
Program Transformation and Runtime Support
for Threaded MPI Execution on Shared
Memory Machines

HONG TANG, KAI SHEN, and TAO YANG
University of California, Santa Barbara

Parallel programs written in MPI have been widely used for developing high-performance applications on various
platforms. Because of a restriction of the MPI computation model, conventional MPI implementations on shared
memory machines map each MPI node to an OS process, which can suffer serious performance degradation in the
presence of multiprogramming. This paper studies compile-time and runtime techniques for enhancing perfor-
mance portability of MPI code running on multiprogrammed shared memory machines. The proposed techniques
allow MPI nodes to be executed safely and efficiently as threads. Compile-time transformation eliminates global
and static variables in C code using node-specific data. The runtime support includes an efficient and provably-
correct communication protocol that uses lock-free data structure and takes advantage of address space sharing
among threads. The experiments on SGI Origin 2000 show that our MPI prototype called TMPI using the pro-
posed techniques is competitive with SGI’s native MPI implementation in a dedicated environment, and that it
has significant performance advantages in a multiprogrammed environment.

Categories and Subject Descriptors: B.3.2 [Memory Structures]: Design Styles—Shared memory; D.1.3 [Pro-
gramming Techniques]: Concurrent Programming—Parallel programming; D.3.2 [Programming Languages]:
Language Classifications—Concurrent, distributed, and parallel languages; D.3.4 [Programming Languages]:
Processors—Preprocessors; Run-time environments; D.4.1 [Operating Systems]: Process Management—Mul-
tiprocessing / multiprogramming / multitasking; E.1 [Data Structures]: —Lists, stacks, and queues

������� �����	 Design, Performance, Languages, Algorithms, Experimentation

���
����� ��� ����� ��� �������	 MPI, program transformation, lock-free synchronization, threaded
execution, shared memory machines, multiprogrammed environments

1. INTRODUCTION

The Message-Passing Interface (MPI) [MPI-Forum 1999; Snir et al. 1996] is the de facto
industry standard for developing high-performance parallel applications on various plat-
forms. People use MPI on shared memory machines (SMMs) mainly because MPI pro-
grams with coarse grain parallelism can perform as well as other parallel programming
models for SMMs such as threads or OpenMP, while retaining source level portability

This work has been partially supported by NSF CCR-9702640 and by DARPA through UMD (ONR Contract
Number N6600197C8534).
A shorter version of this paper appeared in the Proceedings of 7th ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming (PPoPP’99).
Authors’ addresses: Department of Computer Science, University of California, Santa Barbara, CA, 93106;
email: �htang, kshen, tyang�@cs.ucsb.edu.
Permission to make digital/hard copy of all or part of this material without fee is granted
provided that the copies are not made or distributed for profit or commercial advantage, the ACM
copyright/server notice, the title of the publication, and its date appear, and notice is given that
copying is by permission of the Association for Computing Machinery, Inc. (ACM). To copy
otherwise, to republish, to post on servers, or to redistribute to lists requires prior specific
permission and/or a fee.
c� 2000 ACM 0123-4567/00/8901-2345 $99.99

ACM Transactions on Programming Languages and Systems, Vol. 0, No. 0, January 2000, Pages 999–1025.

1000 � Hong Tang et al.

for other platforms. However, supporting efficient execution of MPI code on an SMM is
challenging because the MPI programming model does not take advantage of the under-
lying architecture. MPI uses the process concept, so global variables in an MPI program
are not shared among MPI nodes. As a result, a conventional MPI implementation has
to use heavy-weight processes for code execution and synchronization. Without sharing
space among processes, passing messages between two MPI nodes must go through some
system buffer and buffer copying degrades communication efficiency of MPI code 1.

SMMs are normally multiprogrammed, which can also impose great disadvantages for
process-based MPI implementations. It has been widely acknowledged in the OS commu-
nity that multiprogramming can yield higher throughput [Crovella et al. 1991; Leutenegger
and Vernon 1990; Tucker and Gupta 1989; Zahorjan and McCann 1990; Ousterhout 1982].
It is possible to use a queuing system to execute jobs one by one. However, putting jobs in
a batch queue is not feasible for applications that require interactive or real-time responses.
There are various scheduling policies used for multiprogramming and a single MPI pro-
gram typically runs well under the gang-scheduling policy [Feitelson 1997]. However,
space/time sharing scheduling policies turn out to be popular because they are shown to
be more effective for delivering high throughput [Crovella et al. 1991; Leutenegger and
Vernon 1990; Tucker and Gupta 1989; Zahorjan and McCann 1990]. Modern operating
systems such as Solaris 2.6 and IRIX 6.5 have adopted such a policy in their parallel job
scheduling (see a discussion in Section 2 on gang-scheduling used in the earlier version
of IRIX). As a consequence of such a scheduling policy, the number of processors allo-
cated to an MPI job can be smaller than requested. In some cases, the number of assigned
processors may change dynamically during the execution. The performance of process-
based MPI jobs is very sensitive to the variation of system load in such a setting because
of frequent context switch and expensive synchronization.

Using light-weight threads to execute MPI nodes can improve the performance portabil-
ity of an MPI program when running on an SMM under different OS scheduling policies
and variable system loads. It can also facilitate efficient implementation of MPI com-
munication primitives by taking advantage of address space sharing among threads. In
this paper, we propose compile-time and runtime techniques that allow MPI nodes to be
executed as threads. The compile-time code transformation eliminates global and static
variables in an MPI program using node-specific data. The runtime techniques proposed
in this paper are focused on lock-free point-to-point communication.

It should be noted that most of the application programs using MPI tend to be coarse-
grained and they do not send small messages frequently. Thus a common intuition may
be that performance of MPI code is less sensitive to multiprogramming and fast synchro-
nization. However, our experiments in Section 6 show that this intuition is not correct
and optimizing synchronization efficiency can greatly improve MPI code performance in
a multiprogrammed environment.

The rest of this paper is organized as follows. Section 2 describes our current assump-
tions and related work. Section 3 discusses the compile-time transformation that produces
thread-safe MPI code. Section 4 discusses our runtime support for threaded MPI execution.
Section 5 presents our lock-free management for point-to-point communication. Section 6

�An earlier version of SGI MPI enforced that the address space of each MPI process is shared with every other.
However, SGI eventually gave up this design due to insufficient address space and software incompatibility [Salo
1998].

ACM Transactions on Programming Languages and Systems, Vol. 0, No. 0, January 2000.

Threaded MPI Execution on Shared Memory Machines � 1001

presents the experimental results. Section 7 concludes the paper.

2. ASSUMPTIONS AND RELATED WORK

A parallel program that uses MPI contains a number of MPI nodes (or called processes
in the literature). In a dedicated setting, each MPI node runs on one CPU and thus the
degree of parallelism exploited during execution is the number of MPI nodes used. In a
multiprogrammed environment, several MPI nodes may run on the same processor and
using a light-weight thread to execute an MPI node provides better adaptiveness to load
variation. The role of the program transformation is to ensure that each MPI node can
be safely executed as a thread. Not every parallel program can be translated for thread-
safe execution using our scheme. A restriction for our framework is that an MPI program
does not call any low-level library function which is not thread-safe (e.g. signals). Most
scientific programs do not involve such functions (MPI specification also discourages the
use of signals) and most libraries for modern operating systems are designed to be thread-
safe. Thus our techniques are applicable to a large class of scientific and engineering
applications.

There are two other factors that need to be mentioned.

(1) The total memory used by all the MPI nodes must fit in a single virtual address space.
This should not be a problem considering 64-bit OS now becomes more and more
popular.

(2) The total number of files opened by all MPI nodes must fit in one process’s open file
table. This is adjustable by OS reconfiguration.

Our lock-free data structure design for thread communication makes the following as-
sumption: each MPI node does not spawn multiple threads which call MPI functions simul-
taneously. As discussed in the MPI-2 standard [MPI-Forum 1999], there are four possible
levels of thread support:

(1) Only one thread runs within each MPI node.
(2) Each MPI node may be multithreaded, but only the main thread will make MPI calls.
(3) There are multiple threads spawned, however the user program guarantees that MPI

functions calls are serialized.
(4) No restriction.

The proposed lock-free data structure is intended for level-3 support and we plan to remove
this restriction in the future work. It should be noticed that this assumption is only used
in our runtime system design and does not affect the result of compile-time transforma-
tion. We also assume that basic synchronization primitives such as read-modify-write and
compare-and-swap [Herlihy 1991] are available for implementing lock-free data structure.
Actually, all modern microprocessors either directly support these primitives or provide
atomic instructions such as load-linked/store-conditional (LL/SC) [Herlihy 1991] for soft-
ware implementation.

The importance of integrating multi-threading and communication on distributed mem-
ory systems has been identified in previous work such as the Nexus project [Foster et al.
1996]. Earlier attempts to run message-passing code on shared-memory machines include
the LPVM [Zhou and Geist 1997] and TPVM [Ferrari and Sunderam 1995] projects. Both
projects do not address how a PVM program can be executed in a multi-threaded environ-
ment without changing the programming interface. Most of previous MPI researches are

ACM Transactions on Programming Languages and Systems, Vol. 0, No. 0, January 2000.

1002 � Hong Tang et al.

focused on distributed memory machines or workstation clusters, e.g. [Bruck et al. 1997].
The MPI-SIM project [Prakash and Bagrodia 1998] has used multi-threading to simulate
MPI execution on distributed memory machines for performance prediction as we will
discuss in Section 3.1. Thread safety of MPI systems is addressed in [MPI-Forum 1999;
Protopopov and Skjellum 1998; Skjellum et al. 1996] and recent commercial MPI products
from SUN, IBM and SGI are thread-safe. However, their concern is how multiple threads
can be invoked in each MPI node, but not how to execute each MPI node as a thread.

Previous work has illustrated the importance of lock-free management for reducing syn-
chronization contention and unnecessary delay due to locks [Anderson 1990; Arora et al.
1998; Herlihy 1991; Lumetta and Culler 1998; Massalin and Pu 1991]. Lock-free synchro-
nization has also been used in the process-based SGI implementation [Gropp et al. 1996].
Theoretically speaking, some concepts of SGI’s design could be applied to our case af-
ter considerations for thread-based execution. However, as a proprietary implementation,
SGI’s MPI design is not documented and its source code is not available to public. Also,
their design uses busy-waiting when a process is waiting for events [Salo 1998], which is
not desirable for multiprogrammed environments [Kontothanassis et al. 1997; Ousterhout
1982]. Lock-free studies in [Anderson 1990; Arora et al. 1998; Herlihy 1991; Lumetta and
Culler 1998; Massalin and Pu 1991] restrict their queue models to be either FIFO or FILO.
These models are not sufficient for MPI point-to-point communication, and sometimes too
general with unnecessary overhead for MPI. A study that attempts to use lock-free data
structures for MPICH is conducted in a version for NEC shared-memory vector machines
and Cray T3D [Gropp and Lusk 1997; Brightwell and Skjellum 1996; NEC 1999], in which
they used single-slotted buffers for the ADI-layer communication. Their studies are still
process-based and use layered communication management which is a portable solution
with higher overhead than our scheme. In terms of lock-free management, our scheme is
more sophisticated with greater concurrency and better efficiency since our queues can be
of arbitrary lengths and allow concurrent access by multiple MPI nodes.

Our study is leveraged by previous researches in OS job scheduling on multiprogrammed
SMMs [Crovella et al. 1991; Leutenegger and Vernon 1990; Tucker and Gupta 1989; Za-
horjan and McCann 1990; Yue and Lilja 1998]. These studies show that multiprogramming
makes efficient use of system resources and space/time sharing is the most viable solution.
Gang-scheduling [Feitelson 1997] is beneficial to a single MPI job, however, a hybrid strat-
egy using space/time sharing can achieve higher throughput and shorter average response
times. SGI OS adopts gang-scheduling in IRIX 6.4; however IRIX 6.5 changed the default
scheduling to space/time sharing for shared memory applications. As explained in [NCSA
1999], SGI made this change because a gang-scheduled job cannot run until sufficient pro-
cessors are available so that all members of the gang can be scheduled, and the turnaround
time for a gang-scheduled job can be long. Also in IRIX 6.5, gang-scheduled jobs do not
get priority over non-gang scheduled jobs. SGI MPI in IRIX 6.5 uses the default space/time
scheduling and does not allow user to specify gang-scheduling (a mechanism that turns on
gang-scheduling using schedctl() for an SPROC job does not work for this new SGI
MPI version) [Salo 1998]. While it is still debatable which OS policies are preferable for a
particular user environment, it is clear that different SMMs can employ different schedul-
ing policies. Our goal is to allow an MPI program to perform well in the presence of
multiprogramming under different scheduling policies.

The issues of performance portability were studied in [Jiang et al. 1997] for executing
parallel programs written in threads which run well in hardware cache-coherent machines

ACM Transactions on Programming Languages and Systems, Vol. 0, No. 0, January 2000.

Threaded MPI Execution on Shared Memory Machines � 1003

Source Program Parameter passing Array Replication Node-specific Data
typedef int KEY;

static int i=1; static int Vi[Nproc]; static KEY key_i=1;
int tmain() int tmain(int tid) int tmain()
{ { {

...
int *pi= int *pi=

malloc(sizeof(int)); malloc(sizeof(int));
*pi=1; Vi[tid]=1; *pi=1;

setval(key_i, pi);
...
umain(pi); umain(tid); umain();

} } }
int main() int umain(int *pi) int umain(int myid) int umain()
{ { { {

int *pi=
getval(key_i);

i++; (*pi)++; Vi[myid]++; (*pi)++;
return i; return (*pi); return Vi[myid]; return (*pi);

} } } }

Fig. 1. An example of code transformation. Column 1 is the original code. Columns 2 to 4 are target code
generated by three preprocessing techniques, respectively.

but not in SVM systems (shared virtual memory) and their goal is to develop a general
methodology that restructures applications manually through algorithmic or data structure
enhancement. Our work focuses on automatic program transformation and system support
for parallel programs using MPI.

3. PROGRAM TRANSFORMATION FOR THREADED MPI EXECUTION

The basic transformation that allows an MPI node to be executed safely as a thread is the
elimination of global and static variables. In an MPI program, each node can keep a copy
of its own permanent variables – variables allocated statically during compile time, such
as global variables and local static variables. If such a program is executed by multiple
MPI nodes as threads without any transformation, then all MPI nodes will access the same
copy of permanent variables. To preserve the semantics of a source MPI program, it is
necessary to make a “private” copy of each permanent variable for each MPI node.

3.1 Possible Solutions

There are three possible solutions and examples for each of them are illustrated in Fig-
ure 1. The main() routine of a source program listed in Column 1 is converted into a
new routine called umain() and another routine called tmain() is created, which does
certain initialization work and then calls umain(). This routine tmain() is used by the
runtime system to spawn threads based on the number of MPI nodes requested by the user.
We discuss and compare these solutions in details as follows.

The first solution, as illustrated in the second column of Figure 1, is called parameter
passing. The basic idea is that all permanent variables in the source program are dynami-
cally allocated and initialized by each MPI node before it executes the user’s main program.
Pointers to those variables are passed to functions that need to access them. There is no
overhead other than parameter passing, which can usually be done quite efficiently. The
problem is that such an approach is not general and could fail for some cases. A counter ex-
ample is shown in Figure 2. After the transformation, functionfoo() carries an additional
parameter to pass for global variable x while foo2() stays the same. Function foo3()

ACM Transactions on Programming Languages and Systems, Vol. 0, No. 0, January 2000.

1004 � Hong Tang et al.

int x=0;1

int foo(int a)
{ return a+x++; }
int foo2(int b)
{ return b>0?b:-b; }5

int foo3(int u, int (*f)(int))
{ return (*f)(u); }
main()
{ printf("%d ", foo3(1, foo));

printf("%d ", foo3(1, foo2));10

}

Fig. 2. A counter example for parameter passing.

carries a function pointer and it may call foo() with argument x or call foo2() without
any extra argument. As a result, it is very hard, if not impossible, for pointer analysis to
predict whether foo3() should carry an additional argument in executing *f().

The second solution, which is used by MPI-SIM [Prakash and Bagrodia 1998], is called
array replication. The preprocessor re-declares each permanent variable with an additional
dimension, whose size is equal to the total number of MPI nodes. There are three prob-
lems with this approach. First, the number of threads cannot be determined in advance at
compile time. MPI-SIM [Prakash and Bagrodia 1998] uses an upper limit to allocate space
and thus the space cost may be excessive. Secondly, even though space of global vari-
ables could be allocated dynamically, initialization of static and global variables must be
conducted before thread spawning. As a result, function- or block-specific static variables
and related type definitions must be recognized and moved out from their original lexical
scopes. It is possible to provide a complicated renaming scheme to eliminate type and vari-
able name conflicts, but the target program would be very difficult to read. Finally, false
sharing may occur in this scheme when the size of a permanent variable is not cache-line
aligned [Patterson and Hennessy 1998; Culler et al. 1999].

Because of the above considerations, we have used the third approach based on NSD
(node-specific data). This concept is derived from thread-specific data (TSD) available
in POSIX threads [Nichols et al. 1996] 2. Briefly speaking, TSD allows each thread to
associate a private pointer sized value with a commonly shared (among all threads) key
value which is a small integer. Given the same key value, TSD can store/retrieve a thread’s
own copy of data. By NSD, we mean the data is specific to each MPI node, but can be
shared by all user-level threads spawned within this node. In our scheme, each permanent
variable is replaced with a permanent key of the same lexical scope. Each MPI node
dynamically allocates space for all permanent variables, initializes those variables for only
once, and associates the reference of those variables with their corresponding keys. In
the user program, for each function that refers to a permanent variable, this reference is
changed to a call that retrieves the address of the node-specific copy of that permanent
variable using the corresponding key. Such a transformation is general and the chance of
false sharing is minimized because different nodes allocate their own node-specific data

�Certain thread systems such as SGI’s SPROC thread library do not provide the TSD capability; however, it is
still relatively easy to implement such a mechanism. In fact, we wrote TSD functions for SGI’s SPROC thread.

ACM Transactions on Programming Languages and Systems, Vol. 0, No. 0, January 2000.

Threaded MPI Execution on Shared Memory Machines � 1005

separately.
In the example of Figure 1, two NSD functions are used. Function setval(int

key, void *val) associates value val to a key marked as key and function void
*getval(int key) gets the value associated with key. In this example, a key is allo-
cated statically. In our implementation, keys are dynamically allocated.

3.2 NSD-based Transformation

We have implemented a preprocessor for ANSI C (1989) [Kernighan and Ritchie 1988] to
perform the NSD-based transformation. The actual transformation uses dynamic key allo-
cation and is more complex than the example in Figure 1 since interaction among multiple
files needs to be considered and type definitions and permanent variable definitions could
appear in any place including the body of functions and loops. We briefly discuss three
cases in handling transformation.

— Case 1: Global permanent variables. If a variable is defined or declared as a
global variable (not within any function), then it will be replaced by a corresponding key
declaration. This key is seen by all MPI nodes and is used to access the memory associated
with the key. This key is initialized before MPI nodes are spawned. In the tmain()
routine, a proper amount of space for this variable is allocated, initialized and then attached
to this node-specific key. Notice that tmain() is the entry function spawned by the
runtime system in creating multiple MPI nodes; thus the space allocated for this variable
is node-specific.

— Case 2: Static variables local to a control block. A control block in C is a sequence
of statements delimited by “�” and “�”. Static variables must be initialized (if specified) at
the first time when the corresponding control block is invoked and the lexical scope of those
static variables should be within this block. The procedure of key initialization and space
allocation is similar to Case 1; however, the key has to be initialized by the first MPI node
that executes the control block. The corresponding space has to be allocated and initialized
by each MPI node when it reaches the control block for the first time. Multiple MPI
nodes may access the same control block during key creation and space initialization, so an
atomic operation compare and swap is needed. More specifically, consider a statement
that defines a static variable, static T V = I; where � is its type, � is the variable
name, and � is an initialization phrase. This statement is replaced with static int
key V=0; and Figure 3 lists pseudo-code inserted at the beginning of a control block
where this static variable is effective. Note that in the code, function key create()
generates a new key and the initial value associated with a new key is always NULL. Also
note that function initval() is similar to setval() except that it sets the value only
when the key does not have an associated value yet. This is necessary because multiple
threads in the same MPI node might attempt to allocate memory simultaneously.

— Case 3: Locally-declared permanent variables. For a global variable declared
locally within a control block using specifier extern, the mapping is rather easy. The
corresponding key is declared using extern in the same location.

For all three cases, the reference to a permanent variable in source MPI code is trans-
formed in the same way. First, a pointer is declared and dynamically initialized to the
reference of the permanent variable at the beginning of the control block where the vari-
able is in effect. Then the reference to this variable in an expression is replaced with the
dereference expression of that pointer, as illustrated in Figure 1, Column 4. The overhead

ACM Transactions on Programming Languages and Systems, Vol. 0, No. 0, January 2000.

1006 � Hong Tang et al.

if (key_V==0) {1

int new_key=key_create();
compare_and_swap(&key_V, 0, new_key);

}
if ((p=getval(key_V))==NULL) {5

T tmp=I;
void *m=malloc(sizeof(tmp));
memcpy(m, &tmp, sizeof(tmp));
if (initval(key_V, m)!=SUCCEED) {

free(m);10

p=getval(key_V);
} else {

p=m;
}

}15

Fig. 3. Target code generated for a static variable definition static T V = I;.

of such indirect permanent variable access is insignificant in practice. For the experiments
described in Section 6, the overhead of such indirection is no more than 0.1� of total
execution time.

Correctness of the above transformation algorithm is not difficult to prove. However,
when a C program links to some external library functions whose source code is not avail-
able, it is difficult to verify if the execution of the transformed program is thread-safe. This
is the reason why we impose a constraint that such a program should only call thread-safe
low-level functions as discussed in Section 2.

4. RUNTIME SUPPORT FOR THREADED EXECUTION

The intrinsic difference between the thread model and the process model has a big impact
on the design of the runtime system. An obvious advantage of multi-threaded execution
is the low context switch cost. Besides, inter-thread communication can be made faster
by directly accessing threads’ buffers between a sender and a receiver. Memory sharing
among processes is usually restricted to a small address space, which is not flexible or
cost-effective to satisfy MPI communication semantics. Advanced OS features may be
used to force sharing of a large address space among processes; however, such an imple-
mentation becomes problematic, especially because it may not be portable even after OS
or architecture upgrading [Salo 1998]. As a result, process-based implementation requires
that inter-process communication go through an intermediate system buffer. Thus a thread-
based runtime system can potentially reduce buffer overhead due to memory copying and
overflow management.

Notice that in our implementation, if message sending is posted earlier than the corre-
sponding receive operation, we choose not to let the sender block and wait for the receiver
whenever possible, in order to yield more concurrency. This choice affects when memory
copying can be saved. We list three typical situations in which copy saving can take effect.

(1) Message sending is posted later than message receiving. In this case, a thread-
based system can directly copy data from the sender’s user buffer to the receiver’s user
buffer.

ACM Transactions on Programming Languages and Systems, Vol. 0, No. 0, January 2000.

Threaded MPI Execution on Shared Memory Machines � 1007

�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����

sender receiver

buffer
by sender by receiversystem

Fig. 4. Message fragmentation during system buffer overflow.

(2) Buffered send operations. MPI allows a program to specify a piece of user mem-
ory as a message buffer. In buffered send operation (MPI Bsend()), if sending is posted
earlier than receiving, the sender’s message will be temporarily copied to the user-allocated
buffer area before it is finally copied to the receiver’s buffer. For a process-based imple-
mentation, since the user-allocated message buffer is not accessible to other processes, an
intermediate copy from the user-allocated buffer to the shared system buffer is still neces-
sary.

(3) System buffer overflow. If the message size exceeds the size of free space in the
system buffer, then the send operation must block and wait for the corresponding receive
operation. In a thread-based implementation, a receiver can directly copy data from a
sender’s buffer. But in a process-based environment, the source buffer has to be copied in
fragments to fit in the system buffer and then to the destination buffer. Figure 4 illustrates
that copying needs to be done twice because the size of a message is twice as large as the
free buffer size.

The thread model also gives great flexibility in the design of a lock-free communication
protocol to further expedite message passing. A key design goal is to minimize the use
of atomic compare-and-swap or read-modify-write instructions in achieving lock-free syn-
chronization. This is because these atomic operations can be potentially expensive due to
multiple retries in the presence of contention.

MPI primitives include point-to-point communication and collective communication.
Our focus in this paper is a point-to-point communication protocol which is specifically
designed for threaded MPI execution and will be presented in next section. Our broad-
casting queue management is based on previous lock-free FIFO queue studies [Herlihy
1991; Massalin and Pu 1991]. During event waiting, we adopt a spin-block strategy [Kon-
tothanassis et al. 1997; Ousterhout 1982] when a thread needs to wait for certain events.

5. LOCK-FREE MANAGEMENT FOR POINT-TO-POINT COMMUNICATION

Previous lock-free techniques [Arora et al. 1998; Herlihy 1991; Lumetta and Culler 1998;
Massalin and Pu 1991] are normally designed for FIFO or FILO queues, which are too
restrictive to be applied for MPI point-to-point communication. MPI provides a very
rich set of functions for message passing. An MPI node can select messages to receive
by specifying a tag. For messages of the same tag, they must be received in a FIFO
order. A receive operation can also specify a wild-card tag MPI ANY TAG or source
node MPI ANY SOURCE in message matching. All send and receive primitives have both
blocked and non-blocked versions. For a send operation, there are four modes: standard,
buffered, synchronized and ready. A detailed specification of these primitives can be found
in [MPI-Forum 1999; Snir et al. 1996]. Such a specification calls for a more generic queue

ACM Transactions on Programming Languages and Systems, Vol. 0, No. 0, January 2000.

1008 � Hong Tang et al.

1P

iP

NP

S
en

de
rs

S
en

d
Q

ue
ue

R
eceive Q

ueue

Channel (i , j)

2D Channels

1P jP NP

Receivers

1P jP NP

Receivers

Any-Source Queues

Fig. 5. The communication architecture.

model. On the other hand, as will be shown later, by keeping the lock free queue model
specific to MPI, a simple, efficient, and correct implementation is still possible.

This section is organized as follows. Section 5.1 presents the communication architec-
ture of TMPI. Section 5.2 presents the underlying lock-free queue model. Section 5.3 gives
the protocol itself. Section 5.4 discusses the correctness of this protocol.

5.1 Communication architecture

Let � be the number of MPI nodes. Our point-to-point communication layer consists
of � � � channels. Each channel is designated for one sender-receiver pair and the
channel from node �� to �� is different from the channel from �� to ��. Each channel
contains a send queue and a receive queue. There are � additional queues for handling
receive requests with MPI ANY SOURCE as source nodes because those requests do not
belong to any channel. We call these queues Any-Source queues (ASqueue). The entire
communication architecture is depicted in Figure 5.

We define a send request issued by node � to be matchable with a receive request issued
by node � if:

(1) the destination name in the send request is �; and
(2) the source name in the receive request is � or MPI ANY SOURCE; and
(3) the tag in the send request matches the tag in the receive request or the tag in the

receive request is MPI ANY TAG.

Communication based on this channel architecture can be accomplished efficiently. In
the simplest case when sender �� wants to send a message to receiver �� , channel(i, j) will
be used. If the sender comes first, it will post a send handle3 in the send queue, and later the
receiver will match this send handle. If a receive request is posted first, the corresponding
receive handle is inserted in the receive queue. For an any-source receiving operation,
the receiver may need to search � send queues to match a message with the proper tag.
The details of our protocol using channels are described in Section 5.3. In terms of space
cost, space overhead for each queue in this communication structure takes less than 50
bytes in our current implementation. For a large SMM with 256 processors, the channel
architecture costs about 3MB in total. Even for an SMM with 1024 processors, the space
overhead is 50MB (i.e. 48KB per processor) and is still quite small.

�A handle is a small data structure carrying descriptions of a send/receive request such as message tag and size.

ACM Transactions on Programming Languages and Systems, Vol. 0, No. 0, January 2000.

Threaded MPI Execution on Shared Memory Machines � 1009

Our design is quite different from the layered design in MPICH. For the shared memory
implementation of MPICH [Gropp et al. 1996; Gropp and Lusk 1997], � � � single-
slotted buffers are used for message passing in a lower layer. In a higher layer, each
process has three queues: one for sending, one for receiving, and one for unexpected mes-
sages. Thus messages from a sender with different destinations are placed in one send
queue, similarly receive handles for obtaining messages from different sources are posted
in the same receive queue. This design is portable for both SMMs and distributed memory
machines. However, it may suffer high multiplexing cost for explicit point-to-point com-
munication when there are many queued messages with different destinations or sources.
On the other hand, the MPICH design may have a performance advantage for any-source
receive. Let � be the total number of outstanding message handles inspected by TMPI for
an any-source receive when such an inspection is necessary, the worst case cost of an any-
source receive is ������ for TMPI while it is ���� for MPICH. This is because TMPI
may scan all � queues even some of them are empty while MPICH only maintains one
receive queue for all message handles with different sources. Thus our design seeks to opti-
mize explicit point-to-point communication while imposing small overhead on any-source
receive operations. We opt for this design trade-off because any-source receive operation is
not frequently used in applications and benchmarks we have seen and the value � limited
by the number of processors in an SMM is not too large in practice.

5.2 A Lock-free Queue Model

As we mentioned above, our point-to-point communication design contains �� � � �

queues. Each queue is represented by a doubly-linked list. There could be three types of
operations performed on each queue:

—Put a handle into the end of a queue;
—Remove a handle from a queue (it can be in any place of the queue);
—Search (probe) a handle for matching a message.

Previous lock-free researches [Herlihy 1991; Lumetta and Culler 1998; Massalin and Pu
1991] usually assume multiple-writers and multiple-readers for a queue, which compli-
cates lock-free management. We have simplified the access model in our case to one-writer
and multiple-readers, which gives us more flexibility in queue management for better effi-
ciency.

In our design, each queue has a master (or owner) and the structure of a queue can
only be modified by its master. Thus a master performs the first two types of operations
mentioned above. A thread other than the owner, when visiting a queue, is called a slave
of this queue. A slave can only perform the third type of the operations (probe). In the
channel from �� to �� , the send queue is owned by �� and the receive queue is owned by
�� . Each ASqueue is owned by the MPI node who buffers its receive requests with the
any-source wild-card. It is worth emphasizing that slave nodes are only restricted not to
modify the structure of a queue. They are still able to modify the content of queue nodes
through atomic instructions (to avoid simultaneous modification).

Read/write contention can still occur when a master is trying to remove an interior han-
dle while a slave is traversing the queue owned by this master. If we allow the master
to proceed the remove operation in this case, the traversing slave may hold a reference to
the removed garbage item, which can result in invalid memory access later. Herlihy [Her-
lihy 1991] proposed a solution to this problem by using accurate reference count for each

ACM Transactions on Programming Languages and Systems, Vol. 0, No. 0, January 2000.

1010 � Hong Tang et al.

handle. Namely, each handle in a queue keeps the number of slaves that hold references
to this handle. A handle will not be unlinked from the queue if its reference count is not
zero. Then when a slave scans through a queue, it needs to move the reference pointer
and decrease or increase the reference count of handles using atomic operations. Each
step of the traverse requires at least one two-word compare-and-swap and two atomic ad-
ditions [Massalin and Pu 1991], which is very expensive. Another solution is to use a
two-pass algorithm [Massalin and Pu 1991] in which the master marks a handle as dead
in the first pass and then removes it in the second pass. This approach is still not efficient
because of multiple passes. We introduce the conservative reference count (CRC) method
that uses the total number of slaves which are traversing the queue to approximate the num-
ber of live references to each handle. Using such a conservative approximation, we only
need to maintain one global reference counter for each queue and perform one atomic op-
eration when a slave starts or finishes a probe operation. This conservative approximation
works well with small overhead if contention is not very intensive, which is actually true
for most computation-intensive MPI applications.

Another optimization strategy called semi-removal is used in our scheme during handle
deletion. Its goal is to minimize the chance of visiting a deleted handle by future traversers
and thus reduce the searching cost. If a handle to be removed is still referenced by some
slave, this handle has to be “garbage-collected” at a later time, which means other traversers
may still visit this handle. To eliminate such false visits, we introduce three states for a
handle: alive when it is linked in the queue, dead when it is not, and semi-alive when a
handle is referenced by some traverser but will not be visited for future traversers. While
the CRC of a queue is not zero, a handle to be removed is marked as semi-alive by only
updating links from its neighboring handles. In this way, this handle is bypassed in the
doubly-link list and is not visible to the future traversers. Note that this handle still keeps
its link fields to its neighboring handles in the queue. All semi-alive items will eventually
be declared as dead once the master finds that the CRC drops to zero. This method is called
semi-removal in contrast to safe-removal in which the removal of a handle is deferred until
it is completely safe, i.e. the dead item’s reference count is zero.

Figure 6 illustrates steps of our CRC method with semi-removal (Column 2) and those
of the accurate reference count method with safe-removal (Column 3). In this example,
initially the queue contains four handles 	,
, �, and �, and the master wants to remove

and � while at the same time a slave comes to probe the queue. Note that the reference
count in column 3 is marked within each handle, next to the handle name. For this figure,
we can see that the average queue length (over all steps) in Column 2 is smaller than
Column 3, which demonstrates the advantages of our method.

We have examined the effectiveness of our method by using several micro-benchmarks
which involve intensive queue operations. Our method outperforms the accurate reference
count with safe removal by 10–20% in terms of average queue access times.

5.3 A Point-to-point Communication Protocol

Our point-to-point communication protocol is best described as enqueue-and-probe. The
execution flow of a send or receive operation is depicted in Figure 7. For each operation
with request
�, the algorithm enqueues
� into an appropriate queue. Then it probes
the corresponding queues for a matchable request. If it finds a matchable request
�,
it marks
� as MATCHED and then proceeds the message passing. Notice that a flag is
set by an atomic compare-and-swap instruction to ensure that only one request operation

ACM Transactions on Programming Languages and Systems, Vol. 0, No. 0, January 2000.

Threaded MPI Execution on Shared Memory Machines � 1011

b semi-removed

Step 1:
M: Removing b
S: Start traverse,
stationed at a

1) Operation

Step 2:
M: Removing c
S: Go from a to c

Step 3:
M: No-op
S: Go from c to d

Step 4:
M: No-op
S: Finish traverse

a, 1 c, 0b, 0 d, 0

Queue Header Queue Tail

a, 0 d, 0c, 1

Queue Header Queue Tail

b
b removed

c is a garbage handle but
could not be removed

3) Queue operation with accurate RC and safe removal

a, 0

c

d, 0

Queue Header Queue Tail

b

a, 0 d, 1c*, 0

Queue Header Queue Tail

b

c reclaimed

a cb d

Queue Header Queue Tail

a dc

Queue Header Queue Tail

b

a

c

d

Queue Header Queue Tail

b

CRC=1

CRC=1

CRC=1

c semi-removed

2) Queue operation with conservative RC and semi-removal

a

c

d

Queue Header Queue Tail

b

CRC=0

b, c reclaimed

Fig. 6. An example of conservative reference count with semi-removal (column 2) compared to accurate reference
count with safe-removal (column 3). Column 1 lists actions taken by the master (marked as M) and a salve
(marked as S). Handles in shade are station points of the slave at each step. For accurate reference count, the
reference count is also shown within each handle.

enqueue(R1)

match(R2)

memory barrier

probe
find nothingfind matching request R2

send or receive request R1

Fig. 7. Execution flow of a send or receive operation.

can succeed in matching the same handle. For systems that do not support sequential
consistency, a memory barrier is needed between the enqueuing phase and the probing
phase to make sure that the enqueuing completes execution before the probing. Otherwise,
out-of-order memory access and weak memory consistency in a modern multiprocessor
system can cause a problem and the basic properties of our protocol studied in Section 5.4
may not be valid.

Both send and receive operations have the same execution flow depicted in Figure 7 and
their enqueue and probe procedures are described as follows.

— Enqueue in a receive operation: If a receive request has a specific source name,

ACM Transactions on Programming Languages and Systems, Vol. 0, No. 0, January 2000.

1012 � Hong Tang et al.

the receiver adds the receive handle to the end of the receive queue in the channel corre-
sponding to the (sender, receiver) pair. If the receive request uses the any-source wild-card,
the receiver adds this handle to the ASqueue it owns. Notice that an enqueued handle is
attached with a logical time-stamp which is used to ensure the FIFO receive order.

— Probe in a receive operation: If the receive request specifies a source name, the
receiver probes the send queue in the corresponding channel to find the first matchable
handle in that queue. If the receive request uses the any-source wild-card, the receiver
searches all � send queues destined to this receiver in a random order (to ensure fairness).
Notice that probing succeeds when the first matchable handle is found because no order is
defined in MPI for send requests issued from different senders.

— Enqueue in a send operation: The sender adds a send handle to the end of the send
queue in the corresponding channel.

— Probe in a send operation: The sender probes the receive queue in the correspond-
ing channel and the ASqueue owned by the receiver to find the first matchable receive
handle. If it succeeds in only one of those two queues, it returns the request handle it finds.
If it finds matchable requests in both queues, it will use their time-stamps to select the
earlier request.

Since a flag is used to ensure that concurrent probings to the same handle cannot suc-
ceed simultaneously, it is impossible that several sender-probe operations match the same
receive handle in a queue. It is however possible that when the probing of a send operation
finds a matchable receive handle in a queue, the probing of this receive request may find
another send handle. To avoid this mismatch, the probing of a send operation must check
the probing result of this matchable receive request and it may give up this receive handle
if there is a conflict. Similarly, a conflict can arise when a receiver-probe operation finds
a send handle while the probing of this send handle finds another receive handle. Thus
the probing of a receive operation must wait until this matchable send request completes
its probing and check the consistency. We call the above strategy mismatch detection.
Finally, there is another case which needs special handling. If both the sender and the re-
ceiver find each other matchable at the same time, we only allow the receiver to proceed
with message passing and make the sender yield as if it did not find the matchable receive
request.

Figure 8 shows the state transition graph of this point-to-point communication protocol.
In the figure, the life cycle of a handle starts from state NEW and ends in state DEAD. In
the NEW state, the handle is just created and not linked in the queue. After the enqueue
phase, the handle goes to state PROBE. Depending on the result of the probe phase, the
handle goes to either state PENDING or MATCHING. At the PENDING state, the han-
dle will be matched by the peer (or may be cancelled by the owner). After a successful
probe and mismatch detection, the handle will go to the intermediate MATCHING state
to perform the actual message passing operation. However, as mentioned before, it might
happen that the peer also moves to the MATCHING state, at which case we let the sender
to yield and the receiver to proceed. That’s why we have two arcs from MATCHING state
to FREE state. FREE state simply means that the handle is no longer in use and can be
removed by the owner. Eventually, the handle gets removed from the queue and goes to
the DEAD state, at which point it is safe to be discarded or recycled later. Transitions in
solid lines are triggered by the owner and those in dashed lines are triggered by the peer. If
a handle can transit from one state to other states by both owner actions and peer actions,

ACM Transactions on Programming Languages and Systems, Vol. 0, No. 0, January 2000.

Threaded MPI Execution on Shared Memory Machines � 1013

P R O B E

PENDING

M A T C H I N G

CANCEL

FREEN E W DEAD

N E W :

PROBE:

PENDING:

MATCHING:

CANCEL:

FREE:

DEAD:

A handle is just created and not l inked
in the queue.
Intermediate state between the enqueue
operation and the probe.
A posted handle in the queue is wait ing
to be matched.
Intermediate s tate dur ing the matching
of a peer handle.

In te rmed ia te s ta te when the mas te r i s
trying to cancel the request.
A h a n d l e h a s b e e n m a t c h e d o r
cancelled but is sti l l l inked in the queue.
A handle is no longer in use and can be
recycled.

Fig. 8. The state transition graph of the point-to-point communication protocol. Transitions in solid lines are
triggered by the owner and those in dashed lines are triggered by the peer.

then the alteration of the state flag must be done by using compare-and-swap.

5.4 Correctness Studies

Our point-to-point message passing primitives such as blocked or non-blocked communi-
cation are built on the top of the above protocol. A complete study of the correctness on
message-passing behavior of an MPI program using our protocol relies on the character-
istics of the program (e.g. deadlock-free). We however in this section provide three basic
properties of our protocol and one can use these properties to ensure the correctness of
higher level communication primitives. These properties address three basic issues:

— No double matching. One send (receive) request can only successfully match one
receive (send) request.

— Progress. There couldn’t be such a case that two matchable send-receive requests
are pending in their queues forever.

— Ordered delivery. There couldn’t exist such a case that the execution order of send-
ing requests issued in one MPI node is different from the execution order of receive oper-
ations that are issued in another MPI node and match these messages.

THEOREM 5.4.1. (No double matching) Let two send requests be ��, �� and two
receive requests be
�,
�. Neither of the following two cases exists:

—Case 1: �� and �� are matched with
�.

—Case 2:
� and
� are matched with ��.

PROOF. If Case 1 is true, there are three sub-cases.

— Case 1.1: Probing of both �� and �� finds
�. This is impossible since only one
probing can succeed in matching the same handle due to the use of an atomic compare-
and-swap instruction to modify the state flag in the handle.

— Case 1.2: Probing of �� finds
� while probing of
� finds ��. This cannot happen
since our mismatch-detection strategy ensures that ��’s probe compares its result with

�’s probing result. If
�’s probe matches �� instead of ��, then �� must give up this
matching and it should not match
�.

ACM Transactions on Programming Languages and Systems, Vol. 0, No. 0, January 2000.

1014 � Hong Tang et al.

(B)

memory barrier

enqueue

probe

enqueue

memory barrier

probe

(A)

probe

memory barrier

enqueue
enqueue

memory barrier

probe

S

S

R

R

S
R

S
R

Fig. 9. Illustration for the proof of Theorem 5.4.2.

— Case 1.3: Probing of �� finds
� while probing of
� finds ��. The proof is similar
to Case 1.2. ��’s probing result must be consistent with
�’s probing result.

We can use a similar argument to show that Case 2 cannot be true.

In our proofs for the second and third properties, we measure the starting and end time
of an enqueuing or probing operation using a natural clock. Notice that this global time-
stamp is only used for the proof purpose and it is not feasible to explicitly obtain such a
time-stamp because each processor uses its own local clock for instruction execution. We
define Start��� as the time when any enqueue or probe operation � starts its first instruction
on a processor. End��� is the time when all instructions for � are completed, including all
outstanding memory operations.

We will also use term succeed in the proof. We say a send (or receive) request succeeds if
its corresponding send (or receive) operation matches a matchable request or it is matched
by another receive (or send) operation.

THEOREM 5.4.2. (Progress) There couldn’t be such a case that two matchable re-
quests � and
 are pending in their queues after a program completes its execution.

PROOF. We prove it by contradiction. Assume there exists a pair of matchable requests
� and
 in a given execution, neither of them succeeds at the end of program execution.
Let �enq and �probe be �’s enqueue and probe operation respectively. Let
 enq and
probe

be
’s enqueue and probe operation respectively. Then there two possible situations.

— Start��probe� � Start�
probe�.
As illustrated in Figure 9(A), since there is a memory barrier issued between � enq and
�probe, we know End��enq� � Start��probe�. Therefore, End��enq� � Start�
probe� which
means � is enqueued before
’s probe is issued. Then at least
’s probe can find this send
handle. Using Theorem 5.4.1, either
 succeeds in matching � or � has found another
send request. This contradicts the assumption that neither � nor
 succeeds.

— Start��probe� � Start�
probe�.
As illustrated in Figure 9(B), the proof for this case is similar to the above case. We can
show that
 is enqueued before �’s probe is issued, then we can induce a contradiction.

ACM Transactions on Programming Languages and Systems, Vol. 0, No. 0, January 2000.

Threaded MPI Execution on Shared Memory Machines � 1015

...

S2 R2

...

S2 R2

memory barrier

enqueue

probe

enqueue

memory barrier

probe probe

memory barrier

enqueue
enqueue

memory barrier

probe

S1

S1

R1

R1

S1
R1

S1
R1

(A) (B)

Fig. 10. Illustration for the proof of Theorem 5.4.3.

THEOREM 5.4.3. (Ordered delivery) Let two send requests be ��, �� and two receive
requests be
�,
�. The following case does not exist:

—�� and �� are issued by the same sender and �� is issued before ��; and
—
� and
� are issued by the same receiver and
� is issued before
�; and
—�� is matchable with
�; and
—�� and
� are matched together and �� and
� are matched together during program

execution.

PROOF. We prove it by contradiction. Assume there exists such a case. Let �� enq and
��probe be ��’s enqueue and probe operation respectively. Let
� enq and
�probe be
�’s
enqueue and probe operation respectively. Then there are two possible situations.

— Start���probe� � Start�
�probe�.
As illustrated in Figure 10(A), since there is a memory barrier between �� enq and ��probe,
we know that End���enq� � Start���probe�. Therefore, End���enq� � Start�
�probe�,
which means �� is enqueued before the start of
�’s probe. Since �� is matched with

�, this matching happens after
�’s probe because
� is issued after
� by the same
receiver. This infers that �� is enqueued but has not matched
� or been matched by
�
when
�’s probe is issued. This leads to the result that �� will be matched with
�. By
Theorem 5.4.1, �� and
� cannot be matched together.

— Start���probe� � Start�
�probe�.
As illustrated in Figure 10(B), the proof is similar to the above case. We can show that
�
is enqueued but not matched when ��’s probe is issued, which also leads to the result that
only �� and
� can be matched with each other.

ACM Transactions on Programming Languages and Systems, Vol. 0, No. 0, January 2000.

1016 � Hong Tang et al.

Message Passing Interface

Point-to-point
Operat ions

Collective
Operat ions

Communicator
Management

Message
Queues

System Buffer
Management

Synchronization
Management

MPI 1.1 C
program

Thread
Safe MPI
program

Program
Transformation

Execution

Compi le- t ime Preprocessing Run- t ime Suppor t

Fig. 11. System architecture of TMPI.

6. EXPERIMENTAL STUDIES

The main purpose of the experiments is to study if thread-based execution can gain great
performance advantages in non-dedicated environments and be competitive against process-
based MPI execution in dedicated environments. By dedicated, we mean that the load of a
machine is light and an MPI job can run on a requested number of processors without pre-
emption. Another purpose of our experiments is to examine the impact of address space
sharing in reducing buffering overhead and the effectiveness of lock-free management.
Most of the experiments are conducted on an SGI Origin 2000 at UCSB with 32 195MHz
MIPS R10000 processors and 2GB memory. Some experiments are conducted on another
Origin 2000 machine with 250MHz MIPS R10000 at NCSA.

We have implemented a prototype system called TMPI on SGI machines to demonstrate
the effectiveness of our techniques. The architecture of TMPI is shown in Figure 11.
Its runtime system contains three layers. The lowest layer provides support for several
common facilities such as buffer and synchronization management, the middle layer is the
implementation of various basic communication primitives and the top layer translates the
MPI interface to the internal format.

We use the IRIX SPROC library because performance of IRIX Pthreads is not compet-
itive with SPROC. The current prototype includes 29 MPI functions (MPI 1.1 Standard)
for point-to-point and collective communications, which are listed in the appendix of this
paper. We have focused on the optimization and performance tuning for point-to-point
communication. Currently the broadcast and reduction functions are implemented using
lock-free central data structures, and the barrier function is implemented directly using a
lower-level barrier function in IRIX. We have not fully optimized those collective functions
and our result shows that the impact is small in the sense that we are still able to demon-
strate the advantages of multithreading. We compare the performance of our prototype
with SGI’s native implementation and MPICH. Note that both SGI MPI and MPICH have
implemented all MPI 1.1 functions; however those additional functions are independent
and integrating them into TMPI should not affect our experimental results.

The characteristics of the five test benchmarks we have used are listed in Table I. Two
of them are kernel benchmarks written in C. One is a dense matrix multiplication using
Cannon’s method [Cannon 1969] and the other is a linear equation solver using Gaussian

ACM Transactions on Programming Languages and Systems, Vol. 0, No. 0, January 2000.

Threaded MPI Execution on Shared Memory Machines � 1017

Table I. Characteristics of the tested benchmarks.
Problem #Perm

Benchmark Function Size #Lines Vars MPI Ops
GE Gaussian Elimination 2880�2880 324 11 MPI Bcast
MM Matrix multiplication 1440�1440 233 14 MPI Bsend

Sweep3D 3D Neutron transport 50�50�50 2247 7 mixed
HEAT 3D Diffusion PDE 50�50�50 4189 274 mixed

CG Conjugate Gradient 14000�14000 2489 32 mixed

0 5 10 15 20
0

500

1000

1500

2000

2500

3000

3500

Number of processors

M
F

LO
P

 r
at

e

*: TMPI

o: SGI MPI

+: MPICH

(A) MM

0 5 10 15 20
0

500

1000

1500

2000

Number of processors

M
F

LO
P

 r
at

e

*: TMPI

o: SGI MPI

+: MPICH

(B) GE

0 5 10 15 20
0

5

10

15

20

25

30

Number of processors

W
al

l C
lo

ck
 T

im
e(

se
c)

*: TMPI
o: SGI MPI
+: MPICH

(C) Sweep3D

0 5 10 15 20
0

50

100

150

200

250

300

350

400

Number of processors

M
F

LO
P

 r
at

e

*: TMPI

o: SGI MPI

+: MPICH

(D) HEAT

0 5 10 15 20
0

100

200

300

400

500

600

700

800

Number of processors

M
F

LO
P

 r
at

e

*: TMPI
o: SGI MPI

+: MPICH

(E) CG

Fig. 12. Overall performance in dedicated environments at UCSB.

Elimination. Two of them (Sweep3D and HEAT) are from the ASCI application bench-
mark collection at Lawrence Livermore and Los Alamos National Labs. HEAT is written
in Fortran and we used a utility (f2c) to produce a C version for our test. The performance
of the transformed program is about 70% to 80% of the original program’s performance.
Sweep3D also uses Fortran. However, f2c cannot convert it because it uses an automatic
array feature. We have manually modified its communication layer to call C MPI functions
and eliminated global variables used in its Fortran code. CG is also written in Fortran and
comes from the NASA Numerical Aerospace Simulation parallel benchmark. Its global
and static variables are also eliminated manually (with the aid of a Fortran transformation
tool currently under development).

6.1 A Performance Comparison in Dedicated Environments

Figure 12 depicts the overall performance of TMPI, SGI and MPICH in a dedicated envi-
ronment at UCSB. The � axes are either megaflop rates or wall-clock times reported by the

ACM Transactions on Programming Languages and Systems, Vol. 0, No. 0, January 2000.

1018 � Hong Tang et al.

Table II. Execution time breakdown for 1152�1152 Matrix Multiplication on 4 proces-
sors. “-” means data unavailable due to lack of access to SGI MPI source code.

Memory Other cost
(seconds) Kernel copy (sync included) Synchronization

TMPI 11.14 0.82 1.50 0.09
SGI MPI 11.29 1.79 7.30 -
MPICH 11.21 1.24 7.01 4.96

benchmarks. Notice that all benchmarks report megaflop rates, which are calculated using
wall-clock elapse time, except for Sweep3D, which only reports wall-clock elapse time.
We run the experiments three times and report the average. Every MPI node has exclusive
access to a physical processor without interfered by other users in these experiments. We
do not have experimental results for 32 nodes because the Origin 2000 machine at UCSB
has always been busy.

From the result shown in Figure 12, we can see that TMPI is competitive with SGI MPI.
The reason is that a process-based implementation does not suffer process context switch-
ing overhead if each MPI node has exclusive access to its underlying physical processor.
For GE and Sweep3D, SGI and TMPI are about the same. For HEAT and CG benchmark,
SGI can outperform TMPI by 10-25% when the number of processors becomes large. For
MM, TMPI outperforms SGI by around 100%. We used SGI’s SpeedShop tool to study
the execution time breakdown of MM and the results are listed in Table II. We can see
that TMPI spends half as much memory copy time as SGI MPI because most of the com-
munication operations in MM are buffered send and fewer copying is needed in TMPI
as explained in Section 4. Memory copying alone still cannot explain the large perfor-
mance difference, so we further isolated the synchronization cost, which is the time spent
in waiting for matching messages. We observe a large difference in synchronization cost
between TMPI and MPICH. Synchronization cost for SGI MPI is unavailable due to lack
of access to its source code. One reason for such a large difference is the message multi-
plexing/demultiplexing overhead in MPICH as explained in Section 5. The other reason is
that message size in MM is large and system buffer may overflow during computation. For
a process based implementation, data has to be fragmented to fit into the system buffer and
copied to the receiver several times; while in TMPI, a sender blocks until a receiver copies
the entire message.

To further examine the scalability and competitiveness of TMPI, we have conducted
additional experiments in an Origin 2000 machine at NCSA using up to 64 processors.
Figure 13 shows the performance of three benchmarks using TMPI and SGI MPI. The Ori-
gin machine at NCSA has a clock rate faster than that at UCSB and thus three benchmarks
have better performance at NCSA. Notice that TMPI is relatively slower than SGI MPI
when the number of processors becomes 32 or 64 in the GE case. This is because after
all SGI MPI has been fully optimized during the last few years [Gropp et al. 1996] and
our collective communication implementation is not fully optimized (e.g. it uses central
control and does not consider network topology). While there is room to further improve
our implementation, the overall performance of current TMPI is still competitive to SGI.

6.2 A Performance Comparison in Non-dedicated Environments

In a non-dedicated environment, the number of processors allocated to an MPI job can be
smaller than the requested amount and can vary from time to time. Since we do not have
control over the OS scheduler, we cannot fairly compare different MPI systems without

ACM Transactions on Programming Languages and Systems, Vol. 0, No. 0, January 2000.

Threaded MPI Execution on Shared Memory Machines � 1019

0 20 40 60
0

2

4

6

8

10

12

Number of processors

G
F

LO
P

 r
at

e

*: TMPI
o: SGI MPI

(A) MM

0 20 40 60
0

1000

2000

3000

Number of processors

M
F

LO
P

 r
at

e

*: TMPI
o: SGI MPI

(B) GE

0 20 40 60
0

10

20

30

40

Number of processors

W
al

l C
lo

ck
 (

se
c)

*: TMPI
o: SGI MPI

(C) Sweep3D

Fig. 13. Overall performance in dedicated environments at NCSA.

0 1 2 3 4
0

2

4

6

8

(# of MPI nodes) / (# of processors)

S
pe

ed
up

o: 2 processors
x: 4 processors
+: 6 processors
*: 8 processors

(A) GE

0 1 2 3 4
0

2

4

6

8

(# of MPI nodes) / (# of processors)

S
pe

ed
up

o: 2 processors
x: 4 processors
+: 6 processors
*: 8 processors

(B) Sweep3D

0 1 2 3 4 5
0

2

4

6

8

10

(# of MPI nodes) / (# of processors)

S
pe

ed
up

o: 2 processors
x: 4 processors
*: 8 processors

(B) CG

Fig. 14. Megaflop rates or speedups of TMPI code in non-dedicated environments.

fixing processor resources. Our evaluation methodology is to create a repeatable non-
dedicated setting on dedicated processors so that the MPICH and SGI versions can be
compared with TMPI. What we did was to manually assign a fixed number of MPI nodes
to each idle physical processor4, then vary this number to check performance sensitivity.

Figure 14 shows the speedup of TMPI code for three benchmarks when the number of
MPI nodes per processor increases. Performance degradation is fairly small when the num-
ber of MPI nodes is not more than 12. When this number increases to 24 or 32, TMPI can
still sustain reasonable performance on 8 processors despite the increased communication
overhead. Note for CG, it requires the number of MPI nodes to be a power of 2, so we do
not have data for 6 processors and we tested multiprogramming degree of 1, 2, and 4. We
do not list data for SGI MPI and MPICH because their performance deteriorates too fast
when the number of MPI nodes per processor exceeds 1.

Tables III lists the performance ratio of TMPI to SGI MPI, which is the megaflop or
speedup number of TMPI divided by that of SGI MPI. Tables IV lists the performance

�IRIX allows an SPROC thread be bound to a processor.

Table III. Performance ratio of TMPI to SGI MPI in a non-dedicated environment.
Benchmarks GE Sweep3D CG
of MPI nodes
of processors 1 2 3 1 2 3 1 2 4

2 processors 0.97 3.02 7.00 0.97 1.87 2.53 1.00 2.36 5.58
4 processors 1.01 5.00 11.93 0.97 3.12 5.19 1.15 3.99 15.01
6 processors 1.04 5.90 16.90 0.99 3.08 7.91 - - -
8 processors 1.04 7.23 23.56 0.99 3.99 8.36 0.96 19.87 �50

ACM Transactions on Programming Languages and Systems, Vol. 0, No. 0, January 2000.

1020 � Hong Tang et al.

Table IV. Performance ratios of TMPI to MPICH in a non-dedicated environment.
Benchmarks GE Sweep3D CG
of MPI nodes
of processors 1 2 3 1 2 3 1 2 4

2 processors 0.99 2.06 4.22 0.98 1.21 1.58 1.01 3.84 15.31
4 processors 1.01 3.06 6.94 0.99 1.55 2.29 0.98 11.43 27.98
6 processors 1.05 4.15 9.21 1.02 2.55 5.90 - - -
8 processors 1.06 3.31 10.07 1.03 2.64 5.25 0.94 17.82 �50

ratio of TMPI to MPICH. We can see that performance ratios stay around one when
� of MPI nodes
� of processors � �, which indicates that all three implementations have similar performance
in dedicated execution environments. When this node-per-processor ratio is increased to 2
or 3, TMPI can be 28-fold faster than MPICH and 23-fold faster than SGI MPI (besides
the �50 case5).

To explain why TMPI outperforms SGI MPI significantly in a multiprogrammed envi-
ronment, we again used SpeedShop to study the execution time breakdown for GE and
SWEEP3D. We run 3 MPI nodes per processor with a total of 8 processors. Execution
times reported in Table V are accumulated virtual process times6. As can be seen from
Table V, for both GE and SWEEP3D, the kernel computation times for both versions are
roughly the same. However, for SGI MPI, both programs incur substantially more over-
head in synchronization and queue management. The saving from memory copy through
address space sharing is limited (though obvious) compared with the saving by TMPI in
synchronization and queue management. It seems that the synchronization strategy used in
SGI MPI can significantly hurt MPI program performance in a multiprogrammed environ-
ment, even though it can deliver good performance in a dedicated environment. SGI uses
a busy-waiting strategy in their lock-free communication design [Salo 1998], which could
be a partial reason. Due to the lack of access to their implementation, we cannot conclude
whether such a strategy is inherent to their specific lock-free design.

Obtaining such a large improvement over SGI MPI and MPICH (e.g. when the multi-
plexing degree is 3) raises a question: Will parallel code be too slow and sequential execu-
tion would actually be better for the above tested cases? The answer is no if using TMPI in
above cases and can be yes if using SGI MPI and MPICH. For example, if a user runs the
Sweep3D program using 24 MPI nodes and the OS assigns it to 8 processors, the speedup
obtained TMPI is around 4 based on Figure 14 while the speedup is less than 0.5 using SGI
MPI and 0.75 using MPICH, since TMPI is 8.36 and 5.25 times faster respectively based
on Tables III and IV.

6.3 Benefits of Address-sharing and Lock-free Management

Impact of data copying on point-to-point communication. We compare TMPI with
SGI MPI and MPICH for point-to-point communication and examine the benefits of data
copying due to address space sharing in TMPI. To isolate the performance gain due to

�For SGI MPI and MPICH, when we run CG using 32 MPI nodes on 8 processors, they could not terminate even
after 10 minutes (which is more than 50 times of the execution time of TMPI) and we killed them before they
finish.
�The profiling tool ssrun interrupts the process every 1ms and checks which function body the program counter
is pointing to. It then estimates the virtual process time spent in a certain function call based on the percentage of
the samplings of which the program counter points to that function. This will exclude the time when the system
is providing services, such as executing system calls, because the tool cannot interrupt a system call and check
the PC. Certain precaution has to be taken when interpreting these data.

ACM Transactions on Programming Languages and Systems, Vol. 0, No. 0, January 2000.

Threaded MPI Execution on Shared Memory Machines � 1021

Table V. Execution time breakdown for GE and SWEEP3D by running 3 MPI nodes on
each processor using a total number of 8 processors. Invoked functions are sorted into 5
categories: kernel computation, synchronization, queue management, memory copy and
others.

GE TMPI SGIMPI
Time(Sec) Percentage TIME(Sec) Percentage

Kernel 35.3 56.7% 34.7 1.0%
Sync. 23.2 37.2% 2912.4 84.3%

Queue Mng. 0.7 1.1% 368.5 10.7%
Memcpy 3.1 5.0% 6.9 0.2%
Others 0.0 0.0% 132.7 3.8%
Total 62.3 100% 3455.2 100%

SWEEP3D TMPI SGIMPI
Time(Sec) Percentage TIME(Sec) Percentage

Kernel 47.8 54.3% 48.3 5.6%
Sync. 38.1 43.3% 722.8 84.5%

Queue Mng. 1.0 1.1% 83.4 9.7%
Memcpy 1.1 1.3% 1.4 0.2%
Others 0.0 0.0% 0.0 0.0%
Total 62.3 100% 855.9 100%

0 200 400 600 800 1000
0

10

20

30

40

Message size (byte)

S
in

gl
e

tr
ip

 ti
m

e
(u

s)

__: TMPI
−.−: TMPI_mem
−−: SGI MPI
.....: MPICH

(A) Short message performance

0 20 40 60 80 100
0

20

40

60

80

100

120

Message size (Kbyte)

R
at

e
(M

by
te

/s
ec

)

__: TMPI
−.−: TMPI_mem
−−: SGI MPI
.....: MPICH

(B) Long message performance

Fig. 15. Communication performance of a ping-pong microbenchmark. For short messages (left figure), the
lower the curve is, the better the performance; for long messages (right figure), the higher the curve is, the better
the performance.

the saving from memory copying, we also compare TMPI with another version of TMPI
(called TMPI mem) which emulates the process-based communication strategy, i.e., first
copying from a sender’s user buffer to the system buffer and then to a receiver’s user
buffer. The micro-benchmark program we use does the memory-to-memory “ping-pong”
communication (MPI SEND()), which sends the same data (using the same user data
buffer) between two processors for over 2000 times. In order to avoid favoring our TMPI,
we use standard send operations instead of buffered send.

Figure 15 depicts the results for short and long messages. We use the single-trip oper-
ation time to measure short message performance and data transfer rate to measure long
message performance because the message size does not play a dominant role in the over-
all performance for short messages. It is easy to observe that TMPI mem shares a very
similar performance curve with SGI MPI and the difference between them is relatively
small, which reveals that the major performance difference between TMPI and SGI MPI
is caused by the saving from memory copy. And on average, TMPI is 16� faster than

ACM Transactions on Programming Languages and Systems, Vol. 0, No. 0, January 2000.

1022 � Hong Tang et al.

0 200 400 600 800 1000
0

10

20

30

40

Message size (byte)

S
in

gl
e

tr
ip

 ti
m

e
(u

s)

__: TMPI
.....: TMPI_lock

(A) Short message performance

0 20 40 60 80 100
0

20

40

60

80

100

120

Message size (Kbyte)

R
at

e
(M

by
te

/s
ec

)

__: TMPI
.....: TMPI_lock

(B) Long message performance

Fig. 16. Effectiveness of lock-free management in point-to-point communication.

SGI MPI. TMPI is also 46� faster than MPICH, which is due to both saving from mem-
ory copy and our lock-free communication management. SGI MPI is slightly better than
TMPI mem, which shows that communication performance of SGI MPI is good in gen-
eral if the advantage of address space sharing is taken away. Another interesting point
in Figure 15(B) is that all three implementations except TMPI have a similar surge when
message size is around 10K. This is because they have similar caching behavior. TMPI has
a different memory access pattern since some memory copy operations are eliminated.

Effectiveness of lock-free communication management. We assess the gain due to the
introduction of lock-free message queue management by comparing it with a lock-based
message queue implementation, called TMPI lock. In the lock-based implementation, each
channel has its own lock. The message sender first acquires the lock, then checks the cor-
responding receive queue. If it finds the matching handle, it releases the lock and processes
the message passing; otherwise it enqueues itself into the send queue and then releases the
lock. The receiver proceeds in a similar way. We use the same “ping-pong” benchmark in
this experiment.

Figure 16 shows the experimental results for short and long messages. We can see
that TMPI is constantly faster than TMPI lock by 5-6�� for short messages, which is a
35% overhead reduction. For long messages, its impact on data transfer rate will become
smaller as the message size becomes very large. This is expected because the memory copy
operations count for most of the overhead for long messages in this micro-benchmark.

7. CONCLUDING REMARKS

The main contribution of our work is the development of compile-time and runtime tech-
niques for optimizing execution of message-passing programs. These include NSD-based
transformation for threaded execution and an efficient and provably-correct protocol for
point-to-point communication with a novel lock-free queuing scheme. These techniques
are applicable to most MPI applications, considering that MPI is mainly used in the sci-
entific computing and engineering community. The experiments indicate that the TMPI
prototype using the proposed techniques can obtain large performance gains in a multi-
programmed environment for the tested cases while it is competitive with SGI MPI in a
dedicated environment.

The key advantage of using threads studied in this paper is to allow efficient design
of inter-node communication through address space sharing and to allow MPI execution
to be more adaptive to load variation under different OS scheduling policies. Another

ACM Transactions on Programming Languages and Systems, Vol. 0, No. 0, January 2000.

Threaded MPI Execution on Shared Memory Machines � 1023

potential advantage is that when we use a user level thread to execute an MPI node, we can
dynamically control the number of active kernel threads to match the number of available
physical processors in order to minimize kernel level context switch cost. Recently [Shen
et al. 1999] we have studied this idea and we find that minimizing unnecessary use of
kernel-level threads in a multiprogrammed environment can lead to an additional 88%
performance improvement.

TMPI is a proof-of-concept system intended for demonstrating the effectiveness of our
techniques. Our current lock-free data structure does not allow multiple threads within
each MPI node to call MPI functions concurrently and we plan to relax this restriction
in the future. Our current implementation uses SGI machines and we are porting TMPI
to PC Xeon SMPs. It should not be difficult to port our implementation to other SMM
platforms by using Pthreads or by providing a thin thread system. Since SMM clusters
become popular and MPI remains to be popular on such an architecture, we also plan to
extend this work for SMM clusters.

APPENDIX: A List of MPI Functions Implemented in TMPI

MPI Send()
MPI Bsend()
MPI Ssend()
MPI Rsend()
MPI Isend()
MPI Ibsend()
MPI Issend()
MPI Irsend()
MPI Send init()
MPI Bsend init()

MPI Ssend init()
MPI Rsend init()
MPI Recv()
MPI Irecv()
MPI Recv init()
MPI Sendrecv()
MPI Sendrecv replace()
MPI Wait()
MPI Waitall()
MPI Request free()

MPI Comm size()
MPI Comm rank()
MPI Bcast()
MPI Reduce()
MPI Allreduce()
MPI Wtime()
MPI Barrier()
MPI Probe()
MPI Cancel()

ACKNOWLEDGEMENTS

We would like to thank anonymous referees, Anurag Acharya, Rajive Bagrodia, Bobby
Blumofe, Ewa Deelman, Bill Gropp, and Eric Salo for their helpful comments, and Claus
Jeppesen for his help in using Origin 2000 at UCSB.

REFERENCES

ANDERSON, T. E. 1990. The performance of spin lock alternatives for shared-money multiprocessors. IEEE
Trans. Parall. Distrib. Syst. 1, 1 (Jan.), 6–16.

ARORA, N. S., BLUMOFE, R. D., AND PLAXTON, C. G. 1998. Thread scheduling for multiprogrammed mul-
tiprocessors. In Proceedings of the 10th Symposium on Parallel Algorithms and Architectures. Puerto Vallarta,
Mexico, 119–29.

BRIGHTWELL, R. AND SKJELLUM, A. 1996. MPICH on the T3D: a case study of high performance message
passing. Tech. rep., Computer Sci. Dept., Mississippi State Univ.

BRUCK, J., DOLEV, D., HO, C.-T., ROŞU, M.-C., AND STRONG, R. 1997. Efficient message passing interface
(MPI) for parallel computing on clusters of workstations. Journal of Parallel and Distributed Computing 40, 1
(10 Jan.), 19–34.

CANNON, L. E. 1969. A cellular computer to implement the kalman filter algorithm. Ph.D. thesis, Department
of Electrical Engineering, Montana State University, Bozeman, MT. Available from UMI, Ann Arbor, MI.

CROVELLA, M., DAS, P., DUBNICKI, C., LEBLANC, T., AND MARKATOS, E. 1991. Multiprogramming on
multiprocessors. In Proceedings of the 3rd IEEE Symposium on Parallel and Distributed Processing. IEEE,
590–597.

ACM Transactions on Programming Languages and Systems, Vol. 0, No. 0, January 2000.

1024 � Hong Tang et al.

CULLER, D. E., SINGH, J. P., AND GUPTA, A. 1999. Parallel Computer Architecture A Hardware/Software
Approach, 1 ed. Morgan Kaufmann Publishers, San Francisco, CA.

FEITELSON, D. 1997. Job scheduling in multiprogrammed parallel systems. Tech. Rep. Research Report RC
19790, IBM.

FERRARI, A. AND SUNDERAM, V. 1995. TPVM: distributed concurrent computing with lightweight processes.
In Proceedings of IEEE High Performance Distributed Computing. IEEE, Washington, D.C., 211–218.

FOSTER, I., KESSELMAN, C., AND TUECKE, S. 1996. The Nexus approach to integrating multithreading and
communication. Journal of Parallel and Distributed Computing 37, 1 (25 Aug.), 70–82.

GROPP, W. AND LUSK, E. 1997. A high-performance MPI implementation on a shared-memory vector super-
computer. Parallel Computing 22, 11 (Jan.), 1513–1526.

GROPP, W., LUSK, E., DOSS, N., AND SKJELLUM, A. 1996. A high-performance, portable implementation of
the MPI message passing interface standard. Parallel Computing 22, 6 (Sept.), 789–828.

HERLIHY, M. 1991. Wait-free synchronization. ACM Trans. Program. Lang. Syst. 11, 1 (Jan.), 124–149.

JIANG, D., SHAN, H., AND SINGH, J. P. 1997. Application restructuring and performance portability on
shared virtual memory and hardware-coherent multiprocessors. In Proceedings of the 6th ACM Symposium on
Principles and Practice of Parallel Programming. ACM, New York, 217–29.

KERNIGHAN, B. W. AND RITCHIE, D. M. 1988. The C Programming Language , 2 ed. Prentice Hall, Inc,
Englewood Cliffs, NJ.

KONTOTHANASSIS, L. I., WISNIEWSKI, R. W., AND SCOTT, M. L. 1997. Scheduler-conscious synchroniza-
tion. ACM Trans. Comput. Syst. 15, 1 (Feb.), 3–40.

LEUTENEGGER, S. T. AND VERNON, M. K. 1990. The performance of multiprogrammed multiprocessor
scheduling algorithms. In Proceedings of ACM SIGMETRICS International Conference on Measurement and
Modeling of Computer Systems. New York, 226.

LUMETTA, S. S. AND CULLER, D. E. 1998. Managing concurrent access for shared memory active messages.
In Proceedings of the International Parallel Processing Symposium. Orlando, Florida, 272–8.

MASSALIN, H. AND PU, C. 1991. A lock-free multiprocessor OS kernel. Tech. Rep. CUCS-005-91, Computer
Science Department, Columbia University. June.

MPI-FORUM. 1999. MPI Forum. http://www.mpi-forum.org.

NCSA. 1999. NCSA note on SGI Origin 2000 IRIX 6.5. http://www.ncsa.uiuc.edu/SCD/Consulting/Tips/Scheduler.html.

NEC. 1999. MPI for NEC Supercomputers. http://www.ccrl-nece.technopark.gmd.de/˜mpich/.

NICHOLS, B., BUTTLAR, D., AND FARRELL, J. P. 1996. Pthread Programming, 1 ed. O’Reilly & Associates.

OUSTERHOUT, J. 1982. Scheduling techniques for concurrent systems. In Proceedings of the 3rd International
Conference of Distributed Computing Systems. IEEE, 22–30.

PATTERSON, D. A. AND HENNESSY, J. L. 1998. Computer Organization & Design, 2 ed. Morgan Kaufmann
Publishers, San Francisco, CA.

PRAKASH, S. AND BAGRODIA, R. 1998. MPI-SIM: using parallel simulation to evaluate MPI programs. In
Proceedings of Winter simulation. Washington, DC., 467–474.

PROTOPOPOV, B. AND SKJELLUM, A. 1998. A multi-threaded message passing interface(MPI) architecture:
performance and program issues. Tech. rep., Computer Science Department, Mississippi State Univ.

SALO, E. 1998. Personal communication.

SHEN, K., TANG, H., AND YANG, T. 1999. Adaptive two-level thread Management for fast MPI execution on
shared memory machines. In Proceedings of ACM/IEEE SuperComputing ’99. ACM/IEEE, New York. Will
be available from www.cs.ucsb.edu/research/tmpi.

SKJELLUM, A., PROTOPOPOV, B., AND HEBERT, S. 1996. A thread taxonomy for MPI. MPIDC.

SNIR, M., OTTO, S., HUSS-LEDERMAN, S., WALKER, D., AND DONGARRA, J. 1996. MPI: The Complete
Reference. MIT Press.

TUCKER, A. AND GUPTA, A. 1989. Process control and scheduling issues for multiprogrammed shared-memory
multiprocessors. In Proceedings of the 12th ACM Symposium on Operating System Principles. ACM, New
York.

YUE, K. K. AND LILJA, D. J. 1998. Dynamic processor allocation with the Solaris operating system. In
Proceedings of the International Parallel Processing Symposium. Orlando, Florida.

ACM Transactions on Programming Languages and Systems, Vol. 0, No. 0, January 2000.

Threaded MPI Execution on Shared Memory Machines � 1025

ZAHORJAN, J. AND MCCANN, C. 1990. Processor scheduling in shared memory multiprocessors. In Proceed-
ings of the ACM SIGMETRICS International Conference on Measurement and Modeling of Computer Systems.
ACM, New York, 214–225.

ZHOU, H. AND GEIST, A. 1997. LPVM: a step towards multithread PVM. Concurrency - Practice and Experi-
ence.

Received July 6, 1999; revised February 28, 2000; accepted May 22, 2000

ACM Transactions on Programming Languages and Systems, Vol. 0, No. 0, January 2000.

