
E�cient Sparse LU Factorization with Lazy Space Allocation

Bin Jiang�� Steven Richmany� Kai Shenz� Tao Yangx

Abstract

Static symbolic factorization coupled with �D supernode partitioning and asyn�
chronous computation scheduling is a viable approach for sparse LU with dynamic
partial pivoting� Our previous implementation� called S�� uses those techniques and
achieves high giga�op rates on distributed memory machines� This paper studies the
space requirement of this approach and proposes an optimization strategy called lazy
space allocation which acquires memory on�the��y only when it is necessary� This strat�
egy can e�ectively control memory usage� especially when static symbolic factorization
overestimates �ll�ins excessively� Our experiments show that the improved S� code�
which combines this strategy with elimination�forest guided partitioning and schedul�
ing� has sequential time and space cost competitive with SuperLU� is space scalable
for solving problems of large sizes on multiple processors� and can deliver up to ��
GFLOPS on ��	 Cray 
��Mhz T�E nodes�

� Introduction

Solution of sparse linear systems is a computational bottleneck in many problems�
When dynamic pivoting is required to maintain numerical stability in using direct
methods for solving non�symmetric linear systems� it is hard to develop high performance
parallel code because partial pivoting causes severe caching miss and load imbalance on
modern architectures with memory hierarchies� The previous work such as SuperLU ���
has addressed parallelization using shared memory platforms� For distributed memory
machines� in ��� ��� we proposed an approach that adopts a static symbolic factorization
scheme ��	� to avoid data structure variation� identi
es data regularity to maximize the
use of BLAS�� operations� and utilizes graph scheduling techniques and e�cient run�time
support ���� to exploit irregular parallelism�

Recently ��
� we have further studied the properties of elimination forests to guide
supernode partitioning�amalgamation and execution scheduling� The new code with 	D
mapping� called S�� e�ectively clusters dense structures without introducing too many zeros
in the BLAS computation� and uses supernodal matrix multiplication to retain the BLAS��
level e�ciency and avoid unnecessary arithmetic operations� The experiments show that
S� improves our previous code substantially and can achieve up to �����GFLOPS on �	�
Cray ���MHz T�E nodes�

Our previous evaluation shows that for most of tested matrices� static symbolic
factorization provides fairly accurate prediction of nonzero patterns and only creates ��� to

�Department of Computer Science� University of California Santa Barbara� CA ������
hjiang�cs�ucsb�edu

yDepartment of Computer Science� University of California Santa Barbara� CA ������ joy�cs�ucsb�edu
zDepartment of Computer Science� University of California Santa Barbara� CA ������ kshen�cs�ucsb�edu
xDepartment of Computer Science� University of California Santa Barbara� CA ������ tyang�cs�ucsb�edu

�



	

��� more 
ll�ins compared to dynamic symbolic factorization used in SuperLU� However�
for some matrices static symbolic factorization creates too many 
ll�ins and our previous
solution does not provide a smooth adaptation in handling such cases� For these cases�
we 
nd that the prediction can contain a signi
cant number of 
ll�ins that remain zero
throughout numerical factorization� This indicates that space allocated to those 
ll�ins is
unnecessary�

Thus our 
rst space�saving strategy is to delay the space allocation decision and acquire
memory only when a submatrix block becomes truly nonzero during numerical computation�
Such a dynamic space allocation strategy can lead to a relatively small space requirement
even if static factorization excessively over�predicts nonzero 
ll�ins� Another strategy we
have proposed is to examine if space recycling for some nonzero submatrices is possible since
a nonzero submatrix may become zero during numerical factorization due to pivoting� This
has the potential to save signi
cantly more space since the early identi
cation of zero blocks
prevents their propagation in the update phase of the factorization� In the rest of this paper�
we will use S� to denote the original S� code and use LazyS� to denote the improved S�

by using proposed space optimization strategies�
The rest of this paper is organized as follows� Section 	 gives the background knowledge

of sparse LU factorization� Section � presents two space optimization strategies� Section �
describes the experimental results of sequential performance� Section � presents the
experimental results of parallel performance� Section 
 concludes the paper�

� Background

Static symbolic factorization� Static symbolic factorization is proposed in ��	� to
identify the worst case nonzero patterns without knowing numerical values of elements�
The basic idea is to statically consider all the possible pivoting choices at each elimination
step and the space is allocated for all the possible nonzero entries� Using an e�cient
implementation of the symbolic factorization algorithm ����� this preprocessing step can
be very fast� For example� it costs less than one second for most of our tested matrices�
at worst it costs 	 seconds on a single node of Cray T�E� and the memory requirement
is relatively small� The dynamic factorization� which is used in the sequential and share�
memory versions of SuperLU ����� provides more accurate data structure prediction on
the �y� but it is challenging to parallelize SuperLU with low runtime control overhead on
distributed memory machines�

In ��� ���� we show that static factorization does not produce too many 
ll�ins for most
of the tested matrices� even for large matrices using a simple matrix ordering strategy
�minimum degree ordering�� For few tested matrices� static factorization generates an
excessive amount of 
ll�ins which in turn costs a large amount of space and time for LU
factorization� In this paper we will use lazy allocation to reduce the actual usage of space
for those matrices�

Elimination forests� Considering an n � n sparse matrix A� we assume that every
diagonal element of A is nonzero� Notice that for any nonsingular matrix which does not
have a zero�free diagonal� it is always possible to permute the rows of the matrix so that the
permuted matrix has a zero�free diagonal ���� In ��
�� we propose the following de
nitions
which will also be used in the rest of this paper� We still call the matrix after symbolic
factorization as A since this paper assumes the symbolic factorization is conducted 
rst�
Let ai�j be the element of row i and column j in A and ai�j�s�t be the submatrix of A from
row i to row j and column s to t� Let Lk denote column k of the L factor� which is ak�n�k�k�



�

Let Uk denote row k of the U factor� which is ak�k�k�n� Also let jLkj and jUkj be the total
number of nonzeros and 
ll�ins in those structures�

Definition ���� An LU Elimination forest for an n � n matrix A has n vertices
numbered from � to n� For any two vertices k and j �k � j�� there is an edge from

vertex j to vertex k in the forest if and only if akj is the �rst o��diagonal nonzero in Uk

and jLkj � �� Vertex j is called the parent of vertex k� and vertex k is called a child of

vertex j�
An elimination forest for a given matrix can be generated in a time complexity of

O�n� and it can actually be a byproduct of the symbolic factorization� The following two
theorems demonstrate the properties of an LU elimination forest� Theorem 	�� captures
the structural containment between two columns in L and two rows in U � which will be
used for e�cient supernode partitioning and amalgamation which is described in the next
subsection� Theorem 	�	 indicates data dependencies in the numerical elimination� which
can guide our parallel code in scheduling asynchronous parallelism� The details of the
analysis are in ��
��

Theorem ���� If vertex j is the ancestor of vertex k �i�e�� there is a path from

vertex j to vertex k� in the elimination forest� then Lk � fk� k � �� � � � � j � �g � Lj and

Uk � fk� k � �� � � � � j � �g � Uj�

Theorem ���� Lj will be used to directly or indirectly update Li in LU factorization if

and only if vertex i is an ancestor of vertex j in the elimination forest�

�D L�U supernode partitioning and amalgamation� After the nonzero 
ll�in
pattern of a matrix is predicted� the matrix is further partitioned using a supernodal
approach to improve the caching performance� In ����� a nonsymmetric supernode is de
ne
as a group of consecutive columns in which the corresponding L factor has a dense lower
triangular block on the diagonal and the same nonzero pattern below the diagonal� Based
on this de
nition� in each column block the L part only contains dense subrows� We call this
partitioning method L supernode partitioning� Here by �subrow� we mean the contiguous
part of a row within a supernode�

After an L supernode partition has been obtained on a sparse matrix A� the same
partitioning is applied to the rows of the matrix to further break each supernode into
submatrices� This is also known as U supernode partitioning� In ����� we show that
after the L�U supernode partitioning� each diagonal submatrix is dense� and each nonzero
o��diagonal submatrix in the L part contains only dense subrows� and furthermore each
nonzero submatrix in the U factor of A contains only dense subcolumns� This is the key
to maximize the use of BLAS�� subroutines �
� in our algorithm� And on most current
commodity processors with memory hierarchies� BLAS�� subroutines usually outperform
BLAS�	 subroutines substantially when implementing the same functionality �
�� In ��
��
we further show that supernode partitioning can be performed in time complexity O�n� by
using elimination forests�

Figure � illustrates an example of a partitioned sparse matrix and the black areas depict
dense submatrices� subrows and subcolumns�

Another technique called amalgamation can be applied after supernode partitioning to
further increase the supernode size and improve the caching performance� This can be done
in time complexity O�n� by using the properties of elimination forests and are also very
e�ective ��
��

�D data mapping and asynchronous parallelism exploitation� Given an n� n
matrix A� assume that after the matrix partitioning it has N � N submatrix blocks� For
example� the matrix in Figure � has ��� submatrices� Let Ai�j denote a submatrix of A with



�

4 5 6 7 8

1

2

8

21 3

3

4

5

7

6

Fig� �� Example of a partitioned sparse matrix�

row block index i and column block index j� We use 	D block�cyclic mapping� processors
are viewed as a 	D grid� and a column block of A is assigned to a column of processors�
	D sparse LU Factorization is more scalable than the �D data mapping ���� However 	D
mapping introduces more overhead for pivoting and row swapping� Each column block k
is associated with two types of tasks� Factor�k� and Update�k� j� for � � k � j � N �
�� Task Factor�k� factorizes all the columns in the k�th column block� including 
nding
the pivoting sequence associated with those columns and updating the lower triangular
portion of column block k� The pivoting sequence is held until the factorization of the
k�th column block is completed� Then the pivoting sequence is applied to the rest of the
matrix� This is called �delayed pivoting� ���� 	� Task Update�k� j� uses column block k
�Ak�k� Ak���k� � � � � AN�k� to modify column block j� That includes �row swapping� using
the result of pivoting derived by Factor�k�� �scaling� which uses the factorized submatrix
Ak�k to scale Ak�j� and �updating� which uses submatrices Ai�k and Ak�j to modify Ai�j for
k � � � i � N � Figure 	 outlines the partitioned LU factorization algorithm with partial
pivoting�

for k � � to N
Perform task Factor�k��
for j � k � � to N with Akj �� �

Perform task Update�k� j��
endfor

endfor

Fig� �� Partitioned sparse LU factorization with partial pivoting�

In ��
�� we have proposed an asynchronous scheduling guided by elimination forest�
This strategy enables the parallelism exploitation among Factor�� tasks which used to be
serialized by previous scheduling strategies�

� Space Optimization Techniques

As we mentioned in Section �� static symbolic factorization may produce excessive amount
of 
ll�ins for some test matrices� This makes our S� LU factorization very space and
time consuming for these matrices� How to save space and speed up LU for these matrices
becomes a very serious problem for us� In this section� we introduce two techniques to solve



�

this problem� The 
rst technique� called delayed space allocation� delays the allocation of
space for a block until some of its elements truly becomes nonzero� The second technique�
called space reclamation� deallocates space for previously nonzero blocks which become
zeros at some step of the factorization�

��� Delayed space allocation

Since symbolic factorization can introduce many more 
ll�ins than the nonzeros of the
original matrix� the blocks produced during L�U supernode partitioning basically are of
the following three types�

�� Some elements in a block are nonzeros in the original matrix� For this type of blocks�
we should allocate the space for it in advance�

	� All the elements in a block are zeros in the original matrix during the initialization�
but some elements become nonzeros during the numerical factorization� For this
type of blocks� we don�t allocate space for them at 
rst and will allocate space when
nonzero elements are produced later on�

�� All the elements in the block are zeros in the original matrix during the initialization�
and remain zeros throughout numerical factorization� For this type of blocks� we
should not allocate space for them�

Our experiments showed that the matrices on which S� code didn�t run well �i�e�� S�

needed a lot of space and time� contain ���	�� of type � blocks� i�e�� blocks which always
remain zero from beginning to end� In S�� these blocks occupied space and were involved
in the numerical factorization even though they did nothing� thereby wasting a lot of time
and space�

Therefore we use di�erent space allocation policies for di�erent types of blocks in
the matrices� The general idea is to delay the space allocation decision and acquire
memory only when a block becomes truly nonzero during numerical computation� Such a
dynamic space allocation strategy can lead to a relatively small space requirement even if
static factorization excessively over�predicts nonzero 
ll�ins� We discuss the impact of this
strategy in the following aspects�

� For the relatively dense matrices� this strategy has almost the same e�ect as without
using it since almost all the blocks produced at the step of supernode partitioning
contain at least some nonzeros in it or will have some nonzeros during numerical
factorization� the number of blocks of type � is very small� Thus lazy allocation won�t
save a lot of space for those matrices�

� However for the relatively sparse matrices which contain many blocks of types �� the
lazy allocation technique will never allocate the space for those blocks of type �� The
space saving is obvious�

� Further savings can be reaped in another part of our code� numerical factorization�
First of all� each Factor task in numerical factorization needs to factorize one column
block� And all zero blocks are unnecessary to get involved into this task� But as long
as a block is recognized as a nonzero block in numeric factorization� S� still ran it
even though it may be actually a zero block during numeric factorization� However�
in LazyS� with delayed space allocation� those actually zero blocks are not allocated






space throughout the numerical factorization and they will be treated as zero blocks
without getting involved into the numerical factorization� The Update tasks are the
most time consuming part of numerical factorization� Update�k� j� uses blocks Ai�k

and Ak�j to update block Ai�j for every k � i � N � If either Ai�k or Ak�j is a zero
block� it is unnecessary to update block Ai�j in this task �see Figure ��� However�
S� code updated every Ai�j if both Ai�k and Ak�j are recognized as nonzero blocks
by symbolic factorization even though one of them is a zero block during numeric
factorization� Therefore a lot of time was wasted in unnecessary updating� LazyS�

with delayed space allocation gets rid of this shortcoming� It 
rst checks block Ak�j� If
it is a zero block� the whole Update�k� j� task is skipped �see Figure ��a��� Otherwise�
is picks up the nonzero blocks Ai�k in column k� and update the corresponding blocks
Ai�j �see Figure ��b���

k j

A A

A A

A A

A A

kk kj

ik ij

ik ij

ik ij

Fig� �� Illustration of Update
k� j� task�

(b)

k j

A A

A A

A A

A A

kk kj

ik ij

ik ij

ik ij

k j

A A

A A

A A

A A

kk kj

ik ij

ik ij

ik ij

(a)
nonzero blocks in numeric factorization

nonzero blocks recognized by symbolic factotization,
but are actually zero blocks in numeric factorization

Fig� �� Illustration of Update
k� j� task with delayed space allocation�



�

��� Space reclamation

Our experiments also show that some nonzero blocks which have been assigned space will
become zero blocks later on due to pivoting� Since zero blocks don�t need space any more�
we can collect the space of these blocks� Therefore we can save the space they occupied�
Furthermore� these blocks won�t appear in future Factor�k� and Update�k� j� tasks which
saves unnecessary computation time� This is our second strategy of space optimization�

The execution of task Update�k� j� uses blocks Ai�k and Ak�j to update block Ai�j for
every k � i � N � If block Ai�k has been allocated space earlier due to some nonzero
elements in it but at this time contains only zeros due to pivoting� the bene
ts of this space
reclamation strategy are considerable in several ways� Without this strategy� Ai�k would
still be treated as a nonzero block� and it would still get involved in task Update�k� j� which
is actually unnecessary� Furthermore� if the block Ai�j has not been allocated space before�
this unnecessary update would enforce a space allocation for Ai�j which is again unnecessary�
In the worst case� this situation would propagate along with the factorization process and
produce a considerable amount of wasted space and unnecessary computation� The space
reclamation strategy gets rid of this problem by checking if some formerly�nonzero blocks
on column block k or Ak�j have become zero in the beginning of task Update�k� j�� If they
have� their space will be deallocated and those blocks will also be excluded from future
computation�

� Experimental Studies on Sequential Performance

The sequential machine we use is a SUN �
�MHZ Ultra�� with �	�MB memory� �
KB L�
data cache and ��	KB L	 cache� We have compared our sequential code with SuperLU�
but not UMFPACK �	� because SuperLU has been shown competitive to UMFPACK ����
Table � lists the testing matrices which come from various application domains� All matrices
are ordered using the minimum degree algorithm on At � A matrix for a given matrix A�
In computing giga�op rates� we use operation counts reported by SuperLU for the tested
matrices� which excludes the extra computation introduced by static symbolic factorization�

Table �

Testing matrices and their application domains

Matrix Application Domain

sherman�� sherman�� orsreg�� saylr� oil reservoir simulation
goodwin �uid mechanics problem
e��r���� �uid dynamics
raefsky� buckling for a container model

dap��� ��D steady �ow calculation
af	��
�� vavasis PDE with varying coe�cients
TIa� TIb� TId� memplus� wang� circuit and device simulation

A Comparison of S�� LazyS� and SuperLU� The sequential performance of S��
SuperLU and LazyS� on the testing matrices is listed in Table 	� This result shows that
the space optimization strategies of LazyS� are e�ective for our testing matrices� especially
for circuit�device simulation matrices TIa� TId� memplus� TIb and wang�� Note that S�

and SuperLU cause paging on matrices TIb and wang� due to excessive space requirement�
In computing the average saving on time cost� we exclude the paging e�ects by not counting



�

matrices TIb and wang��
The results on Ultra�� show that on average� LazyS� uses ����� less space compared

to S�� Compared to SuperLU� our algorithm actually uses ���� less space on average
while static symbolic factorization predicts ��� more nonzeros� Notice that the space cost
in our evaluation includes symbolic factorization� This part of cost ranges from �� to ��
of the total cost� In terms of average time cost� LazyS� is about 	�� faster than SuperLU�
which is consistent to the results in ��
�� The reason is that we use a fast supernodal matrix
multiplication kernel which accommodates sparse space structure and has time performance
similar to BLAS��� We also use the newly�developed partitioning techniques based on
elimination�forests� It is possible that both LazyS� and SuperLU can be further tuned to
obtain better time and space performance� Thus the above measurements are illustrative
in assessing the competitiveness of our approach� Notice that time measurement excludes
symbolic preprocessing time� however� symbolic factorization in our algorithms is very fast
and takes only about ���� of numerical factorization time� In Table 	� the data inside the
parenthesis behind time of LazyS� indicates the time for symbolic factorization in LazyS�

and S��

Table �

Sequential performance on SUN Ultra��� A ��� implies the data is not available due to

insu�cient memory� Time is in seconds and space is in MBytes�

Matrix S� SuperLU LazyS� Exec� Time Ratio

Time Space Time Space Time Space LazyS�

SuperLU

LazyS�

S�

sherman� ���	 ����� ���� ����� ���� 
����� ����
 ����� �����
sherman� ���� ��	�� ���� ��
�� ���� 
����� ����� ����� ���


orsreg� ���	 ���		 ���� 
���� ���� 
����� 
�	�� ����� �����
saylr
 
��� ����� ���� 	���� ���� 
���
� ����
 ����
 ���	�

goodwin ����� ������ ���	� ������ �
��� 
��
�� ������ ����	 �����
e
�r���� ����	 	����� 		��� �����
 �
�	� 
����� 	����� ��	�� �����
raefsky
 ������ ������	 ��	��	 �	���
	 ����	� 
����� ������� ��	�	 �����
af����� ������ �	����� ������ �
	���	 ��	��
 
��
�� ������� ����� ����

�dap��� ��	��� �����	
 �����
 �	��
�� ������ 
���	� ������� ����� �����
TIa ���� ���
� ���� ����� ���	 
����� 	���� ���	� �����
TId ����� ����
	 ����� ���	
� ����� 
����� ������ ����� �����

memplus �

��
 ������� ������ 	����
 

��� 
����� ���
�	 ����	 �����
TIb ������� �
��
�� ������� ������� 	���	 

���� ��	�	�� ����
 �����

wang� �
����� 
�����	 � � �
���� 
��	�� �
	���� � ��
��

Sensitiveness on block size limit� The above experiments use the block size limit
	�� Table � shows the performance of LazyS� under di�erent block size limit� For most of
matrices where 
ll�in overestimation is not excessive�� when we reduce this limit to 	�� ���
��� and �� changes in space saving are insigni
cant while processing time increase gradually
due to degradation of caching performance� For matrices with high 
ll�in overestimation�
space saving is more e�ective when the block size is reduced� The reason is that when the
block size become smaller� the probability of a block being zero block is higher� Therefore
the lazy allocation strategy in LazyS� will become more e�ective�

E�ectiveness of space optimization� We also conducted experiments concerning
the e�ectiveness of two space optimization strategies� Table � shows the time and space
performance of S�� LazyS� and LazyS� without space reclamation� We can see that
the space reclamation plays a more important role than delayed allocation in the overall
improvement� And on average� the delayed allocation alone saves ���� in time and ��
�



�

Table �

Sequential performance of LazyS� with di�erent block size limits� Time is in seconds and space

is in MBytes�

Matrix �� �� �� �� �

Time Space Time Space Time Space Time Space Time Space

sherman� ���� ���	
 ���� ���	� ���� ����� ���� ����� ���	 �����

sherman� ���� ����	 ���� ����� ���� ���
� ���� ��	�� ���� �����

orsreg� ���� 
���� ���
 
�	�� ���� 
���� ���� 
���� ���
 
����

saylr
 ���� ����
 ���� ����� 
��� ����
 
�
� ��
�� 	��� �����

goodwin �
��� ������ �	�	� �����
 ����� ����	� ����� ������ ����� ����	�

e
�r���� �
��� ����	� ����� ������ �	�
� ������ ������ ������ ��
��� ����	�

raefsky
 	�	��� ������� 	����	 ������� ������ ������� ������ �����	� �	����� �������

af���	� �����
 �	����� ��	��� �	����	 �����	 ����	�	 ������ ������� ��
��� ����
��


dap��� �	��	� ������� ������ ����	�� ������ ������� 	����� ������� ������� ����
�	

TIa ���� ����� ���� ����� ��	� 	�		� ���� ����� ���� ���
�

TId ����� ���	�� ��
� ������ ���� ������ ���� ���	
� ���� ���
��

memplus 

��� 	��
	� ����� 	��	�� ����� 	����� ����� �	���� ����� 
��			

TIb ����� ������� 		��� �
���
 	���� ������ ����
 		���� �����
 �
����

wang� 	
���� �
����� ������ �����
	 	����� ������	 	����
 ����	�� �����	 ������	

in space while the two strategies combined saves 	���� in time and ����� in space� Note
that we exclude the paging e�ect in this calculation� i�e�� not counting matrices TIb and
wang� when calculating savings on time�

Table �

E�ectiveness of individual lazy strategy� Time is in seconds and space is in MBytes� The

percentage beside each number is the improvement over S��

Matrix LazyS� LazyS� without space reclamation S�

Time Space Time Space Time Space

sherman� ���� 

�� ����
 
����� ���� 
���� ����� 
��
�� ���	 �����
sherman� ���� 
����� ����� 
����� ���� 
������ ����	 
������ ���� ��	��
orsreg� ���� 
�	���� 
�	�� 
����� ���� 
��	�� ����� 
��		�� ���	 ���		
saylr
 ���� 
������ ����
 
����� 
��� 
������� ��
�� 
����� 
��� �����

goodwin �
��� 
��	��� ������ 
����� ���
� 
������� ����	� 
��
��� ����� ������
e
�r���� �
�	� 
������ 	����� 
������ ����	 
�
���� 	��	�� 
��
��� ����	 	�����
raefsky
 ����	� 
	���� ������� 
����� �	���� 
���� ������
 
����� ������ ������	
af����� ��	��
 
����� ������� 

���� ����
� 
���
�� ��	�	�� 
��
�� ������ �	�����
�dap��� ������ 
������ ������� 
����� ��
��� 
���� ����
�� 
��	�� ��	��� �����	

TIa ���	 
�	�� 	���� 
�
�� ���	 
���� ����� 

���� ���� ���
�
TId ����� 
���� ������ 
���	�� �	�	� 
	���� �	���� 
����� ����� ����
	

memplus 

��� 
�	�� ���
�	 
���� ������ 
����� ������� 
������ �

��
 �������
TIb 	���	 
�
�� ��	�	�� 
���� �����
	 
��� ����
�� 
	�� ������� �
��
��

wang� �
���� 
���� �
	���� 
���� �
�	�	� 
��� 
���	
� 
����� �
����� 
�����	

� Experimental Studies on Parallel Performance

Our experiments on Cray T�E show that the parallel time performance of LazyS� is still
competitive to S�� It is shown in Table � that LazyS� can achieve ������ GFLOPS on
matrix vavasis� which is not much less than the highest ����� GFLOPS achieved by S� on
�	� ���MHz T�E nodes� Table 
 is the performance on ���Mhz T�E nodes� Our study
focuses on relatively large matrices�



��

Table �

Time and MFLOPS performance of LazyS� and S� on ��	MHz Cray T
E� A ��� implies the

data is not available due to insu�cient memory� A ��� implies the data is not available due to

insu�cient CPU quota on this machine� Time is in seconds�

Matrix LazyS� P�� S� P�� LazyS� P��	� S� P��	�
Time MFLOPS Time MFLOPS Time MFLOPS Time MFLOPS

goodwin � � ��	� ����� � � ��
� ����

e��r���� � � ���
 
���� � � ���� ��
���
raefsky� � � ���
	 ����	 � � ���� 
�	
��
af	��
� � � ����� 
�	�� � � 	��� 		�	��
vavasis� ����� ���	�� 
	�
� ��	��
 ���	 ������� ���� �������
TIa ��
� ����
 ��
� �	��� ��	� ����� ��	
 ��
��
TId 	��� 	���� ���� 	���
 ���� ������ ���� ������
TIb �	��� ����� ����� ����� 	��� 	����� ���� ��	���
wang� ���
� ����� � � ���� �
���	 � �

Table � lists the parallel performance on ���MHz T�E nodes� the performance data
of LazyS� for some non circuit simulation matrices is not available due to the insu�cient
CPU quota on this machine �� Nevertheless� data on ���MHz T�E nodes in Table � actually
indicates that LazyS� is competitive with S� for these matrices� For the matrices with high

ll�in overestimation ratios� we observe that LazyS� with dynamic space management is
better than S�� It is about ���� faster on � processors and �	�� faster on �	� processors�
Matrix wang� can�t run on T�E using S� since they produce too many 
ll�ins from static
symbolic factorization� However LazyS� only allocates space if necessary� so considerable
space is saved for a large amount of zero blocks�

As for other matrices� we can see from Table 
 that on � ���Mhz processors LazyS�

is about �� slower than S� while on �	� processors� LazyS� is �� slower than S�� On
average� LazyS� tends to become slower when the number of processors becomes larger�
This is because the lazy allocation scheme introduces new overhead for dynamic memory
management and for row and column broadcasts �blocks of the same L�column or U�row�
now allocated in non�contiguous memory� can no longer be broadcasted as a unit�� This
new overhead a�ects critical paths� which dominate performance when parallelism is limited
and the number of processors is large� This problem tends to become more serious when
the number of processors is getting bigger�

� Concluding Remarks

The proposed space optimization techniques e�ectively reduce memory requirements when
static symbolic factorization creates an excessive amount of extra 
ll�ins� The new
algorithm with dynamic space management exhibits competitive sequential space and time
performance compared to SuperLU for the tested matrices� The parallel code becomes more
robust in handling di�erent classes of sparse matrices� In the future� it is interesting to study
impact of matrix ordering and compare the other approaches that handle nonsymmetric
matrices using as the multifrontal method ��� and static pivoting �����

�We will provide it when resource is available�



��

Table �

MFLOPS performance of S� and LazyS� on 
		MHz Cray T
E�

Matrix P�� P��	 P��	�
LazyS� S� LazyS� S� LazyS� S�

goodwin ����� ����� 
�
�� ��
�� ����� �	
��
e��r���� ����� ����	 ����	 ��	�� ���	�� �	�	��
raefsky� ����
 �
��	 ��		�� ������ ������ �����

af	��
� ����� ��	�� ������ ��
��� ������ ������
vavasis� ������ ����� ��
��� �����
 ��	��� ������

Acknowledgment� This work was supported in part by NSF CAREER CCR����	
��
and by DARPA through UMD �ONR Contract Number N

�����C������ We would like
to thank Horst Simon for providing access to the Cray ���Mhz T�E at NERSC�

References

��� P� R� Amestoy� I� S� Du�� and J��Y� L�Execellent� Multifrontal parallel distributed symmetric
and unsymmetric solvers� Technical Report RAL�TR��	����� Rutherford Appleton Laboratory�
���	�

��� T� Davis and I� S� Du�� An Unsymmetric�pattern Multifrontal Method for Sparse LU
factorization� SIAM Matrix Analysis � Applications� January �����

��� J� Demmel� Numerical Linear Algebra on Parallel Processors� Lecture Notes for NSF�CBMS
Regional Conference in the Mathematical Sciences� June �����

�
� J� Demmel� S� Eisenstat� J� Gilbert� X� Li� and J� Liu� A Supernodal Approach to Sparse
Partial Pivoting� Technical Report CSD����		�� EECS Department� UC Berkeley� September
����� To appear in SIAM J� Matrix Anal� Appl�

��� J� Demmel� J� Gilbert� and X� Li� An Asynchronous Parallel Supernodal Algorithm for
Sparse Gaussian Elimination� Technical Report CSD�����
�� EECS Department� UC Berkeley�
February ����� To appear in SIAM J� Matrix Anal� Appl�

��� J� Dongarra� J� Du Croz� S� Hammarling� and R� Hanson� An Extended Set of Basic Linear
Algebra Subroutines� ACM Trans� on Mathematical Software� �
��	���� ��		�

��� I� S� Du�� On Algorithms for Obtaining a Maximum Transversal� ACM Transactions on
Mathematical Software� �
����������� September ��	��

�	� C� Fu� X� Jiao� and T� Yang� A Comparison of ��D and ��D Data Mapping for Sparse LU
Factorization on Distributed Memory Machines� Proc� of 
th SIAM Conference on Parallel
Processing for Scienti�c Computing� March �����

��� C� Fu� X� Jiao� and T� Yang� E�cient Sparse LU Factorization with Partial Pivoting on
Distributed Memory Architectures� IEEE Transactions on Parallel and Distributed Systems�
�
����������� February ���	�

���� C� Fu and T� Yang� Sparse LU Factorization with Partial Pivoting on Distributed Memory
Machines� In Proceedings of ACM�IEEE Supercomputing� Pittsburgh� November �����

���� C� Fu and T� Yang� Space and Time E�cient Execution of Parallel Irregular Computations�
In Proceedings of ACM Symposium on Principles � Practice of Parallel Programming� June
�����

���� A� George and E� Ng� Parallel Sparse Gaussian Elimination with Partial Pivoting� Annals of
Operations Research� ��������
�� �����

���� X� Jiao� Parallel Sparse Gaussian Elimination with Partial Pivoting and ��D Data Mapping�
Master�s thesis� Dept� of Computer Science� University of California at Santa Barbara� August
�����



�	

��
� X� Li� Sparse Gaussian Elimination on High Performance Computers� PhD thesis� Computer
Science Division� EECS� UC Berkeley� �����

���� X� S� Li and J� W� Demmel� Making Sparse Gaussian Elimination Scalable by Static Pivoting�
In Proceedings of Supercomputing��
� ���	�

���� K� Shen� X� Jiao� and T� Yang� Elimination Forest Guided �D Sparse LU Factorization� In
Proceedings of the �	th ACM Symposium on Parallel Algorithms and Architectures� pages �����
June ���	�


