
Operational Analysis of Parallel Servers

Terence Kelly
HP Labs

Kai Shen
U. Rochester CS

Alex Zhang
HP Labs

Christopher Stewart
HP Labs & U. Rochester CS

Abstract

Multicore processors promise continued hardware per-
formance improvements even as single-core performance
flattens out. However they also enable increasingly
complex application software that threatens to obfuscate
application-level performance. This paper applies opera-
tional analysis to the problem of understanding and predict-
ing application-level performance in parallel servers. We
present operational laws that offer both insight and action-
able information based on lightweight passive external ob-
servations of black-box applications. One law accurately
infers queuing delays; others predict the performance im-
plications of expanding or reducing capacity. The former
enables improved monitoring and system management; the
latter enable capacity planning and dynamic resource pro-
visioning to incorporate application-level performance in a
principled way. Our laws rest upon a handful of weak as-
sumptions that are easy to test and widely satisfied in prac-
tice. We show that the laws are broadly applicable across
many practical CPU scheduling policies. Experimental re-
sults on a multicore network server in an enterprise data
center demonstrate the usefulness of our laws.

1 Introduction

The era of ubiquitous parallel computing has ar-
rived. Chip multiprocessing and simultaneous multithread-
ing have already brought us single-socket processors that
present dozens of logical CPUs to operating systems and ap-
plication software, and computers with scores of cores are
imminent. For network servers, e.g., in enterprise data cen-
ters, today’s technology trends carry profound implications.
Multicore processors and virtualization will enable mas-
sive consolidation and “datacenter-on-chip” deployments
of applications that are locally distributed across clusters
today [16]. Modern multicore processors furthermore of-
fer increasingly fine control over power-performance trade-
offs [14, 29]. Meanwhile, solid-state storage promises to
revolutionize hardware and software architectures [12]. Un-
fortunately these trends, together with the growing com-
plexity and opacity of applications, threaten to obfuscate
performance in commercially important computing sys-
tems. Understanding performance remains imperative be-

cause we must balance it against other considerations such
as power consumption and hardware cost. More than ever,
we require performance analysis techniques that are prac-
tical, general, and accessible to real-world decision mak-
ers: They must work with black-box production applica-
tions, for which source code access, invasive instrumenta-
tion, and controlled benchmarking/profiling are seldom per-
mitted; they must rely only on weak assumptions that are
easy to test and widely satisfied in the field; and they must
be easy for the average practitioner to learn and apply.

This paper presents three parallel performance laws that
provide actionable insight using only lightweight passive
external observations of black-box production applications.
The Occupancy Law infers processor utilization and queu-
ing delays from readily available observations of arbitrary
workloads. The Capacity Expansion and Reduction Laws
predict the application-level performance consequences of
changing the number of processors available to an applica-
tion while holding workload fixed. All three areoperational
laws because they involve only directly measurable quan-
tities (as opposed to, e.g., probabilistic assumptions) [7].
Classical operational laws such as Little’s Law [23] are
the foundation of traditional computer systems performance
analysis [21, 26]. Our results address the new challenges
forced upon us by the multicore revolution.

The analyses that establish and characterize our opera-
tional laws are nontrivial but the laws themselves are readily
accessible to nonspecialists, requiring neither esotericas-
sumptions nor extraordinary training. Our laws have several
important uses: The Capacity Adjustment Laws allow long-
term capacity planning and short-term dynamic resource al-
location to incorporate application-level performance ina
principled way, and the Occupancy Law enables qualita-
tive improvements in application measurement, monitoring,
and management. Although our practical discussions em-
phasize network servers with request/reply workloads, our
results straightforwardly generalize to other contexts, and
technology trends are making the formal model to which
they apply increasingly relevant to real-world computing.

The remainder of this paper is organized as follows: Sec-
tion 2 describes our system model and Sections 3 and 4
present our performance laws. Section 5 empirically vali-
dates our theoretical results and explores their practicalap-
plication to a real multicore network server in an enterprise
data center. Section 6 surveys related work and Section 7

Departures

Arrivals

Preemption

k ServersQueue

Figure 1. System model.

concludes. A companion paper presents complementary re-
sults on processor speed scaling [35].

2 System Model

We consider a single-queue station withk servers (Fig-
ure 1) and jobs with heterogeneous service demands. Some
of our results place no restrictions on job arrivals and ap-
ply equally to batch, open, closed [21], and semi-open [34]
workloads; other results hold only for open arrivals. Simi-
larly some of our results assume identical servers but others
apply to heterogeneous systems. We permit but do not re-
quire preemption: the scheduler may alternately serve and
enqueue a job until its service demand is satisfied. We
make no assumptions about the information that guides the
scheduler’s decisions; e.g., we permit but do not require
the scheduler to exploit offline knowledge of future arrivals.
Two assumptions hold throughout this paper:

Assumption 1 Work conservation: no server is idle unless
the queue is empty.

Assumption 2 Serial jobs: a job occupies exactly one
queue position or server at any instant.

Our system model is reasonable for parallel network
servers handling CPU-intensive request/reply workloads.
Parameterk may represent the number of physical proces-
sors/cores in a computer, or the number effectively available
to the application (the latter may be less than the former,
e.g., due to soft concurrency limits). Assumption 1 nearly
always holds in practice for CPU scheduling. Multi-level
scheduling, e.g., involving virtualization, poses no inherent
difficulties: our model applies regardless of whether service
demands are mapped onto CPUs/cores by a conventional
operating system, a virtual machine monitor, or some com-
bination of the two. We require only that overall scheduling
be work-conserving, which is true for default configurations
of mainstream OSes and VMMs. Assumption 2 implies that
the execution of a single job is not parallelized. This is true
for request handling in most network servers.

Our model does not include blocking at auxiliary queues.
Blocking can occur in today’s network servers if a request
must read uncached data from disk, synchronously write
to non-volatile storage for durability, perform network I/O
(e.g., to invoke subsidiary services via RPCs), or queue
at mutexes. Technology trends have substantially reduced

N (t)

time time

k=1N (t) k=2

Figure 2. Occupancy curves.

blocking for many applications and workloads, and these
trends will accelerate as the multicore era unfolds. Large
main memories accommodate the working sets of most ap-
plications, eliminating blocking storage reads in the warm
steady state. Non-volatile caches in storage systems, in-
creasingly popular as performance boosters [40], reduce the
latency of synchronous durable writes below the total time
cost of OS context switches [22], eliminating the need for
blocking writes. Transactional memory promises to sup-
plant locks in future applications, eliminating queueing at
locks. Finally, several trends conspire to eliminate internal
network I/O within complex modern applications: Today’s
applications locally distribute software components across
hosts in a cluster, making network I/O critical to perfor-
mance [39]. However the cost advantages of host consol-
idation coupled with virtualization technology point toward
“datacenter-on-chip” app deployments on multicore proces-
sors [16], eliminating inter-component network I/O. Taken
together, these trends suggest that an increasingly broad
range of real computing systems will resemble the model
of Figure 1 as the multicore era progresses.

3 The Occupancy Law

The difference between a job’s departure and arrival
times is its response time, which is the sum of queuing time
and service time. The Occupancy Law allows us to estimate
aggregate queuing and service times based on operational
analysis of cumulative arrivals and departures at a black-
box system described in Section 2. It requires no informa-
tion about scheduling within the system or jobs’ individual
or aggregate service demands.

Consider a system initially empty at timet = 0. LetA(t)
andDk(t) respectively denote the cumulative number of job
arrivals and departures up to timet, where the subscript re-
minds us thatDk(t) may depend on the number of serversk.
Let Nk(t) ≡ A(t)−Dk(t) denote the number of jobs present
in the system at timet. We refer to a graphical represen-
tation ofNk(t) as ak-server occupancy curve. Figure 2 il-
lustrates two possible occupancy curvesNk=1(t) (left) and
Nk=2(t) (right) for one- and two-server stations handling the
same workload: four jobs, each requiring unit service, ar-
rive at t = 1 and are scheduled non-preemptively. Three
remarks on occupancy curves: First, the area under the oc-
cupancy curve equals the sum of response times across all
jobs; this observation sometimes accompanies graphical il-
lustrations of Little’s Law [7, 23]. Second, the shape of the

Service time

time

N (t)k=2

������������������������������������
������������������������������������
������������������������������������
������������������������������������
������������������������������������
������������������������������������

������������������������������������
������������������������������������
������������������������������������
������������������������������������
������������������������������������
������������������������������������ N=2

Queueing time

Figure 3. Occupancy Law example, k = 2.

occupancy curve may depend upon the queue discipline as
well as the number of servers. Finally, we can compute the
occupancy curve even if we cannot associate specific depar-
tures with corresponding arrivals.

Assumptions 1 and 2 imply that the number of servers
busy at timet is the lesser ofNk(t) andk. Therefore if we
draw a horizontal line through thek-server occupancy curve
at N = k, the area beneath both this line and the occupancy
curve itself equals aggregate service time for the workload
and the area above equals aggregate queueing time, as il-
lustrated in Figure 3. TheN = k line furthermore separates
service and queueing timesduring any interval, as summa-
rized in our first result.

Result 1 The Occupancy Law. During any interval[T,T ′]

aggregate service time equals
∫ T ′

T min{Nk(t), k}dt and ag-

gregate queueing time equals
∫ T ′

T max{Nk(t)−k, 0}dt. The

sum of the two equals
∫ T ′

T Nk(t)dt and is the interval’s con-
tribution to aggregate response time.

The Occupancy Law is anoperationallaw because its
inputs are directly measurable quantities [7]. (By con-
trast, stochastic queuing models involve assumptions about
the probability distributions of job arrivals and service de-
mands.) Unlike the classical operational laws, the Occu-
pancy Law provides the relative magnitudes of service and
queuing times in a black-box system. Furthermore, un-
like asymptotic and balanced-system “bounding analysis”
approximations [21], it yields exact performance quantities
of interest. The Occupancy Law does not assume identical
servers and therefore applies to heterogeneous parallel com-
puting systems, including heterogeneous multicore proces-
sors [20]. The Occupancy Law holds regardless of fine-
scale processor phenomena, e.g., involving caching. Fi-
nally, note that even the very weak assumption of flow bal-
ance is not required to establish the Occupancy Law.

In practical terms, the Occupancy Law provides in-
sights not readily available from conventional system- or
application-level measurements. Today’s system monitor-
ing tools provide only coarse-grained aggregate resource
utilization measurements at fixed, pre-specified intervals
(typically 5 minutes) [5, 11, 33], but the Occupancy Law
applies to arbitrary, variable-length intervals. Intervals as
short as 200 ms are not unreasonable for environments

such as the data center used for our experiments. Analyz-
ing the occupancy curve in each interval of constantNk(t)
and combining the results yields the distributions of server
utilizations and queue lengths during any period of inter-
est. Whereas conventional measurement tools reside on
the computer being measured and incur performance over-
heads, the Occupancy Law allows us to infer utilizations
and queueing delays vialightweight, passive, externalob-
servations of black-box applications.

Application-level transaction logs may record per-
request response times, but these are available only after re-
quests have completed and are inaccurate under heavy load
because they do not reflect queueing delays between packet
arrivals and application-level handling [36]. By contrast,
the Occupancy Law estimates both utilization and queue-
ing, and does soeven for requests that have not completed;
it is therefore better suited to real-time monitoring. Con-
ventional data center management tools alert human oper-
ators when resource utilizations or response times exceed
specified thresholds, but the former can fail to detect unre-
sponsiveness and the latter alerts are not actionable if re-
sponse times consist largely of service times. The Occu-
pancy Law enables more sophisticated alerts based on the
relative magnitudesof queuing and service times. Oper-
ational analysis of an occupancy curve provides accurate,
high-resolution insight into both utilization and queuingin
unmodified black-box legacy network servers while creat-
ing no additional load. The price of this additional insightis
modest. Job arrivals and departures can easily be measured
at clients, at network servers using kernel packet timestamp-
ing facilities [36], or by a network sniffer near the target
machine [6]. In a cluster computing context, the same ob-
servations can be made by the job dispatcher of a cluster
scheduler [30].

4 The Capacity Adjustment Laws

This section presents two operational laws that bound the
performance implications of capacity expansion and reduc-
tion, i.e., increasing or decreasing the number of servers in
the system depicted in Figure 1. A companion paper consid-
ers the complementary problem of predicting performance
when thespeedof the servers changes [35]. Given only a
k-server occupancy curve, we wish to bound the change in
aggregate queuing time that would result if a different num-
ber of serversk′ handled the same workload. Predicting the
performance consequences of capacity change is difficult
because both scheduling and the potential for parallelism
in the workload influence the outcome, but the occupancy
curve seemingly contains no explicit information about ei-
ther.

N=4

time

N (t)k=2

�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����

����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������

������
������
������
������
������
������

������
������
������
������
������
������

N=2

Figure 4. Example, k = 2 and k′ = 4.

4.1 The Capacity Expansion Law

Consider the example in Figure 4. It is tempting to con-
clude (falsely) that the shaded area under the occupancy
curveNk(t) between horizontal linesN = k = 2 andN =
k′ = 4 equals the reduction in aggregate queueing time that
would result from increasing the number of servers from
k = 2 to k′ = 4. However, it is easy to generate counter-
examples showing that the reduction in aggregate queueing
time is sometimes strictly greater. It turns out that the area
beneath the occupancy curve and between theN = k and
N = k′ lines canboundthe change in queueing time. We
first consider capacity expansion (k′ > k) and begin by in-
troducing an additional assumption.

Assumption 3 Completion-monotonic scheduling: if k′ >

k, then Dk′(t) ≥ Dk(t) for all times t (increasing capacity
does not reduce cumulative job completions).

Assumption 3 states that additional servers “do no
harm.” Below we state and derive the Capacity Expan-
sion Law (which requires Assumption 3). We then show
that several widely used scheduling policies are completion-
monotonic, i.e., they satisfy Assumption 3, under two addi-
tional assumptions.

Result 2 The Capacity Expansion Law. If the number
of servers increases from k to k′ (k′ > k), then aggregate
queueing time during the interval[0,T] decreases by at
least

∫ T
0 max{min{Nk(t), k′}− k, 0}dt (the area beneath

the k-server occupancy curve and between the horizontal
lines N= k and N= k′).

Derivation When the number of servers increases from
k to k′, by the Occupancy Law the reduction of ag-
gregate queueing time is

∫ T
0 max{Nk(t) − k, 0}dt −∫ T

0 max{Nk′(t) − k′, 0}dt. Since server scheduling is
completion-monotonic (Assumption 3), we haveNk(t) ≥
Nk′(t) for every timet—the k′-server occupancy curve is
never higher than thek-server occupancy curve. Therefore:

∫ T

0
max{Nk(t)−k, 0}dt−

∫ T

0
max{Nk′(t)−k′, 0}dt

≥

∫ T

0
max{Nk(t)−k, 0}dt−

∫ T

0
max{Nk(t)−k′, 0}dt

=
∫ T

0
max{min{Nk(t), k′}−k, 0}dt

N(t)

t

N=k’

N=k

k’−server occupancy curve

k−server occupancy curve k−server aggregate queueing time

k’−server aggregate queueing time

Figure 5. Graphical derivation.

The Capacity Expansion Law also admits a graphical
derivation shown in Figure 5. Aggregate queueing time
with k servers is the area beneath thek-server occupancy
curve but above the horizontal lineN = k (light shad-
ing). With k′ servers, aggregate queueing time is the area
beneath thek′-server occupancy curve but aboveN = k′

(heavy shading). Since thek′-server occupancy curve is
never higher than thek-server occupancy curve (by As-
sumption 3), aggregate queueing time withk′ servers is no
greater than the area beneath thek-server occupancy curve
but above theN = k′ line. Thus, the reduction in aggre-
gate queueing time when the number of servers increases
from k to k′ is bounded from below by the area beneath the
k-server occupancy curve and between the horizontal lines
N = k andN = k′.

4.2 Completion-Monotonic Scheduling

We now return to completion monotonicity (Assump-
tion 3). This property is intuitive for schedulers that
strive to make effective use of resources and it holds for
many common schedulers. In this paper we show that all
static priority-based preemptive schedulers (including First-
Come-First-Served and Shortest-Job-First) are completion
monotonic (Theorem 1), as is fine-grained Processor Shar-
ing or Round Robin with infinitesimal timeslices (Theo-
rem 2). In both cases, we show that every job finishes at
the same time or earlier after the capacity expansion, which
is a sufficient (but not necessary) condition for completion
monotonicity. Two additional assumptions formalize the
notion that changing the number of servers does not change
the workload and restrict attention to homogeneous systems
with identical servers.

Assumption 4 Open arrivals: Jobs arrive according to an
open arrival process.

Assumption 5 Fixed service demands: Job service de-
mands are fixed (though not necessarily identical). A job’s
service demand is independent of the number, nature, and
location of other jobs in the system, the number of servers,
the server(s) on which the job runs, and the scheduler’s de-
cisions.

Theorem 1 Completion monotonicity under Priority
scheduling. If scheduler S assigns a static priority to
each job (where the priorities form a total order) and
S preemptively schedules jobs by priority, then S is
completion-monotonic.

Proof of Theorem 1: Consider a workload withn jobs
ordered by priority in schedulerS: T1 (highest priority),T2,
· · ·, Tn (lowest priority). Under schedulerS, we show by in-
duction that no jobs finish later when the number of servers
increases fromk to k′. Note that under open arrivals (As-
sumption 4), every job arrives at the same time onk andk′

servers. Regardless of the number of servers, jobT1 always
starts as soon as it arrives and runs without interruption.
Following Assumption 5,T1 finishes at the same time onk
andk′ servers. If jobsT1, T2, · · ·, Ti do not finish later when
the number of servers increases fromk to k′, we show that
job Ti+1 also does not finish later. Under priority schedul-
ing, job Ti+1 runs when the number of arrived but not yet
completed higher-priority jobs is less than the number of
servers. Therefore all runnable time periods for jobTi+1 on
k servers must also be runnable onk′ servers. From As-
sumption 5, we know that jobTi+1 finishes, onk′ servers,
no later than it does onk servers.

Theorem 2 Completion monotonicity under Processor
Sharing. Let k be the number of servers in the system. Over
any time period of length p with a constant number of ac-
tive jobs n, scheduler S assignsmin{p · k

n, p} service time
to each of the n active jobs. Then any change in the number
of servers is always completion-monotonic under S.

Let Lk
t (T) denote the amount of service jobT has re-

ceived up to timet whenk is the number of servers. Let the
total service demand of jobT be l (recall that by Assump-
tion 5 a job’s service demand is independent of the num-
ber of servers and the particular ones that serve it). There-
fore Lk

t (T) = l if job T has completed by timet. We de-
fine a capacity increase fromk to k′ servers to beper-job
completion-monotonicat timet if every job has received no
less service by timet in a system withk′ servers than withk
servers (i.e.,Lk

t (T) ≤ Lk′
t (T) for all jobsT). We introduce a

lemma before proving Theorem 2. Recall that by Assump-
tion 4 every job arrives at the same time onk andk′ servers.

Lemma 1 If the capacity increase is per-job completion-
monotonic at time tpstart and there is no new job arrival
after tpstart but before tpend, then the increase is per-job
completion-monotonic at any time t in[tpstart,tpend] under
the processor-sharing scheduling S.

Proof of Lemma 1: When the system hask servers,
those jobs that have not completed bytpstart but will com-
plete bytpend are: T1,T2, · · · ,Tm (in order of their comple-
tion times). Lett1 ≤ t2 ≤ ·· · ≤ tm be their corresponding

completion times. LetTm+1,Tm+2, · · · ,Tn be remaining ac-
tive jobs attpstart (which will stay active attpend). We now
prove Lemma 1 by induction. First we show that the capac-
ity increase is per-job completion-monotonic at any timet
in [tpstart,t1] under schedulerS. Since there aren jobs during
the time period[tpstart,t1] when the system hask servers, for
any jobT and any timet in this period, we have:

Lk
t (T) = Lk

tpstart
(T)+min{(t − tpstart) ·

k
n
, t − tpstart}

Since there are no more thann jobs during[tpstart,t1] with k′

servers, for any jobT, we have:

Lk′
t (T) ≥ Lk′

tpstart
(T)+min{(t − tpstart) ·

k′

n
, t − tpstart}

≥ Lk
tpstart

(T)+min{(t − tpstart) ·
k
n
, t − tpstart} = Lk

t (T)

If the capacity increase is per-job completion-monotonic at
any timet in [tpstart,ti] (here 1≤ i ≤ m), below we show
that it is also per-job completion-monotonic at any timet
in [tpstart,ti+1] (or [tpstart,tpend] wheni = m). Since there are
n− i jobs during the time period[ti ,ti+1] when the system
hask servers, for any jobT and any timet in this period, we
have:

Lk
t (T) = Lk

ti (T)+min{(t − ti) ·
k

n− i
, t − ti}

Since the capacity increase is per-job completion-
monotonic at timeti , at leasti jobs have completed byti
when the system hask′ servers. Consequently there are no
more thann− i jobs during the time period[ti ,ti+1] when
the system hask′ servers. For any jobT, we have:

Lk′
t (T) ≥ Lk′

ti (T)+min{(t − ti) ·
k′

n− i
, t − ti}

≥ Lk
ti (T)+min{(t − ti) ·

k
n− i

, t − ti} = Lk
t (T)

Proof of Theorem 2: Let t1 ≤ t2 ≤ ·· · ≤ tn be the
arrival times of all jobs. Att1, no job has made any
progress regardless of the number of servers in the sys-
tem so a capacity increase is per-job completion-monotonic
at time t1. According to Lemma 1, we can show that it
is also per-job completion-monotonic at any time up to
t2. Step by step, we can further show that a capacity in-
crease is per-job completion-monotonic at any time up to
t3,t4, · · ·. Consequently we know that a capacity increase is
per-job completion-monotonic at any time instant under the
processor-sharing schedulingS. This also means every job
finishes onk′ servers no later than it does onk servers.

There exist scheduling policies that donot satisfy com-
pletion monotonicity. Some are contrived pathological poli-
cies, e.g., the policy that employs Shortest Job First whenk

servers are available and Longest Job First fork′ > k. How-
ever a non-deterministic scheduler that employs randomiza-
tion, for example, may violate the completion-monotonicity
property. We speculate that most commonly used deter-
ministic scheduling policies have the intuitive “do no harm”
property of completion monotonicity. We leave the proofs
for additional schedulers to future work.

4.3 Tightness of the Bound

The Capacity Expansion Law defines a lower boundRLB

on the reduction in aggregate queuing time when the num-
ber of servers increases. How tight is this bound? In the
absence of restrictions on problem parameters, it is possi-
ble to construct examples in which the ratio between the
actual reduction in queuing time andRLB is arbitrarily high.
However if the number of jobs in the system is bounded—
i.e., if Nk(t) ≤ N̂ at all timest—then the ratio between the
actual queueing time change andRLB is limited to N̂−k

k′−k .
This is easy to show because 1) the reduction of aggregate
queueing time is no more than the totalk-server aggregate
queueing time, and 2) the area beneath any occupancy curve
and between two horizontal linesN = y andN = y+ 1 is
monotonically non-increasing wheny increases. This result
suggests that the bound is tighter when the system is less
congested. BoundingNk(t) is not a restrictive assumption;
if the number of jobs in the system grows without bound,
the system is simply oversaturated. Like the Occupancy
Law, the Capacity Expansion Law does not require the as-
sumption of flow balance, but flow balance ensures tighter
bounds.

An obviousupperbound on the reduction in aggregate
queueing time is to reduce the queueing time to zero. We
have not yet established tighter general upper bounds, but
we know that there does not exist any upper bound in the
form of a constant timesRLB. This follows the pessimistic
result on the general tightness of usingRLB as a lower
bound.

In practical terms, the Capacity Expansion Law some-
times assures you that youdefinitely should expandcapac-
ity. Sometimes—e.g., because the performance improve-
ment bound is not tight—it does not recommend any action.
Our next result, the Capacity Reduction Law, is symmetric:
it sometimes warns you that youdefinitely should not re-
ducecapacity.

4.4 The Capacity Reduction Law

We conclude this section by stating the Capacity Reduc-
tion Law, which closely resembles the Capacity Expansion
Law in both definition and derivation.

Result 3 Capacity Reduction Law. If the number of
servers decreases from k to k′ (k > k′), then aggregate

queueing time during the interval[0,T] increases by at least∫ T
0 max{min{Nk(t), k}− k′, 0}dt (the area beneath the k-

server occupancy curve and between two horizontal lines of
N = k and N= k′).

Derivation When the number of servers decreases from
k to k′, by the Occupancy Law the increase of ag-
gregate queueing time is

∫ T
0 max{Nk′(t) − k′, 0}dt −∫ T

0 max{Nk(t)− k, 0}dt. Since scheduling is completion-
monotonic (Assumption 3), we haveNk(t) ≤ Nk′(t) for ev-
ery time t—the k′-server occupancy curve is never lower
than thek-server occupancy curve. Therefore:

∫ T

0
max{Nk′(t)−k′, 0}dt−

∫ T

0
max{Nk(t)−k, 0}dt

≥

∫ T

0
max{Nk(t)−k′, 0}dt−

∫ T

0
max{Nk(t)−k, 0}dt

=

∫ T

0
max{min{Nk(t), k}−k′, 0}dt

5 Experiments

We conducted experiments on a real network server in
an HP data center to verify the practicality of the Occu-
pancy Law and test the tightness of the Capacity Adjust-
ment Laws’ bounds. Our client and server machines are
identical HP ProLiant BL460c blades housed together in
an HP BladeSystem c7000 enclosure communicating via
a Cisco Catalyst Blade Gb Switch 3020. Each blade con-
tains two dual-core Intel Xeon 5160 3 GHz CPUs (i.e,
k = 4) with 64 KB L1 cache, 4 MB L2 cache, and 8 GB of
667 MHz RAM; both blades run 64-bit SMP Linux 2.6.9-
42. The server application is a CPU-bound program in-
voked through the CGI interface of Apache 2.0.52. We
measured request start and end times with a bespoke client
workload generator. Our measurements are similar to those
that would be collected by a network sniffer located near
the Apache machine [6]. Network load and client CPU load
were negligible; queueing at the client did not distort mea-
surements. Client-serverping RTT is 81µs and the client
application latency of a null request is 1.35 ms; these RTTs
are far less than the CPU demands of requests.

5.1 Externally Estimating Queuing Delay

Our first test employed a semi-open workload: each
client session is a closed generator and the sessions them-
selves arrive in an open fashion. This is arguably the most
realistic kind of workload for a user-facing network appli-
cation [34]. Each session generates eight requests with a
server CPU demand drawn fromU [1,2] sec and think times
drawn fromU [3,6] sec, whereU [a,b] denotes the uniform
distribution in the range[a,b]. The per-request server CPU

 0
 10
 20
 30
 40

 0 1000 2000 3000 4000 5000 6000 7000

 0

 25

 50

 75

 100
oc

cu
pa

nc
y

cu
rv

e
 N 4

(t
)

C
P

U
 U

til
iz

at
io

n
(%

):
U

S
A

R
 =

 m
ea

su
re

d
U

O
cc

La
w

=
 e

st
im

at
ed

time (sec)

UOccLaw
USAR
N4(t)

Figure 6. Occupancy curve and server utilization.

demands are comparable to those of today’s enterprise ap-
plications [37]. Session arrivals are bursty and are con-
structed such that average server CPU demand follows a
sawtooth pattern to mimic diurnal cycles. We ran the test
for two hours and measured CPU utilization at the server in
1-minute intervals using thesar utility [11]. We measure
utilization rather than queueing delay because conventional
tools do not report the latter. For our present purposes, ei-
ther is sufficient to test the accuracy of Occupancy Law esti-
mates. Accurate utilization estimates translate directlyinto
accurate queueing time estimates because estimated service
times can simply be subtracted from our externally mea-
sured response times.

Figure 6 presents the client-measured occupancy curve
N4(t) (lower series, left scale) and server CPU utilization
(upper series, right scale) estimated by the Occupancy Law
(circles) and measured bysar (short bars). The Occu-
pancy Law’s estimate of server CPU utilization is remark-
ably accurate at all utilization levels, from roughly 5% to
over 99.5%.

 0

 0.25

 0.5

 0.75

 1

 0.001 0.01 0.1 1 10

error (%)

raw
error
CDF

absolute
percent
error CDF

The figure at right con-
firms this impression. It
presents cumulative distribu-
tions over our 120 measure-
ment intervals of two er-
ror metrics of the difference
between measured utilization
Usar and utilization estimated
via the Occupancy LawUOccLaw: raw error |Usar −
UOccLaw|, where both utilizations are expressed as percent-
ages, and normalized error 100× raw error

Usar

. By either error
metric, the Occupancy Law allows us to estimate CPU uti-
lization to within 1% using only lightweight passive ex-
ternal measurements; again, these estimates translate di-
rectly into accurate queueing delay estimates. (A similar
experiment involving much shorter per-request CPU de-
mands drawn fromU [100,500] ms yields qualitatively sim-
ilar conclusions, with median and 97th percentile normal-
ized errors of 0.64% and 4.91%, respectively.)

5.2 Capacity Adjustment & Performance

The Capacity Adjustment Laws offer actionable infor-
mation to complement the insights provided by the Occu-
pancy Law. By bounding the application-level performance
consequences of changing the number of processors/cores
available to an application, the Capacity Adjustment Laws
provide a principled basis for decisions ranging from pro-
cessor selection and capacity planning (“how many cores do
I need in my next hardware generation to meet my QoS re-
quirements?”) to dynamic resource allocation (“is it worth
the energy cost to wake up a dormant core?”).

We quantify the tightness of the Capacity Adjustment
Laws’ bounds by replaying a fixed open workload to our
network server, varying the number of cores available to the
application using thesched_setaffinity() system
call. The CPU demands of individual requests are drawn
from U [1,2] sec. We use the same pseudo-random number
generator seed on each run and ensure that the workload
seen by the server machine is identical on all runs. Over

 0

 10

 20

 30

 0 25 50 75 100

C
P

U
 u

til
’n

 (
%

)

time (min)

the course of each 90-minute run,
arrival rates vary and server CPU
utilization fluctuates as shown at
right. Note that peak utiliza-
tion exceeds 25% and therefore
the server machine is briefly over-
loaded when only one of its four cores is available to the
application.

Table 1 presents raw results from our four experimen-
tal runs. The table shows

∫ T
0 min{Nk(t),k′}dt, the area

under both the occupancy curve and theN = k′ horizon-
tal line, for all combinations ofk andk′. Thek′ = ∞ col-
umn contains aggregate response time, from which we sub-
tract the entry in thek = k′ column to obtain the aggre-
gate queuing time shown in the rightmost column. Table 2
shows the change in aggregate queuing time that results
from changing the number of cores available to the appli-
cation fromk to k′ for all (k,k′) pairs. Negative quantities
indicate reduction in queueing time and positive quantities
indicate increase. For example, Table 1 shows that aggre-
gate queuing delays fork = 2 andk = 3 are respectively
304.00 sec and 47.28 sec, for a difference of 256.72 sec,

cores aggregate
enabled k′ = 1 k′ = 2 k′ = 3 k′ = 4 k′ = ∞ queueing

k = 1 2721.15 4360.84 5431.77 6176.27 7862.46 5141.31
k = 2 2139.77 2766.31 2950.09 3014.17 3070.30 304.00
k = 3 2122.40 2698.98 2841.18 2870.96 2888.45 47.28
k = 4 2104.71 2654.67 2759.34 2776.92 2782.19 5.27

Table 1. Area (sec) under both occupancy
curve and N = k′.

k′ = 1 k′ = 2 k′ = 3 k′ = 4

k = 1 −4837.31 −5094.04 −5136.04
(−1639.69) (−2710.61) (−3455.12)

k = 2 4837.31 −256.72 −298.73
(626.53) (−183.79) (−247.87)

k = 3 5094.04 256.72 −42.01
(718.78) (142.20) (−29.78)

k = 4 5136.04 298.73 42.01
(672.21) (122.25) (17.58)

Table 2. Actual change in aggregate queue-
ing delay from capacity adjustment (Capacity
Adjustment Law bounds in parentheses).

as shown in the(k = 2,k′ = 3) and (k = 3,k′ = 2) cells
of Table 2. Beneath the actual changes in aggregate queu-
ing delay, Table 2 also shows in parentheses the bounds
obtained from the Capacity Adjustment Laws. For exam-
ple, from Table 1 we compute the Capacity Expansion Law
bound on the reduction in queuing delay resulting from in-
creasing the number of available cores fromk = 1 tok′ = 4
as 6176.27−2721.15= 3455.12 sec. The actual reduction
in queuing delay is 5136.04 sec, or roughly 27% greater.
In general, as we expect, the bounds that we obtain from
the Capacity Adjustment Laws are conservative. Further-
more the bounds that we obtain in this experiment are far
better than the those guaranteed by the theoretical bounds-
tightness results of Section 4.3.

5.3 Improved Scheduling & Tighter
Bounds

Our experiments so far have employed the default Linux
scheduler, which for our CPU-bound tasks is essentially
Round Robin with 100 ms timeslices [4]. As noted in Sec-
tion 4.3, shorter queues imply tighter Capacity Adjustment
Law bounds, so it is reasonable to suspect that the bounds
would be tighter if the scheduler and workload were better
suited to one another. We conducted an additional experi-
ment to explore this issue.

It is well known that Shortest Remaining Processing
Time First (SRPT) scheduling minimizes queuing delay,
and Harchol-Balteret al. have shown that SRPT schedul-
ing of network connectionscan sometimes significantly
reduce average client-perceived latency without unduly

penalizing large transfers [13]. We made two changes
to our experimental testbed to implement SRPT: we set
the CPU demand of all requests to 1.5 sec, and we
set the CPU scheduling policy to real-time FIFO (i.e.,
non-preemptive First-Come First-Served) using the Linux
sched_setscheduler() system call. The net effect of
non-preemptive FCFS scheduling on identical jobs is that
the scheduler mimics an SRPT scheduler. In all other re-
spects our experiment was identical to the one that yielded
the data in Table 1.

k′ = 1 k′ = 2

k = 1 −2104.406
(−1244.616)

k = 2 2104.406
(611.797)

The table at right
presents our results in
the same format as Ta-
ble 2; k > 2 cases are
omitted because queue-
ing was negligibly small for these runs. Comparing the two
tables, we see that the Capacity Adjustment Law bounds
are considerably tighter under SRPT. While this experiment
does not attempt to imitate real-world network server work-
loads or CPU scheduling policies, the results are consis-
tent with our expectation that shorter queues due to better
scheduling tighten the Capacity Adjustment Law bounds.

6 Related Work

Computer system performance models have long facil-
itated the exploration of design alternatives [17] and ca-
pacity planning [26]. New applications continue to arise,
e.g., dynamic resource provisioning [8, 42], performance
anomaly detection [19], and server consolidation decision
support [37].

Most existing approaches cluster at opposite ends of
a complexity/fidelity spectrum. At one extreme, stochas-
tic queuing models [3] yield supremely detailed insight—
specifically, the full distributions of performance measures
of interest. Stochastic models, however, can require consid-
erable skill to apply and can be brittle with respect to their
detailed underlying assumptions [41].

Denning & Buzen popularized the other end of the spec-
trum: operational analysis, which involves only directly
measurable quantities (as opposed to probabilistic assump-
tions) [7]. Elementary results include the well-known clas-
sical operational laws, e.g., Little’s Law [23]. Arguably
the most powerful and versatile result in all of performance
modeling [26], Little’s Law is furthermore the foundation of
more sophisticated methods including Mean Value Analy-
sis (MVA) [21]. MVA is useful for modeling modern multi-
tiered network server applications [24,42] and has spawned
its own extensions and generalizations. For example, Rolia
& Sevcik [31] and Menascé [25,27] generalize MVA to ac-
count for queueing at “soft” resources such as mutexes and
concurrency limits.

Our contributions represent an intermediate point on the
complexity/fidelity spectrum. Our laws are easier to learn
and apply than either MVA or stochastic models and they
yield more detailed insight than the classical operational
laws. All of our results rest upon a handful of straightfor-
ward assumptions that are easy to test and that are satisfied
in many practical systems of interest. Of course, there is
no free lunch: Our laws do not yield all of the insights of
the more sophisticated approaches. The former do not sup-
plant the latter but rather complement them by offering a
useful new point on the spectrum of performance modeling
techniques.

Performance model calibration, e.g., service demand es-
timation, is a difficult problem in itself. Many proposed
methods emphasize enhanced runtime measurement [2] and
application profiling via controlled benchmarking [18, 39,
43]. Unfortunately, both are sometimes forbidden in pro-
duction environments. Recent research emphasizes calibra-
tion via lightweight passive observation coupled with so-
phisticated analyses [37, 38]. The present paper represents
another step in the same direction by further reducing the
inputs required for the modeling exercise, restricting atten-
tion to lightweight passiveexternalobservations of black-
box applications.

Energy efficiency is an increasingly important concern.
Fan et al. argue that computing systems should consume
power in proportion to the useful work they perform [10].
At the level of microprocessors, power/performance trade-
offs involve clock speed adjustment or per-core hiberna-
tion [14, 29]. We consider performance vs. number of ac-
tive processors/cores in this paper and processor speed scal-
ing in a companion paper [35]. Irani & Pruhs survey al-
gorithmic problems involving processor speed scaling and
powering down idle processors [15], and Augustineet al.
present online-optimal power-down algorithms for a single
idle processor with multiple sleep states [1]. These con-
tributions differ from ours both in objective and approach:
they focus on power savings alone whereas we consider
queueing delays, and they employ competitive analysis in
contrast to our operational analysis. Rybczynskiet al.con-
sider energy-conservation strategies that actively alterdisk
workloads [32]. Our models are more appropriate to CPUs,
and our approach does not reshape workloads.

Eageret al. explore the tradeoff between speedup and
efficiency (average overall utilization) as functions of the
number of processors serving a single compound job with
known service demand, bounding the extent to which
speedup and efficiency can both be poor [9]. Our work is
similar in that we too consider the resource/performance
tradeoffs inherent in a workload. However we consider mul-
tiple jobs and we do not assume that service demands are
given.

Our Occupancy Law builds on the rule that the number
of busy servers at any instant is the lesser of the number
of serversk and the number of jobs in the systemNk, if
scheduling is work-conserving. This rule appears in prior
stochastic modeling work (e.g., multi-server analysis of the
Rate Conservation Law [28]). However, we are not aware of
any prior result that provides a precise, fine-grained separa-
tion of request waiting time and service time as established
by our Occupancy Law. To the best of our knowledge the
Capacity Adjustment Laws (and our complementary results
on processor speed scaling [35]) are entirely novel.

7 Conclusions

This paper presents three operational laws well suited to
the new challenges thrust upon us by the multicore revo-
lution and other current technology trends. Our laws re-
quire only readily available inputs and usefully illuminate
performance in opaque applications that satisfy a handful
of simple assumptions. Our experiments confirm that the
Occupancy Law accurately estimates queueing delays and
the Capacity Adjustment Laws bound the performance con-
sequences of capacity changes in a real parallel network
server. Technology trends promise to improve application-
level performance but also threaten to obscure it. Opera-
tional analysis can help to preserve our understanding and
control of performance as these trends overtake us.

Acknowledgments

We thank Arif Merchant and Ward Whitt for helpful dis-
cussions and suggestions, and we thank Hernan Laffitte,
Eric Wu, and Krishnan Narayan for technical support that
made our experiments possible. This work was supported in
part by National Science Foundation grants CCF-0448413,
CNS-0615045, and CCF-0621472. Finally, we thank the
anonymous reviewers for useful suggestions and pointers.

References

[1] J. Augustine, S. Irani, and C. Swamy. Optimal power-down
strategies.SIAM J. Comput., 37(5):1499–1516, 2008.

[2] P. Barham, A. Donnelly, R. Isaacs, and R. Mortier. Using
Magpie for request extraction and workload modelling. In
OSDI, pages 259–272, Dec. 2004.

[3] G. Bolch, S. Greiner, H. de Meer, and K. S. Trivedi.Queue-
ing Networks and Markov Chains. John Wiley & Sons,
1998.

[4] D. P. Bovet and M. Cesati.Understanding the Linux Kernel.
O’Reilly, third edition, Nov. 2005.

[5] H.-P. Corp. HP Performance Manager software, Jan. 2008.
[6] H.-P. Corp. HP Real User Monitor, Jan. 2008. Search for

“Real User Monitor” athttp://www.hp.com/.

[7] P. J. Denning and J. P. Buzen. The operational analysis
of queueing network models.ACM Computing Surveys,
10(3):225–261, Sept. 1978.

[8] R. P. Doyle, J. S. Chase, O. M. Asad, W. Jin, and A. M. Vah-
dat. Model-based resource provisioning in a Web service
utility. In Proc. USENIX Symposium on Internet Technolo-
gies and Systems (USITS), Mar. 2003.

[9] D. K. Eager, J. Zahorjan, and E. D. Lazowska. Speedup ver-
sus efficiency in parallel systems.IEEE Trans. Computers,
38(3):408–423, Mar. 1989.

[10] X. Fan, W.-D. Weber, and L. A. Barroso. Power provision-
ing for a warehouse-sized computer. InISCA, pages 13–23,
2007.

[11] S. Godard. sysstat utilities for Linux version
8.0.4, Jan. 2008.http://pagesperso-orange.fr/
sebastien.godard/.

[12] G. Graefe. The five-minute rule 20 years later, and how
flash memory changes the rules. InProc. Workshop on Data
Management on New Hardware (DaMoN), June 2007.

[13] M. Harchol-Balter, B. Schroeder, N. Bansal, and
M. Agrawal. Size-based scheduling to improve Web
performance. ACM Transactions on Computing Systems,
21(2):207–233, 2003.

[14] HP, Intel, Microsoft, Phoenix, and Toshiba. Advanced
configuration & power interface (ACPI) specification, Oct.
2006.http://www.acpi.info/spec.htm.

[15] S. Irani and K. R. Pruhs. Algorithmic problems in power
management.ACM SIGACT News, 36(2):63–76, June 2005.

[16] R. Iyer et al. Datacenter-on-chip architectures: Tera-
scale opportunities and challenges.Intel Technical Journal,
11(3):227–238, Aug. 2007.

[17] R. Jain.The Art of Computer Systems Performance Analysis.
John Wiley & Sons, 1991.

[18] N. Joukov, A. Traeger, R. Iyer, C. P. Wright, and E. Zadok.
Operating system profiling via latency analysis. InOSDI,
Nov. 2006.

[19] T. Kelly. Detecting performance anomalies in global appli-
cations. InUSENIX Workshop on Real, Large Distributed
Systems (WORLDS), Dec. 2005.

[20] R. Kumar, D. M. Tullsen, P. Ranganathan, N. P. Jouppi, and
K. I. Farkas. Single-ISA heterogeneous multi-core archi-
tectures for multithreaded workload performance. InISCA,
pages 64–75, 2004.

[21] E. D. Lazowska, J. Zahorjan, G. S. Graham, and K. C. Sev-
cik. Quantitative System Performance: Computer System
Analysis Using Queueing Network Models. Prentice-Hall,
1984. ISBN 0-13-746975-6.

[22] C. Li, C. Ding, and K. Shen. Quantifying the cost of context
switch. InExperimental Comp. Sci., June 2007.

[23] J. D. Little. A Proof of the Queueing Formula:L = λW.
Operations Research, 9(3):383–387, May 1961.

[24] X. Liu, J. Heo, and L. Sha. Modeling 3-tiered web applica-
tions. InMASCOTS, Sept. 2005.

[25] D. A. Menascé. Two-level iterative queuing modeling for
software contention. InMASCOTS, Oct. 2002.

[26] D. A. Menascé and V. A. F. Almeida. Scaling for E-
Business: Technologies, Models, Performance, and Capac-
ity Planning. Prentice Hall, May 2000.

[27] D. A. Menascé and M. Bennani. Analytic performance mod-
els for single class and multiple class multithreaded software
servers. InComputer Measurement Group Conf., Dec. 2006.

[28] M. Miyazawa. The derivation of invariance relations incom-
plex queueing systems with stationary inputs.Advances in
Applied Probability, 15(4):874–885, Dec. 1983.

[29] A. Naveh et al. Power and Thermal Management in the Intel
Core Duo Processor.Intel Tech. J., 10(2):109–122, May
2006.

[30] Platform Computing. LSF Scheduler.
http://www.platform.com/Products/
platform-lsf-family/.

[31] J. A. Rolia and K. C. Sevcik. The method of layers.
IEEE Transactions on Software Engineering, 21(8):689–
700, Aug. 1995.

[32] J. P. Rybczynski, D. D. Long, and A. Amer. Adapting pre-
dictions and workloads for power management. InMAS-
COTS, pages 3–12, Sept. 2006.

[33] R. F. Sauers, C. P. Ruemmler, and P. S. Weygant.HP-UX
11i Tuning and Performance. Prentice Hall, 2004.

[34] B. Schroeder, A. Wierman, and M. Harchol-Balter. Open
versus closed: A cautionary tale. InNSDI, pages 239–252,
May 2006.

[35] K. Shen, A. Zhang, T. Kelly, and C. Stewart. Operational
analysis of processor speed scaling. InSPAA, June 2008.
Short paper.

[36] N. Spring, L. Peterson, A. Bavier, and V. S. Pai. Using
PlanetLab for network research: Myths, realities, and best
practices. InProc. USENIX Workshop on Real, Large Dis-
tributed Systems (WORLDS), pages 67–72, Dec. 2005.

[37] C. Stewart, T. Kelly, and A. Zhang. Exploiting nonstationar-
ity for performance prediction. InProc. EuroSys, Mar. 2007.
Also available as HP Labs Tech Report 2007-64.

[38] C. Stewart, T. Kelly, A. Zhang, and K. Shen. A dollar from
15 cents: Cross-platform management for Internet services.
In USENIX Annual Tech, June 2008.

[39] C. Stewart and K. Shen. Performance modeling and system
management for multi-component online services. InNSDI,
pages 71–84, May 2005.

[40] Texas Memory Systems. RamSan-400 Solid State Disk, Jan.
2008. http://www.superssd.com/products/
ramsan-400/.

[41] E. Thereska and G. R. Ganger. IRONModel: Robust Perfor-
mance Models in the Wild. InSIGMETRICS, June 2008.

[42] B. Urgaonkar et al. An analytical model for multi-tier In-
ternet services and its applications. InProc. ACM SIGMET-
RICS, pages 291–302, June 2005.

[43] B. Urgaonkar, P. Shenoy, and T. Roscoe. Resource over-
booking and application profiling in shared hosting plat-
forms. InOSDI, Dec. 2002.

