Empirical Examination of A Collaborative Web Application

Christopher Stewart Matthew Leventi Kai Shen
Department of Computer Science, University of Rochester
{stewart, mleventi, kshéi@cs.rochester.edu

Abstract these sites even rely on end users for code that generates con
tent. Examples of such applications include social netigrk
Online instructional applications, social networkingest platforms [8], web-based productivity software [9], omlim-
Wiki-based web sites, and other emerging web applicatioais t * structional applications [24], and Wiki-based web sitds The
rely on end users for the generation of web content are ir&rea popularity and vitality of theseollaborative web applications
ingly popular. However, these collaborative web applioa directly benefit from an ever-increasing pool of creativebwe
are still absent from the benchmark suites commonly uséin t users. At the same time, due to the many contributions fram in
evaluation of online systems. This paper argues that coli@b dependent end users, the behavior pattern of request pinges
tive web applications are unlike traditional online bendmks, in these applications tends to be much less clustered olaregu
and therefore warrant a new class of benchmarks. Specificall Despite the surging importance of these applications aeid th
request behaviors in collaborative web applications aréede behavior uniqueness, they have been ignored in the benkhmar
mined by contributions from end users, which leads to qarlit ing of online web applications.
tively more diverse server-side resource requirementsexad This paper makes the case for a new class of benchmarks
ecution patterns compared to traditional online benchmsark that reflect the unique properties of collaborative web iappl
Our arguments stem from an empirical examination of WeBcations. Our arguments stem from an empirical examination
WorK — a widely-used collaborative web application that al- of WeBWorK [24], a real-world collaborative web applica-
lows teachers to post math or physics problems for their stution. WeBWorK is a web-based homework checker that al-
dents to solve online. Compared to traditional online bench jows teachers to post math or physics problems for their stu-
marks (like TPC-C, SPECweb, and RUBIS), WeBWorK requestfents to solve online. In particular, teacher-supplied WeBEK
are harder to cluster according to their resource consummpti problems are interpreted by the application server as oonte
and they follow less regular patterns. Further, we demaistr generating scripts. The WeBWorK deployment at the Univer-
that the use of a WeBWorK-style benchmark would probablgity of Rochester is used by around 50,000 students from 80 or
have led to different results in some recent research ssiia- 5o institutions worldwide. Our empirical examination isven
cerning request classification from event chains and tyggell by realistic problem sets (ranging from pre-calculus téedén-
resource usage prediction. tial equations) and user requests extracted from threesysa
tem logs at the real site. We emphasize that the useatbistic
workload traces is particularly important in this study &ese
the user-supplied content may substantially affect theiesg

Traditional web applications service requests from cantenP’0Cessing behavior pattern in WeBWork.
supplied by some central content generation sources (in the As a representative collaborative web application, WeBX\or

form of static web pages or dynamic content produced by Uostep_rowdes a re_ghstm ba§|s to reevaluate past res_earchnga_«iie-
content generation code). Although some user requestseaay rrlved on traditional online ben_chr_narks. In particularsthaper
sult in persistent state changes on the server side, sudgesa ¢€valuates two recent cor.wtrlbunons_ on the system-lewsl-m
often exert very small effects on system-level applicatioecu- ~ 29ementof online services: 1) Magpie-style online reqelast

tion behaviors. Due to the large dependence on central gonteSification which is based on canonical request event chains |
generation sources in these applications, the resourcireeq 2) system resource usage prediction based on a linear teques
ments and other characteristics for processing user resjaies type model [19]. o
typically well clustered into small numbers of groups [315]. This paper makes two contributions.
Widely used online benchmarks such as TPC benchmarks; \ye present an empirical evaluation that exposes funda-
(e.g, TPC-C, TPC-H, TPC-W) [22], SPEC online benchmarks
(e.g, SPECweb, SPECjbb, SPECjAppServer) [16], and J2EE-
based multi-component benchmarksy, RUBIS [13], Stock-
Online [21]) all reflect such request behavior patterns.

Recent years have witnessed an emerging class of web appli2. We demonstrate that the use of a collaborative web appli-
cations that rely on end users for their content. In somesgase cation as an evaluation basis would probably have led to

1 Introduction

mental differences between a real-world collaborative web
application and traditional benchmarks commonly used to
evaluate web applications.

different conclusions in some recent research studies. [Text(begi nprobl en());

. $showParti al Correct Answers = 0;
This remainder of this paper is organized as follows: Sec¢
tion 2 provides more background on WeBWorK and collabora-i;j Zggg”n((oy B
tive web applications. Section 3 contrasts the requesti@ha | $z=r andon(- 20, 20, 1) ;
characteristics of WeBWorK against traditional online den $coxl
marks. Section 4 uses WeBWorK as an evaluation basis for twecoy1
recent research proposals, and finds that it may lead toetiffe :ggi;
conclusions compared to using traditional online benchkmar | scoy2
Section 5 describes related work and Section 6 concludes. l\@ozz

0Xx3
also announce the release of our WeBWorK trace, dataset, discoy3

non_zer o_r andong -
non_zer o_r andon(-
non_zer o_r andon(-
non_zer o_r andon(-
non_zer o_r andon(-
non_zer o_r andon(-
non_zer o_r andon(-
non_zer o_r andong -

L 1 L A VO T
Sgoaoaaaaon
Sgoaaoaaaaon
=
=

deployment instructions at the end of this paper. $coz3 = non_zero_random(-5, 5, 1);
$bl = $cox1lx$x + $coyl+$y + $cozl+$z;
. i $b2 = $cox2x$x + $coy2*Py + $coz2*$z;
2 WeBWorK and Collaborative Web Applica- [$b3 = $cox3+$x + Scoy3$y + $coz3+$z;
tions BEG N_TEXT

Use Craner’’s rule to find the value of \(z\) in the
solution of the follow ng system

WeBWorK [24] supports two types of users. Teachers crey |
ate new problem sets to the online database. Students vigwegi n{array}{r}

problems and submit solutions. Solution submission alge tr | 3cox; X f:ﬁgﬁ y ; f:ﬁg;g A RN
gers online solution checking. In WeBWorK, the main conf$cox3 x ? {$coy3} y ? {$coz3} z = $b3 \\\\

tent (problem sets and solution checkers) is generatedteoll Q]e“d{ array}

oratively by a large number of teachers. In a three-yearaisagpBr
log, we have observed more than 3,000 teacher-createcspnob] ¢t7) ' {2ns-rt! (29 1
sets (which differ significantly from each other). The defiy | END_TEXT
of different problem sets and corresponding solution cBexk | g,043 = s7:
may exhibit very different request processing behaviorthat
server system.

. In addition to the differing tea_cher-created problem sats,_ Figure 1:An example PG code segment — solving a system of linear
single problem may also be delivered to multiple students Nquations.
different ways. More specifically, WeBWorK allows teachers
to create problems in the form of dynamic code (written in a
Perl variant called théroblem Generation (PG) Language by Google Docs [9] can spur server-side execution of user-
An example of PG code is given in Figure 1. Such code isreated calculations and graphs. Finally, the Second i4é [
executed when a student accesses or submits a solution forvatual world allows users to create virtual items with dymie,
homework problem. The power of dynamically producing ques-compute-intensive properties.
tions and correcting answers offers a practical benefiteotte WeBWorK is structurally similar to many collaborative web
ers: the same core problem, integration or linear equation) applications, but it is not representative of all. We use WeB
can be presented with some randomized variations to migimizWorK as a case study to advocate a new research agenda on
the chance of direct solution copying among students. benchmarking collaborative web applications. WeBWorK is

WeBWorK distinguishes between users that can create condeal for this purpose, because itis real and widely-used yse
tent (teachers) and those that can view content only (stafdlen have made its workload traces publicly available [23]. Bher
Such dichotomies allow service providers to selectivelypke fore, our analysis is based on real usage patterns for anrimpo
content generation privileges, and are common among commetant application, and our results can be reproduced fofiveri
cial collaborative web applications. The Facebook Platiff8] tion.
and Google Application Engine [2], for instance, require en
users to register as developers before they are allowed&rge
ate content. Even Wiki-based applications, one of the waigi

domains that allow any user to create or modify content, are we examine WeBWorK’s request behavior characteristics
increasingly password protected. and contrast it with traditional online benchmarks. Here we

WeBWorK users are allowed to provide dynamically exe-employ several widely used online benchmarks for the puerpos
cuting code for content generation. Other popular collabopf comparison:

rative web applications also allow end users to create tscrip

that produce web content. For example, the Facebook Plat- ¢ TPC-C[22] simulates a population of terminal operators
form [8] invokes user-created scripts on remote machines an executing Order-Entry transactions against a database. It
provides a well-defined API for such applications to access p contains five types of transactions: “new order”, “pay-
prietary data. As another example, spreadsheet data gettes ment”, “order status”, “delivery”, and “stock level”, con-

ANS(num _cnp($ans3));

3 Request Behavior Analysis

TPC-C SPECweb RUBIS

25 25 25

2 2 2

2 3 ®

g 20 $ 20 S 20

= o =]

£ 2 2

% 15 % 15 % 15

Qo Qo Q

<) <l [S

[=%

5 10 < 10 210

4 } . g @

= Repeating low spikes 3 e

E 5 i E 5 E 5

o o o

= A NA.M/\M/\/\/\/\. = = h\m\jw
0 L 0 0 DAY

5 20 40

10 15 24 25 26 27 0 60 80 100 120
Request CPU usage (in millisec) Request CPU usage (in millisec) Request CPU usage (in millisec)

Figure 2:Probability density distribution of per-request CPU usfagethree traditional online benchmarks. The probabiliéypsity is normalized
to that under the even distribution. To avoid distortion tlueare outliers requests, we consideriable range of request CPU usage from the
1-percentile request CPU usage to the 99-percentile re@is usage for each benchmark (X-axis value range in eath plo

WeBWork RUBIS runs on the JBoss 3.2.3 application server with an em-
25 bedded Tomcat 5.0 servlet container. The server machingin o
experimental platform contains dual 2 GHz Intel Xeon preces

20 sors and 2 GB memory. All deployed application/benchmarks

are CPU-bound. The server operating system is Linux 2.6.10
with an augmented request context maintenance and event tra
ing framework [15]. This framework allows us to collect per-
request event traces for multi-component server appdioati

In particular, we have collected per-request traces on Gi#lJ ¢

15

10

Normalized probability density

5
M‘/\WW/A\N\ text switch events, system call events, network and stav&ye

0 events. The CPU context switch event trace allows us to éeriv
650 700 750 800 850 900 950 per-request CPU usage for each application/benchmark.

Request CPU usage (in millisec)

Figures 2 and 3 plot the probability density distribution of
Figure 3:Probability density distribution of per-request behafiar ~ per-request CPU usage for the three traditional online fbenc
WeBWorK. Refer to the caption of Figure 2 for details on setup marks and for WeBWorK respectively. The probability depsit
is normalized to that under the even distribution. A visuara-

o ination uncovers two important behavior differences betwe
stituting 45%, 42%, 4%, 4%, and 4% of all requests, reqyeBwWork and traditional online benchmarks:

spectively. We utilize a local implementation of TPC-C
that may not follow all benchmark performance reporting
rules. This is sufficient for our purpose of application be-
havior characterization.

e Weaker clustering. Per-request CPU usage probability
density plots for traditional online benchmarks are stipng
dominated by sharp spikes (or request behavior tends to
form clusters). In contrast, WeBWorK exhibits much less

e We use an assortment of dynamic content requests in the clustered per-request CPU usage.

SPECweB9 benchmark [16]. Following the benchmark
specification, we use a mix of 42% GET requests without
cookie, 42% GET requests with cookie, and 16% POST
requests.

e Less regularity. Request behaviors for traditional online
benchmarks sometimes exhibit regular patterns due to cer-
tain artificial effects of central content generation sestc
For instance, the repeating low spikes in the TPC-C plot
is due to an item count variable that is randomly selected
within {5, 6,- - -, 15} for each “new order” transaction (ac-
cording to Clause 2.4.1.3 of the TPC-C specification [22]).
In contrast, WeBWorK requests do not exhibit any obvious
regular patterns.

e RUBIS[13] is a J2EE-based multi-component online ser-
vice that implements the core functions of an auction site
including selling, browsing, and bidding. It uses a three-
tier service model, containing a front-end web server, a
back-end database, and nine business logic components
implemented as Enterprise Java Beans. After examining request behavior patterns on a single retque

property (CPU usage), we next examine the correlation etwe

For our empirical evaluation, we deploy WeBWorK and multiple request properties. Figures 4 and 5 illustraténsuar-

the other three benchmarks in an experimental platform withielation between request CPU usage and request system call
system-level event tracing. In our deployments, WeBWorK,count for the three traditional online benchmarks and foBwWe
TPC-C, and RUBIS run on the MySQL 5.0.18 databaseWorK respectively. A visual examination uncovers anottier d
SPECweb employs the Apache 2.0.44 web server. Additignallfference between them:

Request system call count

TPC-C

1400

1200

1000

800

600

400 [a:

200 L.ﬁ

Request CPU usage (in millisec)

Request system call count

700

650

600

550

SPECweb

25 26 27
Request CPU usage (in millisec)

Request system call count

25

15

0.5

RUBIS

20 40 60 80 100
Request CPU usage (in millisec)

120

Figure 4: Two-dimensional plots on request CPU usage and requestnsysll count for the three traditional online benchmarkschedot
represents a request. Around 4,000 requests are illutfiateach benchmark.

WeBWork mark would probably have led to negative results.

6000 4.1 Event Chain-based Request Classification

5000 | The Magpie work [3] proposed to transparently extract per-
reguest event traces online and then use request evens@sain
signatures to classify similar requests into clusters.aliina
concise workload model consists of each cluster’s reptasen
tive request and its relative size.

We implemented Magpie’s request classification algorithm
and applied it on the system call event trace for all four ap-
plication/benchmarks. In Magpie, the distance of two ratgie
is measured using the string-edit distance [10] of two retgle
Figure 5: Two-dimensional plot on request CPU usage and requesgvent chains. The calculation of string-edit distance jseex
system call count for WeBWorK. Each dot represents a reqded®0 Sive for some of our application/benchmarks (both RUBIS and
requests are illustrated in the plot. WeBWorK contain requests with tens of thousands of system

call events). We use an alternative distance measure théeca
,) quickly calculated — ignoring the event order and consiugri
* Weaker inter-property correlation . For TPC-C and RU- g50h request event chain as a counting set of eyethan cal-
BiS, the correlation is visually very strong — the requestc|ating the minimum number of additions/deletions to digea
CPU usage typically falls into a small value range when thgpa two counting sets.
request system call countis known. Although such corre- e evaluate the request classification accuracy by meagsurin
lation is weaker for SPECweb, it is still much stronger thany, g\, well each cluster representative’s CPU usage prediets t
that for WeBWorkK. CPU usage of all cluster members. We use the coefficient of
Jfetermination (oiR?) as the model prediction accuracy metric.

WeBWorK can all be rationalized given that the behavior pat-SPecifically, given a set of samples;(», -- -, 2,) with sam-
tern of request processing in collaborative applicatisrtssiav- P/€ mean and corresponding predictions(&, - - -,), the
ily affected by user creation. Independent contributicarrir coefficient of determination for the prediction is defined as
large numbers of end users injects a sense of randomness in S (s —)2
request behaviors that lead to weaker request clustersg, | 1- m

g=1\"1

behavior regularity, and weaker inter-property correlati
Intuitively 1 — R? represents the relative aggregate square error

of the prediction compared to that under the mean value predi
tion. A larger coefficient of determination (which cannotegd

Differences on inherent benchmark characteristics do not-0) indicates more accurate prediction. A negative caefftc
necessarily lead to varying high-level conclusions fromOf determination indicates the prediction is less accuttae
benchmark-driven evaluations [17]. In this section, hasvev SIMply using the mean value prediction.
we examine how the unique behavior of collaborative web ap- Table 1 compares the request classification accuracy eval-
plications may affect the evaluation results. By revigjtsome uated using all four application/benchmarks when around 20
recent research studies evaluated using traditional@bkmch- 1In a counting set, we not only account for the system callsygepearing
marks, we demonstrate that the use of a WeBWorK-style benchr the set, but also the number of events for each type.

4000

3000

Request system call count

2000

650 700 750 800 850 900

Request CPU usage (in millisec)

Fundamentally, these unique behavior characteristics

R? =

4 Reevaluation of Past Findings

CPU utilization (in percentage)

70F
65 |
60 |
55
s o 30
-O‘QSG R
b,
45t
a0}
35

50

RUBIS

o Actual]
+ Predicted
@

10

20

30 40 50

CPU utilization (in percentage)

90

85

80 [
5T
70
65 |
60 [
55

WeBWorK

p

o

o0 ,0
o

+9 +oy

ot

o
P

*o
B -

o]

o
(o}

L+

o

o

o Actual
+ Predicted |

+
o

& y 000, 0@, " + +g+-
®. . TT+00 . OF *
ot * g 85 0094790 450 ot

%

Intervals

10

20
Intervals

40 50

Figure 6: Type-based resource usage prediction over 50 five-minteevads for RUBIS and WeBWorK. The dotted line in each platigates
the actual mean.

| Benchmark]| R* accuracy] | Benchmark]| R* accuracy]

TPC-C 0.98 RUBIS 0.90

SPECweb 0.94 WeBWorK 0.25

RUBIS 0.89

WeBWorK —0.24 Table 2: Type-based resource usage prediction accuracy when the

evaluation is driven by different benchmarks.
Table 1:Event chain-based request classification accuracy when the
evaluation is driven by different benchmarks.
ure 6 graphically depicts the prediction accuracy over 5&-fiv
minute intervals for the two benchmarks, which clearly skow
clusters are formed. Results suggest that the requestfielassthe poor accuracy for WeBWorK. Again, this result is not sur-
cation is very accurate for the three traditional onlinedben prising given our request behavior analysis in Section 3.
marks (within which TPC-C was actually used in the Magpie
study [3]). In contrast, the WeBWorK-driven evaluation siso
very poor request classification accuracy. This result isop
prising given our request behavior analysis in Section 3.

5 Related Work

Previous benchmarks reflect the behavior patterns of tradi-
tional web workloads. RUBIS and RUBBoS [1] characterize
the workload of a dynamic-content auction site and bulletin

Another recent work [19] analyzed real traces from pro-board, respectively. TPC benchmarks [22] reflect e-comenerc
duction web applications and uncovered an interesting pheand database workloads, and the SPEC suite [16] charaderiz
nomenon: the relative frequencies of request types fluetuatvorkloads for static content and multi-tier services. |mpar-
over short and long intervals. Such nonstationarity can b&On, WeBWorkK captures the unique and emerging workload of
used to calibrate models of application-level performarsing ~ & collaborative web application. Specifically, requesieten
only logs of request arrivals and resource utilizationg tra ~ Patterns in WeBWorK are qualitatively more diverse comgare
routinely collected in production environments. One kelg-su 0 previous benchmarks, because they depend on the contribu
model in this approach is a weighted linear characteripatio ~ tions of end users.
aggregate CPU utilization shown below: Recent studies have characterized other emerging web work-
loads. Nagpurkaet al. [12] investigate the instruction and
cache miss behavior of a Web 2.0 blog, a social bookmark-
ing site, and model-view-controller (MVC) PetStore. Lih
al. [11] explore new architectural designs for datacenteressrv
whereg; represents the typical CPU demand of request fiype using interactive web mail and Mapreduce benchmarks.etha
(8o indicates the background CPU utilization not tied to specifi al. [4] find that user-supplied content affects the popularisy d
request processing), aid; is the number of requests of tyge tributions of web objects in YouTube, another real-worltatn-
occurring in a particular time interva¢ (g, five minutes). orative web application. Our contribution is the charag#gion

Using the trace-driven WeBWorK, we reevaluated the lineaof diversity in the server-side resource requirements aqdest
request-type model to predict system resource utilizatdve executions patterns of WeBWorK.
consider three natural request types for WeBWorK: submngjtti Finally, it is well known that Internet services—of all
problems, viewing problems, and submitting solutions.lgd& varieties—are hard to manage. Stevedidl.demonstrate server
shows that the request-type model yields high predictimuac consolidation [19], power-aware platform selection [18hd
racy for RUBIS, as reported in the previous work [19]. How- capacity planning [20] for dynamic-content Internet seegi
ever, the prediction accuracy for WeBWorK is much worse- Fig Chenet al. [5] demonstrate energy-aware server provisioning

4.2 Type-based Resource Usage Prediction

U = Bo+ Y BN (1)
J

for a connection-intensive services, like video streanmang [4] M. Cha, H. Kwak, P. Rodriguez, Y. Ahn, and S. Moon. | tube,
instant messaging. Barhaet al. [3] demonstrate per-request you tube, everybody tubes: Analyzing the world’s largestrus
cost accounting and anomaly detection for services digtib generated content video system. IMC, San Diego, CA, Oct.
across a cluster. This paper shows that the workload of a col- 2007

laborative web application is qualitatively unlike the \iorads [5] G. Chen, W. He, J. Liu, S. Nath, L. Rigas, L. Xiao, and

used by previous studies, and may require different saiatio F. Zhang. Energy-aware server provisioning and load disyrag
for connection-intensive Internet services. N®D|, San Fran-
cisco, CA, Apr. 2008.

[6] M. Chen, A. Accardi, E. Kiciman, J. Lloyd, D. Patterson, Pox,

In this paper, we empirically examined a real-world collabo ansd E.SBrewer. P.ath—bgsed failuzrggnd evolution managerirent
rative web application — WeBWorK [23]. Our study finds that NSD, San Francisco, CA, Mar. 2004.
WeBWorK requests exhibit much weaker request clustering,[71 W. Cunningham and B. LeufThe Wiki Way: Quick Collabora-

6 Conclusion

less behavior regularity, and weaker inter-property dati@n tion on the WebAddison-Wesley, 2001.
compared to traditional online benchmarks. All these bittav [8] Facebook social network site. http://www.facebookaco
characteristics can be attributed to the independent nbate- [9] Google Docs. http://documents.google.com.

ation from large numbers of end users in emerging collab@rat
web applications [7-9, 14]. Using WeBWorK, we reevaluated
some recent research findings (concerning event chairdbase
request classification [3] and type-based resource usage pr[11
diction [19]) and discovered that the use of a WeBWorK-style
benchmark would probably have led to different results. We e
pect that the importance of collaborative web applicatiitls
rapidly rise given their surging popularity and vitalityrtéugh

[10] V. Levenshtein. Binary codes capable of correctingetiehs,
insertions, and reversalSoviet Physics Doklaglyt0, 1966.

] K. Lim, P. Ranganathan, J. Chang, C. Patel, T. Mudge, and
S. Reinhardt. Understanding and designing new servertacchi
tures for emerging warehouse-computing environments$SQA
Bejing, China, June 2008.

[12] P. Nagpurkar, W. Horn, U. Gopalakrishnan, N. Dubey,ahn]

direct user creation. The goal of this work is to raise awassn and P. Pattnaik. Workload characterization of selectediiaged
on the need for collaborative web application benchmarés, p web 2.0 applications. ISWG Seattle, WA, Sept. 2008.
for online services [3, 6, 15, 18-20]. -0rg.

[14] Second Life. http://www.secondlife.com.

Availability — Our WeBWorK setup, including the request trace[15] K. Shen, M. Zhong, S. Dwarkadas, C. Li, C. Stewart, and
and dataset from the University of Rochester, is publiclgilav X. Zhang. Hardware counter driven on-the-fly request sigrest
able [23]. We hope other researchers will use WeBWorK to [N ASPLOSSeattle, WA, Mar. 2008.

evaluate their research proposals on a collaborative wplr-ap [16] Standard Performance Evaluation Corporation. SPE@lbe

cation workload. marks. http://www.spec.org.
[17] R. Stets, K. Gharachorloo, and L. Barroso. A detailetiparison
Acknowledgments Professor Michael Gage provided the of two transaction processing workloads. IEEE Workshop on

trace and dataset from the WeBWork deployment at the Univer- ~ Workload CharacterizatiorAustin, TX, Nov. 2002.
sity of Rochester. Students in tAelvanced Operating Systems [18] C. Stewart, T. Kelly, K. Shen, and A. Zhang. A dollar from
course at the University of Rochester gave early feedbacks o 15 cents: Cross-platform management for internet servites

our characterization of the WeBWorK workload. Recommen- USENIX Boston, MA, June 2008.
df';ltio.ns from anonymous rgviewers helped us pin_point the conig] C. Stewart, T. Kelly, and A. Zhang. Exploiting nonstatarity
tributions of this paper. This work was supported in partlisy t for performance prediction. IEurosys Lisbon, Portugal, Mar.

U.S. National Science Foundation (NSF) grants CNS-0615045 2007.

CCF-0621472, NSF CAREER Award CCF-0448413, and by alpg] c. stewart and K. Shen. Performance modeling and systam

IBM Faculty Award. agement for multi-component online services.N&DI, Boston,
MA, May 2005.
References [21] The StockOnline benchmark. http://forge.objectvoetp.

/projects/stock-online.
[1] C. Amza, A. Chanda, E. Cecchet, A. Cox, S. Elnikety, R., Gil [22]
J. Marguerite, K. Rajamani, and W. Zwaenepoel. Specifinatio

and implementation of dynamic web site benchmarksIEEBE] N
Workshop on Workload Characterizatiddovember 2002. [23] WeBWorK benchmark: Datasets, traces, and instatatistruc-

tions. http://www.cs.rochester.edu/u/stewart/coltative.html.

Transaction Processing Performance Council. TPChbarks.
http://www.tpc.org.

[2] Google app engine. http://code.google.com/appengime.

[3] P. Barham, A. Donnelly, R. Isaacs, and R. Mortier. UsinggW
pie for request extraction and workload modeling Q8D|, San
Francisco, CA, Dec. 2004.

[24] WeBWorK: Online homework for math and science.
http://webwork.maa.org.

