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ABSTRACT

Server and storage clustering has become a popular plat-
form for hosting large-scale online services. Elements of the
service clustering support are often constructed using cen-
tralized or hierarchical architectures, in order to meet perfor-
mance and policy objectives desired by online applications.
For instance, a central Executive node can be employed to
make efficient resource management decisions based on a
complete view of cluster-wide resource availability as well
as request demands. Functionally symmetric software archi-
tecture can enhance the robustness of cluster-based network
services due to its inherent absence of vulnerability points.
However, such a design must satisfy performance require-
ments and policy objectives desired by online services.

This paper argues for the improved robustness of function-
ally symmetric architectures and presents the designs of
two specific clustering support elements: energy-conserving
server consolidation and service availability management.
Our emulation and experimentation on a 117-server cluster
show that the proposed designs do not significantly com-
promise the system performance and policy objectives com-
pared with the centralized approaches.

Keywords
Cluster computing, peer-to-peer computing, network ser-
vices, resource management, energy conservation

1. INTRODUCTION

The ubiquity of the Internet and various intranets has re-
sulted in the widespread availability of on-demand services
accessible through the network. Notable examples include
document search engines [4, 17] and Web-based e-commerce
applications [13]. In the scientific domain, online services
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ranging from numeric computation solvers [7] to DNA se-
quence pattern matching [6] have also enjoyed widespread
usage. As global-scale service infrastructures (e.g., Ninf [23]
and OGSA [14]) become more mature, on-demand services
are expected to continue gaining popularity in the future.

Due to its cost-effectiveness in achieving high availability
and incremental scalability, server clustering has become the
architecture of choice for hosting online services. This is es-
pecially the case when the system experiences high growth
in service evolution and user demands. Despite its potential,
there are significant challenges in providing service cluster-
ing support. Online services operate under certain perfor-
mance and policy constraints. In particular, network clients
seek services interactively and maintaining reasonable re-
sponse time is imperative. As another example, maximizing
resource utilization efficiency is an important performance
goal for cluster-wide resource management [3, 26], along
with other objectives such as quality-of-service support [34,
42] and energy conservation [8, 27].

Elements of the service clustering support are usually im-
plemented using hierarchical architectures, where the com-
plete system state is maintained at some central nodes. The
availability of such complete system state is essential for
making appropriate protocol decisions in order to achieve
desired performance and policy objectives. The effective-
ness of these approaches has been demonstrated under well-
controlled environments, but customized enhancements (e.g.,
hot-standby) are often needed to deal with abnormal sit-
uations, such as transient component failures, fluctuating
service loads, and uncoordinated configuration changes.

Transient software and hardware failures occur frequently in
large-scale distributed systems [25]. Previous studies have
also shown that client request rates for Internet services tend
to be bursty and to fluctuate dramatically over time, espe-
cially at the presence of extraordinary events [8, 10]. In
addition, the capability of enhancing service features and
adding servers without complex coordination is important
for the manageability of large-scale service clusters. With
the proliferation of fast growing network services, maintain-
ing high robustness against these abnormal situations be-
comes increasingly important.

Earlier studies have demonstrated the feasibility of construct-
ing highly robust distributed systems using symmetric ar-



chitectures with functionally equivalent software running at
each node. These systems include distributed load bal-
ancing [5], serverless file system [2], and recent wide-area
peer-to-peer networks [30, 32, 39]. However, it is not clear
whether functionally symmetric software architectures can
be employed in the construction of large-scale cluster-based
network services for achieving high robustness. This is a
challenging task because such a goal must be reached with-
out compromising the performance and policy objectives de-
sired by online services. In recognizing the diverse range of
design objectives for different clustering support elements,
we believe each clustering support element may require ded-
icated treatment. Our prior work has constructed effective
cluster load balancing [35] and service differentiation sup-
port [34] using functionally symmetric architectures. This
paper describes the designs of two additional clustering sup-
port elements: energy-conserving server consolidation and
service availability management. We also examine their ef-
fectiveness in achieving respective performance and policy
objectives.

The rest of this paper is organized as follows. Section 2
describes background information on cluster-based network
services. Section 3 presents the proposed design techniques
using functionally symmetric architectures. Section 4 de-
scribes our evaluation results based on emulation and ex-
perimentation on a 117-server cluster. Section 5 reviews
related work and Section 6 concludes this paper.

2. BACKGROUNDONCLUSTER-BASED NET-

WORK SERVICES

Within a large-scale server cluster supporting online appli-
cations, internal service components are usually partitioned,
replicated, and aggregated. Partitioning is introduced when
the service processing requirement or data volume exceeds
the capacity of a single server node. Service replication is
commonly employed to improve the system availability and
to provide load sharing. In addition, the service logic itself
may be too complicated such that it needs to be partitioned
into multiple service components. Partial results may need
to be aggregated across multiple data partitions or multiple
service components, and then delivered to external users.

Figure 1 illustrates such a clustering architecture for a doc-
ument search engine [4, 17]. In this example, the service
cluster delivers search services to end users and external
partner sites through Web servers and XML gateways. In-
side the cluster, the main search tasks are performed on a set
of index servers and document servers, both partitioned and
replicated. Each search query first arrives at one of the pro-
tocol gateways. Then some index servers are contacted to
retrieve the identifications of top ranked Web pages match-
ing the search query. Subsequently some document servers
are mobilized to retrieve short descriptions of these pages
and the final results are returned through the original pro-
tocol gateway. A large-scale service cluster typically consists
of multiple groups of replicated service components. For in-
stance, the replicas for partition 1 of the document servers
in Figure 1 form one such group.

We also describe the clustering architecture for an on-demand
computation service such as NetSolve [7]. A computational
client submits the problem type (e.g., BLAS [12, 20] or LA-
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Figure 1: Document search engine.

PACK [1]), input data, and output method to a server that
is equipped with the appropriate solver software. The server
then performs the computation and responds to the client
upon completion. Note that our work in this paper focuses
on improving the robustness of the overall service architec-
ture. We do not address the fault tolerance of individual
program execution.

Large-scale service clusters may contain hundreds or thou-
sands of nodes. Providing clustering support for large-scale
services can be challenging. Below we examine some service
clustering support elements as well as their performance and
policy requirements.

Cluster-wide resource management. Allocating cluster-
wide resources for serving online requests is an im-
portant element for service clustering support. An ef-
fective resource management scheme needs to deliver
high performance and satisfy certain policy require-
ments. Some common objectives for cluster-wide re-
source management include maximizing system through-
put, minimizing average service response time, reserv-
ing resources [3], conserving energy [8, 27|, providing
service differentiation [42], or a combination of some
of these [34].

Service availability management. Finding the group of
nodes hosting a requested service component on the
desired data partition is a fundamental building block
in service clustering support. This task is complicated
by random node failures, uncoordinated service en-
hancements, and server additions. Performance is im-
portant because the fulfillment of each external request
typically requires a number of internal service invoca-
tions, each of which triggers a service lookup inside the
cluster. In addition, it is usually desirable that newly
added services or cluster nodes become visible to all
existing nodes within a short amount of time.



3. SERVICE CLUSTERING USING FUNC-

TIONALLY SYMMETRIC SOFTWARE AR-

CHITECTURE

Functionally symmetric systems are distributed systems with-
out any centralized control or hierarchical organization, and
with functionally equivalent software running at each node.
Such an architecture is inherently free of scaling bottlenecks.
They also exhibit strong robustness in the face of random
failures and even intentional attacks because a failure of one
node is no more disastrous than the failure of any other. In
addition to scalability and robustness against failures, func-
tionally symmetric systems can be more agile in response to
load fluctuations or other system state changes because ad-
justments could be made wherever situations arise without
consulting with authorities [34].

Using functionally symmetric architectures to improve the
distributed system robustness is not new. Similar ideas were
used in systems such as the MOSIX distributed operating
system [5] and the Serverless File System (xF'S) [2]. Those
earlier systems were deployed at relatively small scale (e.g.,
several dozens nodes). Recent peer-to-peer work examined
the construction of large-scale wide-area distributed sys-
tems [30, 32, 39]. In addition to employing functionally sym-
metric software architectures, the scalability of these sys-
tems is further supported through controlling various man-
agement overhead when the system size grows. Linearly in-
creasing per-node management cost could result in excessive
overhead when the system scales to a large number of nodes.
Many peer-to-peer systems manage to limit various man-
agement overhead to logarithmic increases, including object
lookup latency, routing table storage requirement, and sys-
tem repair overhead in response to failures [28, 30, 32, 39].
We call this slow-scaling overhead.

Functionally symmetric architectures can similarly enhance
the robustness of cluster-based network services. However,
such a design must not compromise the unique performance
and policy requirements desired by online network services.

This is a challenging task because unlike hierarchical coun-
terparts, protocol decisions in these systems are often reached
collectively at all cluster nodes, each without complete knowl-
edge of the global system state. In addition to robustness,

scalability remains an important goal in our context. Since
cluster-based network services typically grow to relatively
modest sizes compared with global-scale distributed systems
(1,000s ws. 100,000s), careful examinations are needed to
assess the extent of scalability requirement. In particular,
linear-scaling overhead can be tolerable when the unit of
such overhead is small. This is especially the case consider-
ing the high performance of modern system area networks.

In the rest of this section, we illustrate the improved ro-
bustness using functionally symmetric software architecture
(Section 3.1). We then describe our design of two specific
clustering support elements using functionally symmetric
architectures: energy-conserving server consolidation (Sec-
tion 3.2) and service availability management (Section 3.3).

3.1 ThePotential of Improved Robustness

We illustrate how functionally symmetric software architec-
ture can improve the system robustness. Although more

sophisticated techniques exist to model and measure system
availability under component failures [22], a simple model
is sufficient for our purpose. We consider an n-node service
cluster. We assume independent node failures. Let the node
mean time to failure be MTTF and the node mean time to
repair be MTTR. For systems employing a central manager
node, a failure of the central node renders the entire system
unavailable. Therefore the overall system availability rate is
1-— %. A system with a hot-standby for the cen-
tral manager node can tolerate single node failure but may
not survive concurrent node failures. Its system-wide avail-
ability is 1 — (3prrrorirrr) - For systems using functionally
symmetric architecture, node failures only affect service ca-
pacity; they do not have direct impact on the overall system
availability. Assume a small proportion of capacity reduc-
tion (denoted by p) can be tolerated, then the overall system
availability rate is the proportion of the time when at most
p - n nodes fail concurrently: 1 — (i lR___ )P
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Figure 2: Daily failure count trace (over a period of
six month) at a 300-node operational service cluster.

Below we attempt to quantify the system availability rates
at a particular real-world setting. Our quantification is
based on the daily failure count trace (over a period of six
months) at an operational service cluster with about 300
nodes (shown in Figure 2). Only failures that cannot be
repaired by automatic reboot (e.g., hardware failure, disk
overflow) are counted in this trace. The node MTTF is
around 275 days for this operational period. We do not have
accurate record for the failure repair time. We estimate the
node MTTR as three hours based on the experience of the
cluster management team. Based on the previous analysis,
we can quantify the system wunavailability rates under the
three approaches: (1) 4.5 x10™* for centralized architecture;
(2) 2.0 x 10~7 for centralized approach with a hot-standby;
and (3) 8.3 x 107! for functionally symmetric architecture
when p = 2%. It is not hard to see that systems using func-
tionally symmetric architecture are much more robust and
such advantage would become more substantial for larger
systems.

We should point out that the failures of the central node
and the standby node may be positively correlated to each
other. In other words, the failure of one of them may make
it more likely for the other to fail also. This is because
(1) they run the same software so they are subject to the
same type of software-triggered failures; and (2) the failure
of one increases service load on the other when load sharing
is employed. Positively correlated failures reduce the effec-
tiveness of hot-standby. Although the system availability
may be improved by adding more standby nodes, this may
require significantly more complex software, especially when



strong consistency among standby nodes is required.

3.2 Energy-Conserving Server Consolidation
The richness of research issues for cluster-wide resource man-
agement lies in the wide range of resource management ob-
jectives online services may desire. A large body of pre-
vious work addressed various issues in request distribution
and resource management for cluster-based server systems,
focusing on quality-of-service support [3, 42], energy conser-
vation [8, 27|, or locality-aware distribution [26]. In order
to achieve the desired performance and policy objectives,
most of these studies relied on centralized or hierarchical
architectures to manage cluster-wide resources in determin-
istic manners. For instance, a central Ezecutive node can be
employed to make efficient resource management decisions
based on a complete view of cluster-wide resource availabil-
ity as well as request demands (shown in Figure 3(A)).
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Figure 3: Resource management by a central Ex-
ecutive node (A) or using a functionally symmetric
architecture (B).

As we argued earlier, functionally-symmetric architectures
can achieve high robustness for large-scale systems. Under
such an architecture (shown in Figure 3(B)), nodes make
request direction and other resource management decisions
based on a local-view of the system state, which is often
incomplete. The main question for decentralized resource
management is whether it can achieve performance and pol-
icy objectives desired by online applications. Our prior work
has constructed effective cluster load balancing [35] and ser-
vice differentiation support [34] using functionally symmet-
ric architecture. In this paper, we describe resource man-
agement techniques for achieving energy-conserving server
consolidation.

Client request rates for network services tend to be bursty

and fluctuate over time. For example, the daily peak-to-
average load ratio at Internet search service Ask Jeeves [4]
is typically 3:1 and it can be much higher and unpredictable
in the presence of extraordinary events. Figure 4 shows the
total and non-cached search rate of a one-week trace we
collected at Ask Jeeves search [4] via one of its edge Web
servers. Note that this trace only represents a fraction of
the complete Ask Jeeves traffic during the trace collection
period.
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Figure 4: Search requests to Ask Jeeves search via
one of its edge web servers (October 1-7, 2003).

In light of the load burstiness at large-scale service sites, it
might be profitable to consolidate services to a handful of
servers at load troughs while the remaining servers can be
shut down to conserve energy consumption. Previous stud-
ies have addressed issues in energy management for Internet
hosting centers [8, 27]. These systems rely on a centralized
Ezecutive node to monitor cluster-wide resource availabil-
ity and request demands. An optimization problem is then
solved at the Executive to decide how many servers should
be powered up for servicing requests.

We describe a server consolidation scheme using a functionally-
symmetric architecture. In this approach, each node dy-
namically maintains an up-to-date load assessment of itself,
including the recent service response time and the request
queue length. The request queue length is defined as the to-
tal number of currently active and queued service requests.

e For the response time, each node records the response
time for requests completed in a recent observation
window. The 95 percentile value is then used as the
load assessment.

e For the request queue length, each node periodically
checks its own load index. The stable load assessment
is then maintained using an augmented exponentially-
weighted moving average. More specifically, let s; be
the sampled load at ¢-th measurement. Then the load
assessment after t-th measurement (denoted by I;:) can
be calculated as:

I — ali_1 + (1 — Ot)St
T Blees 4+ (1 - B)se
(where 0 < a < < 1)

if s¢ > li—1,
otherwise. (1)

The selection of the decaying factors o and S should
be careful to maintain the smooth and stable reac-
tion for both short-term load spikes and long-term load
changes. Additionally, we let & < 3 so that the system
can react quickly when load increases. In other words,



Begin loop

must be larger than 7 - P).

cluster.

End loop

1. Wait for a random delay between [(1-0)P, (1+46)P].

2. Purge expired information from the local view of the cluster-wide service availability (the expiration threshold

3. Check whether any service availability broadcast has been received from other nodes in the past 7 - P.

(a) If so, send the availability information of locally-hosted services to the source of the latest broadcast.

(b) Otherwise, broadcast all known cluster-wide service availability information to other nodes in the

Figure 5: Suppressive broadcast for service availability management.

service performance has a higher priority than energy
conservation.

A node makes a broadcast to all other nodes in its replication
group and starts a power-down sequence when both the ser-
vice response time assessment and the request queue length
assessment crosses a low-load threshold for a certain period
of time. We use a random-length grace period between 1-
¢ and 146 times the mean value. A random-length period
is important to reduce the chance of simultaneous power-
downs. To further eliminate such possibility, the node also
waits for a short period after it announces its power-down
intent to check if other replicas are making simultaneous at-
tempts. If so, the power-down action is canceled and a new
power-down attempt may be made after another random-
length grace period if the local load assessment stays below
the low-load threshold. The chance of consecutive collisions
is very small after several attempts.

On the other hand, a live node will bring alive some dormant
nodes when either one of its two load assessment indexes
exceeds a high-load threshold for a certain period of time.
We again use a random-length grace period to prevent all
live nodes restarting dormant servers simultaneously. The
Advanced Power Management (APM) tools for Intel-based
systems allow a server to be remotely started at about one
minute delay. Note that we are more cautious in the power-
down process because it is our first priority to maintain ac-
ceptable response time for online services.

3.3 Service Availability M anagement

Service location lookup finds the group of nodes hosting a
requested service on the desired data partition. This task is
a fundamental building block in service clustering support.
It is often complicated by random node failures, and by un-
coordinated service enhancements and server additions. The
performance of service lookup is important because the ful-
fillment of each external request typically requires a number
of internal service invocations, each of which triggers a ser-
vice lookup inside the cluster. With the common require-
ment of serving each online request within a fraction of a
second, each service lookup must be completed within a few
milliseconds or less. Under such a context, it is desirable
to maintain an up-to-date local view of service availability
at each node such that service lookups can be completed

locally.

Membership management for asynchronous distributed sys-
tems has been extensively studied in distributed computing
research [9, 21, 24, 31]. Protocols proposed in these studies
are designed to satisfy strict membership management spec-
ifications for general distributed systems. These solutions
tend to be complex in protocol handshakes when dealing
with concurrent asynchronous events. In comparison, “soft
state”-based system state maintenance' has been favored in
many recent distributed systems [16, 36] owing to its sim-
plicity and its ability to achieve high robustness in the face of
node failures. Such techniques work especially well in cluster
environments due to the reliability and high performance of
system-area networks. Our discussion in this paper focuses
on “soft state”-based membership management.

The first approach we consider employs a dedicated cen-
tral node which maintains the complete cluster-wide ser-
vice availability information as soft state. More specifically,
each cluster node sends periodic refreshing messages con-
taining local service availability information to the central
node. Such information expires on the central node as soon
as a certain number (called ezpiration threshold) of consec-
utive periodic messages are not received. The frequency of
the periodic refreshing messages and the expiration thresh-
old are chosen such that a failing or departing node can be
removed from all live nodes’ local view soon enough. In
order to allow service lookups be performed locally, the cen-
tral node periodically broadcasts the complete cluster-wide
service availability information to all nodes. Although the
dedicated central node receives a large number of messages
in each period, the protocol overhead at a service node is
very small (i.e., the transmission of a periodic message and
the receipt of another).

Our second approach, called all-to-all broadcast, employs a
functionally symmetric architecture. In this approach, each
node periodically broadcasts the local service availability in-
formation to all other nodes. This information is maintained
at each node as soft state such that it has to be refreshed

! An operational definition of soft state: a source of soft state
transmits periodic “refresh messages” to one or more re-
ceivers that maintain a copy of that state, which ezpires if
the periodic messages cease.
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Figure 7: Comparison on the request drop rate for a 12-hour period with increasing service demands.

repeatedly to stay alive. To locate a service in the clus-
ter, a node can simply iterate through local copies of service
availability broadcasts received from other nodes in the clus-
ter. At each service node, the bandwidth consumption and
processing overhead for service broadcasts scale up linearly
when the cluster size increases. Such linear-scaling over-
head, although tolerable (quantitatively measured in Sec-
tion 4.2), still represents a sizable performance penalty for
large-scale network services.

In order to control the protocol overhead, we introduce an-
other approach for service availability management called
suppressive broadcast (illustrated in Figure 5). Like all-to-all
broadcast, all nodes in this approach run functionally equiv-
alent software. However, it differs from all-to-all broadcast
in the following ways. First, each service broadcast contains
the complete cluster-wide service availability information
that the sender knows. Second, a node suppresses its own
broadcast if it has received a service broadcast from another
cluster node (called node X) in the past 7 periods. If its own
broadcast is suppressed, the node sends periodic messages
containing local service availability information to node X.
As long as the broadcaster (node X) is alive, the suppres-
sion scheme ensures that only a single service broadcast is
sent out during each period in the entire cluster. When
node X fails, another node in the cluster will take over after
it detects the absence of 7 consecutive service availability
broadcasts. To reduce the chance of multiple nodes trying
to take over simultaneously, each node employs a non-fixed
period length which is set to be evenly distributed between
(1-0)P and (146)P, where P is the average period length.
However, this approach does not eliminate the possibility
of a simultaneous takeover. When that occurs, all nodes

that made the attempts will be suppressed by each other’s
broadcasts. New takeover attempts will be made again until
one node emerges as the broadcaster without colliding with
other nodes’ attempts. Note that the chance of consecutive
collisions is very low after several attempts.

Since the broadcaster receives a large number of messages
in each period, it consumes more bandwidth consumption
and processing overhead compared with a regular service
node. For load balancing, the broadcaster can voluntarily
relinquish the role after a certain number of periods. It can
do so by simply ceasing the service availability broadcast.

4. EXPERIMENTAL EVALUATION

We have made a prototype implementation of our proposed
designs of energy-conserving server consolidation and service
availability management. In this section, we show evaluation
results on the effectiveness of our designs in meeting desired
performance and policy objectives. We use different evalua-
tion methodologies for the two clustering support elements.
Due to the simplicity of the service availability management,
our evaluation is based on a real-time emulation which al-
lows us to assess large-scale systems that exceed the limita-
tion of our experimental platform. For server consolidation,
an effective evaluation requires the integration with a real
online service application. For the purpose of evaluation, we
incorporated our proposed design into the Neptune cluster-
ing middleware system [36] and we experimented with an
online index searching application on a 117-server cluster.
We believe the choice of a particular clustering middleware
in this experimentation does not affect the applicability of
our proposed design techniques.
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4.1 Evaluation on Energy-Conserving Server
Consolidation

We evaluate the effectiveness of the proposed functionally
symmetric server consolidation scheme for conserving power
consumption. We also examine whether it achieves this
without affecting the system performance in terms of through-
put and service response time. The experiments were con-
ducted on a 117-server cluster. All servers run Linux kernel
version 2.4.21. Each server has two 1.4GHz processors and
4GB memory. We ran a prototype search engine index ser-
vice (shown in Figure 1) with 10 partitions, each of which
has 8 replicas. Each partition has about 2GB data which
can completely fit into the memory. Thus there is little disk
activity after an index service is warmed up. An additional
service was deployed to aggregate results from all partitions.
We replicated this aggregation service into 32 replicas to
make sure it is not the bottleneck. Four machines were used
as testing clients to drive the system. Omne remaining ma-
chine was used as the Executive in the centralized approach.
Server consolidation schemes were applied to the 80 index
servers. Since online users usually demand interactive re-
sponses, requests that could not be completed at an index
server within two seconds are dropped.

We first collected a 12-hour trace (2am—2pm, US Eastern
time) from an edge web server of Ask Jeeves search [4], which
covers the trough and the peak of a one-day traffic. Queries
were extracted from the trace to create a query trace file and
the request arrival rates were calculated for every minute
during the 12-hour period. Then we scaled the arrival rate
up to 80% of the maximum throughput of the index system
with 80 active servers. The maximum throughput was mea-

sured as the maximum request arrival rate at which the sys-
tem could maintain a below-2% request drop rate. Finally,
we cyclically played the query trace file using the extrapo-
lated arrival rate for 12 hours. For every minute, the request
arrival was modeled as a Poisson process with the extrapo-
lated arrival rate. We periodically collected the aggregated
throughput, the average response time, and the number of
active servers at 30-second intervals.

We used the request queue length and the 95 percentile re-
sponse time to assess the load of a server as we have dis-
cussed in Section 3.2. A server will try to power up a dor-
mant machine if its queue length is larger than 8.00 or its
assessed service response time is more than 120ms. The de-
caying factors a and 3 are set as 0.85 and 0.95 respectively.
A server will power down itself if its queue length is less than
0.80 and the response time is less than 70ms. In the cen-
tralized approach, every index server sends its queue length
and response time to the Executive every second. The Exec-
utive computes the average queue length and response time
of all replicas. Then it uses the same strategies as the func-
tionally symmetric approach with the following parameters:
5.50 and 110ms as the high-load watermarks for the queue
length and the response time respectively; 0.75 and 70ms as
the low-load watermarks. It uses the same decaying factors
as the functionally symmetric approach. It takes around 90
seconds to power up a dormant server and initialize its in-
dex service. The power consumption of a sample server is
measured as 165 watts when its processors are fully utilized.

Figure 6 shows the request arrival rate during the 12-hour
period. The request arrival rate gradually grows from 22 re-
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Figure 11: Comparison on the power consumption for a 12-hour period with decreasing service demands.

quests per second to 202 requests per second. Figure 7 com-
pares the request drop rate between the functionally sym-
metric approach and the centralized approach. We can see
that the functionally symmetric approach achieves similar
low request drop rate as the centralized approach. In aver-
age, the mean drop rate for both approaches is around 0.01
request per second. This is less than 0.01% of all incom-
ing requests (the average incoming request rate is 109.7 re-
quests/second).

Figure 8 presents the service response time over the 12-hour
period. For both approaches, the response time is effec-
tively maintained at a low level when the service demand
increases. The mean response time is measured as 87.3ms
for the functionally symmetric approach, and 81.8ms for the
centralized approach.

Figure 9 demonstrates the effectiveness of energy conserva-
tion for both approaches. The left Y axis shows the number
of active servers during the test period, and the right Y axis
shows the estimated power consumption rate of all the in-
dex servers. The mean number of active servers is 59 for the
functionally symmetric approach, and 56 for the centralized
approach. In other words, the centralized approach saved
47 kilowatts in average during the 12-hour test while the
functionally symmetric approach saved 42 kilowatts, which
is around 90% of the energy saved in the centralized ap-
proach. It is worth noticing that the curve of the central-
ized approach is smoother than that of the peer-to-peer ap-
proach. This is because each node in the peer-to-peer ap-
proach makes independent protocol decision according to its
local view, which can result in conflicting decisions occasion-
ally.

We also compared the functionally symmetric approach with
the centralized approach when the service demand decreases.
Figure 10 shows the request arrival rate for the 12-hour
period (2pm—2am, US Eastern time) with decreasing ser-
vice demands. We use the same protocol parameters as in
the previous experiments. Our experiments show that the
functionally symmetric approach also achieves similar per-
formance compared to the centralized approach in this set-
ting. The mean request drop rate during the 12-hour period
is still maintained at 0.01 request per second for both ap-
proaches. The mean response time is 87.2ms for the func-
tionally symmetric approach and 82.4ms for the centralized
approach. Figure 11 compares the energy conservation for
the both approaches. The average number of active servers
is 58 for the functionally symmetric approach and 57 for the
centralized approach.

Overall, our experiments show that the proposed function-
ally symmetric design perform very close (with at most 10%
difference) to the centralized approach on all three perfor-
mance and policy objectives: low service response time, low
request drop rate, and energy conservation.

4.2 Evaluation on Service Availability Man-
agement

Protocol overhead for service availability management can
be very significant for large-scale systems. In this section,
we measure the overhead of the centralized approach, all-to-
all broadcasts, and suppressive broadcasts at various clus-
ter sizes. The purpose of this evaluation is to see whether
our proposed functionally symmetric approach can support
service availability management without incurring excessive
overhead for large-scale clusters. Since our purpose is not
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to propose the best service availability management scheme,
we do not compare with classical membership management
schemes that are not based on soft state broadcasts [9, 21,
24, 31].

For the service availability management techniques in our
study, the main overhead at each node includes the incom-
ing link bandwidth consumption and the CPU consump-
tion on message processing. In our experiments, the ser-
vice availability announcements are made through UDP/IP
broadcasts and the average broadcast frequency is one per
second (i.e., P = 1 second) for all service availability man-
agement schemes. In order to evaluate large clusters, we use
an emulation technique in this study. For an N-node clus-
ter, we simulate N — 1 nodes using real-time discrete-event
simulation while one target node runs the real code. Our
overhead measurement then focuses on the target node. For
instance, the target node receives about N —1 UDP service
availability announcements each second under the all-to-all
broadcast approach. For the centralized approach, we only
measure the overhead of a regular service node. Note that
the protocol overhead at the central node is much higher.

We assess the overhead of the service availability manage-

ment by running a service application on the target node and
measuring the application performance penalty caused by
the employment of the management protocol. In order to as-
sess the CPU overhead and the network bandwidth overhead
separately, we use one CPU-bound micro-benchmark and
another micro-benchmark whose performance is bounded by
the incoming network bandwidth. Figure 12 shows the slow-
down of the CPU-bound micro-benchmark due to the over-
head of each of the three service availability management
schemes. Figure 13 shows such slowdown for the bandwidth-
bound micro-benchmark. Experiments were conducted on
Linux servers with two different CPU configurations (dual
400MHz Pentium IIs and dual 1.26GHz Pentium IIIs) and
two typical network link bandwidths (100Mbps Ethernet
and 1Gbps Ethernet). All Linux servers are equipped with
the kernel version 2.4.20. We assume the information about
locally available services at each node is about 256 byte
large. Therefore, each broadcast message has 256 byte pay-
load in average for all-to-all broadcasts. Since the broad-
cast messages in suppressive broadcasts contain the com-
plete cluster-wide service availability information, their sizes
are much larger at around NV x 256 bytes. Note that most op-
erating systems place an upper bound on the size of a UDP
segment. We broke a large broadcast message into multiple



UDP segments of 8KB each. We do not include the over- nodes). Additionally, our work differs from these systems by

head of middleware or application-level message processing targeting online service clustering support and by employ-
in this emulation, so only the minimum kernel-level protocol ing distributed management schemes that do not compro-
processing overhead is considered in the CPU overhead. mise the unique performance and policy objectives desired

by online services.
For all-to-all broadcasts, results in Figure 12 and Figure 13

show a linear increase in application slowdown, with up Wide-area peer-to-peer systems and applications. Re-
to 5.5% and 4.3% slowdown for the network-bound micro- cent peer-to-peer projects have studied the design and im-
benchmark and the CPU-bound micro-benchmark respec- plementation of a number of important wide-area systems
tively on 2048-node clusters. Such an overhead may be ex- and applications, such as distributed hash tables [30, 32, 39]
cessive for application services running on large-scale sys- and storage systems [11, 19, 33]. Many of these systems
tems. Suppressive broadcasts improve the system scalabil- demonstrate great potential in providing a higher degree of
ity by significantly reduce the overhead for large clusters. robustness than hierarchical approaches for the construction
Its protocol overhead is very close to that of the centralized of global-scale distributed systems. In addition to the non-
approach at all settings. This is because typically only a hierarchical nature of these systems, they often employ non-
single large broadcast message needs to be processed dur- deterministic approaches paired with slow-scaling overhead
ing each period under both suppressive broadcasts and the to achieve high scalability and robustness. Despite these
centralized approach. Compared with all-to-all broadcasts, successes, it is not straightforward to apply peer-to-peer de-
suppressive broadcasts save up to 80% on the CPU over- sign principles in improving the robustness of cluster-based
head and up to 36% on the network resource consumption. network services. First, online service applications often de-
The performance difference is less significant for the network mand distinct performance requirements and policy objec-
overhead because the total application-level traffic volume tives. Those requirements are often treated as secondary
is the same between the two schemes. Although suppressive goals in wide-area peer-to-peer systems. Second, we believe
broadcasts produce fewer number of broadcast messages, that maintaining slow-scaling overhead is not a significant is-
each one of them is much larger. The main performance ad- sue due to better network performance and relatively smaller
vantage comes from savings on the lower-level (e.g., network sizes of local-area server clusters.
and link-layer) network overhead such as packet headers due
to fewer number of messages in suppressive broadcasts. Cluster-wide resource management. A large body of
previous work has addressed issues in request distribution
Overall, our experiments demonstrate that the suppressive and resource management for cluster-based server systems,
broadcast approach, based on a functionally symmetric soft- focusing on quality-of-service support [3, 34, 42], energy
ware architecture, can satisfy specified policy objectives with- conservation [8, 27], or locality-aware load distribution [26].
out incurring excessive overhead for large-scale cluster-based Most of these studies rely on centralized or hierarchical ar-
network services (0.22% CPU overhead on dual 1.26GHz chitectures to manage cluster-wide resources. For instance,
Pentium IIT and 1.00% network overhead on 1Gbps Ether- demand-driven service differentiation (DDSD) provides a
net for a 1000-node service cluster). centralized server partitioning approach to differentiating
multiple classes of service requests [42]. As another example,
5. RELATED WORK Chase et al. proposed to support optimal energy-conserving

server consolidation through solving a constrained optimiza-
tion problem at a central Executive node [8]. We argue
that decentralized architectures have the potential to pro-
vide better robustness and scalability. In particular, we
constructed a functionally symmetric resource management
framework supporting energy-conserving server consolida-
tion. Our performance evaluation demonstrates its effective-
ness in achieving desired resource management objectives.

We discuss the related work to this paper in the following
categories.

Software infrastructure for cluster-based network ser-
vices. Previous studies investigated techniques for provid-
ing software infrastructure supporting online network ser-
vices [15, 18, 41]. While many of these studies discussed sys-
tem availability issues in the wake of server failures, there is
still a lack of systematic understanding on how to construct
robust service clustering support against random server fail-
ures, fluctuating service loads, and uncoordinated service
enhancements and server additions. With the proliferation
of fast growing network services, achieving high robustness
becomes increasingly important. This paper promotes the
concept of constructing robust cluster-based network ser-
vices using functionally-symmetric architectures.

Service availability management for cluster-based sys-
tems. Earlier distributed computing research examined
membership management protocols in asynchronous distributed
systems [9, 21, 24, 31]. Providing service fail-over and mi-
gration support for off-the-shelf applications is the focus of
the SunSCALR project [38] and the Microsoft cluster service
(MSCS) [40]. These solutions tend to be complex in proto-
col handshakes during membership changes, and even more
so in dealing with concurrent asynchronous events. On the
other hand, soft state-based system state maintenance has
been used in many network protocols to achieve high robust-
ness in the face of random link or node failures [29]. Mo-
tivated by these studies, a soft state-based non-hierarchical
approach for maintaining cluster-wide service availability in-
formation was used in our prior work [37]. This scheme,
however, incurs excessive overhead for large-scale systems.

Earlier decentralized distributed systems. Decentral-
ized distributed management has been studied in the past.
For instance, the MOSIX distributed operating system em-
ploys a decentralized load balancing scheme based on prob-
abilistic algorithms [5]. xFS is a serverless file system that
eliminates centralized servers by distributing the functional-
ity of the server among the clients [2]. Those earlier systems
were deployed at relatively small scale (e.g., several dozens



Our contribution in this paper is the design and evaluation
of a more scalable service availability management scheme
based on functionally symmetric software architecture.

6. CONCLUDING REMARKS

Functionally symmetric software architectures have great
potential in providing a high degree of robustness for build-
ing large-scale distributed systems. This paper examines
utilizing such design architectures in providing clustering
support for online network services. Our key goal is to
achieve high system robustness without compromising per-
formance and policy objectives desired by online applica-
tions. In particular, this paper presents functionally sym-
metric designs of two clustering support elements: energy-
conserving server consolidation and service availability man-
agement. Our emulation and experimentation on a 117-
server cluster demonstrate the effectiveness of proposed tech-
niques compared with centralized approaches.

Different clustering support elements desire a diverse range
of performance and policy objectives. Our study in this
paper is limited to two specific service clustering support
elements and further work is needed to extend to additional
clustering support. Nonetheless, we believe our experience
serves as an important step for providing comprehensive net-
work service clustering support using functionally symmet-
ric architectures.
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