pivoting shows sub-
stantial performance benefit for all test matrices — rang-
ing from 28% for ex11 to 292% for olafu. In comparison,
the improvement for LD is relatively small, again due to its
inferior numerical stability and more frequent employment
of the column-by-column pivoting. We observe some small
performance benefit of threshold pivoting. With the excep-
tion of ex11 (25% at 16 processors), the benefit of threshold
pivoting is below 13% for all other matrices. We also no-
tice poor scalability (at 8 and more processors) for the four
smaller matrices: olafu, ex11, e40r0100, and shermanACb.
However, the larger matrices exhibit scalable performance
for up to 16 processors.

5.3 Numerical Stability
We examine the numerical errors of our communication

reduction techniques. We calculate numerical errors in the
following fashion. After the LU factorization for A, one can
derive the solution x̃ of linear system Ax = b for any right-
hand side b using the forward and backward substitution.

Matrix ORI TP TP+LD TP+SBP

olafu 5.6 E-11 1.7 E-10 6.2 E-09 4.3 E-10
ex11 3.2 E-13 4.0 E-11 1.8 E-09 5.6 E-11
e40r0100 4.2 E-13 1.7 E-09 1.8 E-07 7.8 E-10
shermanACb 2.0 E-09 2.0 E-09 2.0 E-09 2.0 E-09
raefsky4 7.1 E-08 2.0 E-02 1.5 E-01 8.4 E-04
af23560 1.4 E-12 2.2 E-10 3.6 E-08 1.7 E-10
wang3 5.0 E-11 3.0 E-10 1.9 E-06 9.3 E-11
av41092 1.4 E-10 7.1 E-07 5.3 E-03 1.8 E-05

Table 2: Numerical errors at 16 processors.

We then define the numerical error of the solution as

max
1≤i≤n

|(Ax̃)i − bi|
∑

1≤j≤n
|Ai,j · x̃j | + |bi|

,

where ·i indicates the ith element in the vector. This defini-
tion of numerical error measures the “componentwise rela-
tive backward error” of the computed solution as described
in [3, 22]. We choose all unit unknowns in our error calcu-
lation, or b = A · (1.0 1.0 · · · 1.0)T .

Table 2 lists the numerical errors of ORI, TP, TP+LD,
and TP+SBP at 16 processors. Results show various lev-
els of increases on numerical errors by each communication
reduction scheme. Among them, TP+LD incurs the most
amount of error increase for our test matrices. Particularly
for matrices raefsky4 and av41092, the absolute errors are
1.5E-01 and 5.3E-03 respectively for TP+LD. In compar-
ison, TP+SBP still maintains a high degree of numerical
stability and no matrix exhibits an error larger than 8.4E-
04. More importantly, the speculative batch pivoting incurs
no obvious additional error over threshold pivoting.

5.4 Direct Effects of Individual Techniques
We examine the direct effects of individual techniques in

this section. The main effect of threshold pivoting is to re-
duce the inter-processor row exchanges and therefore lower
the communication volume. Figure 10 shows the number of
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Figure 8: LU factorization performance on the IBM Regatta using MPICH with the p4 device.
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Figure 9: LU factorization performance on the PC cluster.

inter-processor row exchanges for different solvers. We ob-
serve that the threshold pivoting reduces the inter-processor
row exchanges by 39–95%. Other solvers (TP+LD and
TP+SBP) inherit such a reduction by incorporating the
threshold pivoting. Despite such communication reduction,
results in Section 5.2 showed that the performance enhance-
ment of threshold pivoting is very modest. We believe this
is because the message latency is more critical than the mes-
sage throughput for the performance of our application on
second-class message passing platforms. Consequently, low-
ering the communication volume is not as beneficial as re-
ducing the synchronization count.

Figure 11 shows the number of gather-broadcast synchro-
nizations during pivot selection for different solvers. Both
ORI and TP require one synchronization for each column in
the matrix. TP+LD and TP+SBP may reduce the number
of synchronizations by performing batch pivoting. However,
they must fall back to column-by-column pivoting when the

batch pivoting cannot produce desired numerical stability.
Results in Figure 11 show significant message reduction for
TP+LD (32–78%) and more reduction for TP+SBP (37–
93%). This explains the superior performance of TP+SBP
on the PC cluster and on Regatta/MPICH.

5.5 Comparison with SuperLU DIST
We provide a direct comparison between SuperLU DIST [19]

and the TP+SBP approach. SuperLU DIST permutes large
elements to the diagonal before the numerical factorization.
These diagonal elements are also pre-determined pivots and
no further pivot selections will be performed during the fac-
torization (called static pivoting). Static pivoting allows fast
factorization for several reasons. First, it permits the accu-
rate prediction of fill-ins ahead of the factorization, which
would result in much smaller space and computation costs
compared with symbolic factorization that considers all pos-
sible pivot choices. Second, static pivoting eliminates the



Matrix Factorization time Solve time Numerical errors
TP+SBP SuperLU DIST TP+SBP SuperLU DIST TP+SBP SuperLU DIST

ex11 11.985 sec 2.920 sec 0.193 sec 0.597 sec (2 IR steps) 5.6E-11 7.8E-08
raefsky4 6.557 sec 3.490 sec 0.157 sec 0.347 sec (1 IR steps) 8.4E-04 2.5E-07
wang3 21.121 sec 9.700 sec 0.400 sec 1.270 sec (2 IR steps) 9.3E-11 1.6E-16
av41092 23.002 sec 18.180 sec 0.753 sec 1.550 sec (1 IR steps) 1.8E-05 7.8E-01

Table 3: Comparison with SuperLU DIST on factorization time, solve time, and numerical stability (at 16
processors on the PC cluster). The solve time of SuperLU DIST includes the time of iterative refinements.
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Figure 10: The number of inter-processor row ex-
changes at 16 processors.
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Figure 11: The number of gather-broadcast synchro-
nizations at 16 processors.

need for pivoting-related inter-processor communications (e.g.,
pivot selection and row exchanges) during the factoriza-
tion. This would be particularly beneficial for second-class
message passing platforms where the communication per-
formance is relatively poor. Unlike our approach, however,
static pivoting cannot guarantee the numerical stability of
the LU factorization. Therefore, SuperLU DIST employs
post-solve iterative refinement to improve the stability.

Table 3 shows the performance of our approach and Su-
perLU DIST on factorization time, solve time, and numer-
ical stability for the four largest matrices (in terms of the
floating point operation count) in our test collection. Re-
sults are at 16 processors on the PC cluster. Note that the
solve time of SuperLU DIST includes the time of iterative
refinements. Thanks to its static pivoting, the factorization

time of SuperLU DIST is significantly faster than TP+SBP.
However, SuperLU DIST requires two or three times more
solve time due to the additional iterative refinement. The
solve time is particularly important for problem sets with
the same coefficient matrix A but different right-hand side
b since the factorization only needs to be performed once
for all problems with the same coefficient matrix. This is
also one fundamental performance tradeoff between direct
solvers and iterative solvers.

Results in Table 3 show that SuperLU DIST’s post-solve
iterative refinement can achieve a high level of numerical
stability for most matrices. However, the numerical error
is substantial for av41092. After relaxing the default stop
condition of the iterative refinement in SuperLU DIST, the
numerical error of av41092 arrives at 1.9E-11 after 7 steps
of iterative refinement. However, the solve time also reaches
6.332 seconds at this setting.

6. RELATED WORK
Parallel sparse LU factorization has been extensively stud-

ied in the past. Solvers such as SuperLU [8, 18], WSMP [16],
and PARDISO [23] are designed to run on shared memory
parallel computers. Several others, including van der Stap-
pen et al. [28], S+ [24, 25], MUMPS [1], and SuperLU DIST [19],
employ message passing so they can run on distributed mem-
ory machines. Except for SuperLU DIST, which employs
static pivoting, most existing solvers are only intended to
run on tightly coupled parallel computers with high mes-
sage passing performance.

Malard employed threshold pivoting to reduce inter-processor
row interchanges for dense LU factorization [20]. Duff and
Koster [10, 11] and Li and Demmel [19] have explored per-
muting large entries to the diagonal as a way to reduce the
need of pivoting during numerical factorization. Built on
these results, our work is the first to quantitatively assess
the effectiveness of these techniques on platforms with dif-
ferent message passing performance.

Gallivan et al. proposed a matrix reordering technique to
exploit large-grain parallelism in solving parallel sparse lin-
ear systems [13]. Although larger-grain parallelism typically
results in less frequent inter-processor communications, their
work only targets work-stealing style solvers on shared mem-
ory multiprocessors. Previous studies explored broadcast-
ing/multicasting strategies for distributing pivot columns or
rows while achieving load balance [14, 20]. In comparison,
our work focuses on the performance on second-class mes-
sage passing platforms where reducing the communication
overhead is more critical than maintaining computational
load balance.

Many earlier studies examined application-level techniques
to address performance issues in underlying computing plat-
forms. For instance, Amestoy et al. studied the impact



of the MPI buffering implementation on the performance
of sparse matrix solvers [2]. Chakrabarti and Yelick in-
vestigated application-controlled consistency mechanisms to
minimize synchronization and communication overhead for
solving the Gröbner basis problem on distributed memory
machines [4]. Our work addresses a different platform-related
problem — improving the performance of parallel sparse LU
factorization on platforms with relatively poor message pass-
ing performance.

7. CONCLUSION
Functional portability of MPI-based message passing ap-

plications does not guarantee their performance portability.
In other words, applications optimized to run on a particu-
lar platform may not perform well on other MPI platforms.
This paper investigates techniques that can improve the per-
formance of parallel sparse LU factorization on systems with
relatively poor message passing performance. In particular,
we propose speculative batch pivoting which can enhance
the performance of our test matrices by 28–292% on an
Ethernet-connected 16-node PC cluster. Our experimental
results also show that this technique does not significantly
affect the numerical stability of the LU factorization.

Our work is an early step toward building adaptive appli-
cations which can adjust themselves according to the charac-
teristics and constraints of the underlying computing plat-
forms. We believe application-level adaptation is particu-
larly effective when tradeoffs can be made among multiple
metrics for the application. For parallel sparse LU factoriza-
tion, our work finds that substantial reduction in message
passing overhead can be attained at the cost of some extra
computation and slightly weakened numerical stability.

Software Availability
Techniques described in this paper have been incorporated
into a parallel sparse linear system solver (S+ version 1.1).
S+ can be downloaded from the web [26].
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