
Power and Energy Containers for Multicore Servers∗

Kai Shen Arrvindh Shriraman† Sandhya Dwarkadas Xiao Zhang‡

Technical Report #970

Department of Computer Science, University of Rochester

November 29, 2011

Abstract

Energy efficiency and power capping remain growing

concerns in server systems. Online applications con-

tinue to evolve with new features and dynamic client-

directed processing, resulting in varying power profiles.

New computing platforms with multicore resource shar-

ing and heterogeneity further obfuscate the system be-

haviors, presenting challenges for request/client-based

energy accounting, identification and control of power

viruses, as well as energy-efficient load management.

This paper presents a new operating system facility we

call “power and energy containers” that accounts for

and controls the power/energy usage of individual fine-

grained requests in multicore servers. Our power and

energy containers are enabled by three techniques— 1)

online attribution of multicore power (including shared

maintenance power) to individual tasks running concur-

rently on the multicore, 2) alignment of actual power

measurements and model estimates to enable online

model recalibration, and 3) on-the-fly request tracking

in multi-stage servers to isolate the power/energy contri-

butions and customize control of individual requests.

We evaluate our request-level power/energy contain-

ers on three different multicore processors (Intel Wood-

crest, Nehalem, and Westmere) using a number of open-

source application workloads including a high stress

benchmark that can mimic a power virus. Our power

containers can be used to cap server power consump-

tion in a fair manner by penalizing only power-hungry

requests. The container energy profiles can also iden-

tify request affinity and guide request distribution be-

tween heterogeneous servers. Our case study shows up

to 18% energy saving compared to an alternative ap-

proach that recognizes machine heterogeneity but not

per-request affinity.

∗This work was supported in part by the National Science Foun-

dation (NSF) grants CCF-0448413, CNS-0834451, CCF-0937571, and

CCF-1016902. Shen was also supported by an IBM Faculty Award and

a Google Research Award.
†Shriraman is currently affiliated with Simon Fraser University.
‡Zhang is currently affiliated with Google.

Keywords: multi-core, server system, power throt-

tling, energy optimization.

1 Introduction

Designers of data centers and server systems put high

priorities on improving energy efficiency, controlling

peak power draw, and monitoring resource usage anoma-

lies. Online applications are continuously evolving with

new features and some (like social networking, Wiki

sites, and online collaboration) rely on end users to sup-

ply content or even content-generating code. The work-

load diversity and dynamic client-directed processing

can result in large power fluctuations on modern pro-

cessors with increasing specialization and power propor-

tionality [6]. In particular, extreme power-consuming

tasks (or “power viruses”) [25] may appear accidentally

or be maliciously devised. Isolating per-client power at-

tribution to identify such tasks so as to cap the system

power draw in a fair fashion is highly desirable. Fur-

ther, recognizing the energy usage of individual requests

helps inform the full costs of web uses, as illustrated

vividly in the public exchanges between a scientist [50]

and Google [29]. Additionally, the economics of incre-

mental data center upgrades, along with low-power de-

signs and specialization, lead to widespread heterogene-

ity in server clusters. Exploiting the affinity of the di-

verse workload to heterogeneous platforms is beneficial

for realizing high energy efficiency.

Previous research (particularly resource contain-

ers [4], Magpie [5], and our hardware counter signa-

tures [43, 44]) has recognized the need for profiling and

isolating per-request resource usage in a server. Ap-

plying this concept to request power/energy accounting

and management on multicore servers is challenging.

Concurrent task executions, varying power consumption,

and dynamic hardware component sharing in a multi-

core processor leads to complex per-task power behav-

iors. Direct power measurements on such spatial and

temporal granularities are not available on today’s sys-

tems. Further, request executions in a concurrent, multi-

1

stage server contain fine-grained activities with frequent

context switches. Finally, request-level power and en-

ergy management requires agile, low-cost control to en-

sure isolation and achieve efficiency.

This paper presents a new operating system facility,

called power and energy containers, to account for and

control the power/energy usage of individual requests

in multicore servers. The characterization of request

power/energy behaviors provides a detailed understand-

ing of the server system power profile, and facilitates

fine-grained attribution of energy usage to clients and

their individual requests. We develop three key tech-

niques to support power and energy containers:

• We attribute the multicore power consumption to in-

dividual tasks running concurrently on a multicore

system. Beyond previous event-driven power mod-

els [7,8,16,18,30], we capture the shared multicore

maintenance power and dynamically attribute it to

actively running tasks at runtime. For low overhead,

the power accounting is performed independently at

each CPU core without global coordination.

• Power modeling inaccuracy [36] may result from

different characteristics between calibration work-

loads and production workloads, particularly for

unusually high-power applications. Online power

measurements can help recalibrate power modeling

but measurement results often arrive with some de-

lays. We align power measurements and modeling

estimates using signal processing cross-correlation.

• Utilizing an application-transparent, online request

context tracking mechanism, we isolate the power

consumption contribution of each individual re-

quest, and enable client/request-oriented accounting

of power and energy usage. Online request context

tracking also allows the selective adoption of power

and energy control mechanisms for certain requests.

Our power and energy containers enable the first-class

management of multicore server power/energy resources

in unprecedentedways. This paper will demonstrate that:

• It can pinpoint the sources of power spikes and

anomalies. It can further condition the request

power consumption in a fair fashion—throttling the

execution of power viruses (using processor duty-

cycle modulation) while allowing normal requests

to run at full speed.

• It can improve energy efficiency in a heterogeneous

environment through container heterogeneity-

aware load distribution. Request energy profiles

on different machines are used to understand each

request’s cross-machine relative energy efficiency

and direct its execution accordingly.

We will present the design and implementation of our

power/energy containers and examine the above case

studies in this paper.

2 Related Work

Power measurement and modeling: Per-hardware-

component power can be measured through elaborate

embedded instruments (as in LEAP [37]). The Intel

Sandy Bridge processors can read voltage and current

via on-chip digital voltage regulators. It provides power

measurement at the level of multi-core package (but not

per-core measurement). Fundamentally, directly measur-

ing per-core power on a multicore chip is difficult due to

shared use of components such as cache and memory in-

terconnect.

Bellosa [7] suggested that the processor and mem-

ory power may be estimated using a linear model on

hardware event counts. Economou et al. [18] combined

hardware event counters with software metrics to create

full-system power models. Isci and Martonosi [30] and

Bertran et al. [8] further utilized the hardware counter

statistics not only to estimate per-component power us-

age but also to predict power phases. Alternatively, ac-

curate per-component power estimation can be acquired

through detailed processor and memory models [9, 33].

On the negative side, McCullough et al. [36] identified

several factors for high power model errors (including

multicore complexities and hidden device states) and ad-

vocated direct power measurement. Power modeling has

also been included in processor designs like the IBM

POWER7 [48] to monitor runtime activities and adap-

tively configure the processor frequency.

Direct measurement or hardware event-based model-

ing alone is limited by their inability to identify and

isolate concurrent resource principals in a server envi-

ronment. This paper improves multicore server power

modeling by considering cross-core environmental fac-

tors and aligning measurements and modeling estimates

for online recalibration.

System-level energy accounting: By coordinating

the external power measurement with interrupt-triggered

program sampling, Flinn and Satyanarayanan [22] were

able to profile the energy usage of application processes

and procedures. ECOSystem [51] was proposed as a uni-

fied framework of whole-system energy accounting to

support energy management policies. The ECOSystem

work used relatively simple component power models

(for instance, the CPU power consumption is assumed

to be constant during busy periods). The Quanto sys-

tem [23] combined the information of component power

states, high-resolution energymetering, and causal track-

ing of system activities to profile energy usage in embed-

ded network devices. Kansal et al. [31] employed a re-

2

source usage-based powermodel to track virtual machine

power consumption in cloud computing platforms. Most

recently, the Cinder operating system [42] employed new

control abstractions (isolation, delegation, and subdivi-

sion) to account for and manage energy in mobile de-

vices. In comparison to these techniques, our work

tackles the challenges of power attribution in two new

dimensions—over shared-resource multicore processors

and among concurrently running fine-grained requests.

Adaptive powermanagement: Weiser et al. first pro-

posed adjusting the CPU speed according to its utiliza-

tion [49]. The basic principle is that when the CPU is not

fully utilized, the processing capability can be lowered

to improve the power efficiency. Later efforts included

automatic setting of performance goals at the operating

system [21], request batching to extend the CPU low-

power state [19], energy management directed by perfor-

mance guarantees [34], coordination of multiple inter-

acting power management techniques [14, 41], and fast

transitioning between active state and minimum-power

nap state [38]. In comparison to these studies, our contri-

bution is the online power/energy profiling of individual

request executions in a server system. Our model pro-

vides fine-grained accounting of power consumption and

energy usage to user requests. It can also enable new

system support for request-level quality-of-service and

power/energy policies.

Cluster/warehouse-level energy/power manage-

ment: In light of the load burstiness at large-scale

service sites, Chase et al. [13] and Pinheiro et al. [40]

proposed to consolidate services to a subset of servers

at load troughs while the remaining servers can be shut

down to conserve energy usage. In terms of data center

power provisioning, Fan et al. [20] and Govindan et

al. [26] suggested that the power provisioning should

take into account the independence as well as correlation

of power fluctuations at individual servers. On the

system architecture, Lim et al. [35], Caulfield et al.

(Gordon) [10], and Andersen et al. (FAWN) [3] showed

that low-power processors and flash memory can sig-

nificantly enhance the data center energy efficiency.

In addition, Heath et al. [28], Nathuji et al. [39], and

Chun et al. [15] have recognized the energy effects of

load placement in a heterogeneous server cluster. Our

request profiling and management on multicore servers

are complementary to these systems. Specifically,

the capture and control of power virus requests is

an important part of the system power management

goals. Further, our container-enabled request energy

usage profiles can identify the request energy tradeoff

across heterogeneous multicore servers and thereby

address a key challenge for heterogeneity-aware request

distribution.

3 Power and Energy Containers

We propose a new operating system facility that ac-

counts for and controls the power/energy usage of in-

dividual requests in a multicore server. We tackle the

challenges of power attribution and control in two new

dimensions—1) over concurrent executions on a shared-

resource multicore and 2) among fine-grained requests

in a multi-stage server application. To tackle the first

challenge, we model per-task power consumption from

core-level activities and shared multicore chip power. In

addition, we align online power measurements and mod-

eling estimates to recalibrate the power model for better

accuracy. To tackle the second challenge, we build op-

erating system mechanisms to track multi-stage request

executions on-the-fly, account for request power/energy

usage, and apply request-grained power control.

3.1 Power Attribution to Concurrent Tasks

While the system power modeling has been exten-

sively addressed in previous research [7, 8, 16, 18, 30, 36,

48], they largely focus on the whole system or full pro-

cessor power consumption. However, multiple tasks may

run concurrently in a multicore system and each task may

belong to a distinct user request, which desires separate

accounting. We present new techniques to attribute the

power consumption to individual tasks running concur-

rently on a multicore system. This section focuses on the

processor and memory power attribution while the ac-

counting of I/O power consumption will be discussed in

Section 3.3.

Our first approach follows Bellosa [7] and others [8,

16, 18, 30]’s model that the processor/memory power

consumption is linearly correlated with the frequency of

relevant hardware events. Example metrics of interests

include the core utilization or the ratio of non-halt core

cycles over elapsed cycles (Mcore), retired instructions

per CPU cycle (Mins), floating point operations per CPU

cycle (Mfloat), last-level on-chip cache requests per CPU

cycle (Mcache), and memory transactions per CPU cycle

(Mmem). The constant power term in the linear relation-

ship represents the idle power consumed when zero val-

ues for all metrics are observed. The remaining active

(full minus idle) power can be modeled as:

Ccore·Mcore+Cins·Mins+Cfloat·Mfloat+Ccache·Mcache+Cmem·Mmem

(1)

where C’s are coefficient parameters for the linear model

that can be calibrated offline (once for each target ma-

chine configuration). Equation 1 models the full system

active power if M’s capture the summed event metrics

over all cores. We can also use it to account for the active

power of an individual task ifM’s capture the metrics on

the CPU core where the target task is currently running.

3

We implement such event-based power accounting in

the operating system. Each core performs accounting

for its local task independently without cross-core syn-

chronization or coordination. We acquire per-core sys-

tem metrics (M’s) online by reading processor hardware

counters and computing relevant event frequencies. The

continuous maintenance of the power model and hard-

ware counter statistics requires periodic counter sam-

pling. We configure the core-local Programmable Inter-

rupt Controller for threshold-based event counter over-

flow interrupts. Specifically, we set the interrupt inter-

vals to a desired number of non-halt core cycles. Non-

Halt cycle-based triggers have the benefit of suppressing

the interrupts when the CPU core has no work to do (so

it can continuously stay in the low-power idle state).

The above approach assumes that the power account-

ing for a task only depends on core-level physical events.

On a multicore processor chip with intricately shared

hardware resources, however, chip-wide environmental

factors also affect per-core power accounting. In partic-

ular, the maintenance of shared multicore resources (in-

cluding at least clocking circuitry and voltage regulators)

consumes some active power as long as one core is run-

ning. But such consumption does not change proportion-

ally with core-level event rates. Figure 1 illustrates this

symptom using a very simple CPU spinningmicrobench-

mark. This workload scales perfectly on the multicore so

all observed event metrics scale proportionally with the

CPU core utilization. The Equation 1 model would sug-

gest a linear relationship between the core utilization and

power. However, measurements show that the power in-

crement from idle to one utilized core is at a much higher

rate than further power increments, which suggests an ac-

tive power component that does not scale with core-level

physical events.

It is intuitive to evenly attribute the chip maintenance

power at each time instant to the currently running tasks.

The system utilization level fluctuates over time in pro-

duction server environments [6]. Proper accounting and

attribution of shared chip maintenance power is challeng-

ing because one task’s share may change depending on

activities (or the lack thereof) on other cores. We use a

new metricMchipshare to denote the proportion of a given

task’s share (0.0≤Mchipshare≤1.0). If a core is busy while
all other siblings are idle, the full chip power should be

attributed to the task on the busy core (Mchipshare=1.0).
If multiple (k) cores are busy, then each running task on

one of the busy cores hasMchipshare=
1.0
k
. Our new active

power model adds the shared chip maintenance power to

the original model:

[Equation 1] + Cchipshare · Mchipshare (2)

Unlike the core-level event metrics that can be simply

acquired through hardware counters on the CPU core,

Idle 1.0 2.0 3.0 4.0
0

20

40

60

80

CPU core utilization

Id
le

 a
n

d
 a

c
ti
v
e

 p
o

w
e

r
(i
n

 W
a

tt
s
)

Measurements

Linear projection

Figure 1: Relationship between processor/memory

power and core-level activities on a quad-core Nehalem

processor. We highlight its mismatch with a hypothetical

linear projection.

the chip power share Mchipshare does not correspond to

any processor hardware counter. Further, a precise shar-

ing in a dynamic system depends on time-synchronized

global activities across multiple cores. In our implemen-

tation, each core independently makes an approximate

estimation while avoiding expensive global coordination

or cross-core interrupts. We discretize the computation

of Mchipshare over time intervals that match the hard-

ware counter sampling periods for collecting core-level

events. When the discretized time intervals (for example,

1millisecond intervals) are much shorter than a typical

CPU scheduling quantum, the probability for a schedul-

ing decision made during an interval is low. Therefore

each core is likely to be fully busy or fully idle within

each interval. We approximate the number of busy sib-

ling cores using the sum of latest core utilization ratios at

all siblings on the multicore chip. Formally on an n-core

processor, the task currently running on CPU core c has:

Mchipshare(c) = Mcore(c) ·
1

1 +
∑

1≤i≤n,i6=c Mcore(i)
,

(3)

where Mcore(x) indicates the core utilization ratio on

CPU core x.

We check a sibling’s core utilization by reading its

most recent hardware counter sample in memory. Note

that each CPU core performs independent sampling at

non-halt cycle-triggered interrupts, which stop when the

core is idle. Therefore an idle sibling may have stale

sample statistics. To address this problem, we check

whether the OS is currently scheduling the idle task on a

sibling core and consider its current activity rate as zero

if so.

3.2 Measurement Alignment for Model Recali-
bration

Despite the wide uses of event-based power mod-

els [7, 8, 30, 48], we found that large errors may arise in

4

practice. Recent research [36] has also raised questions

on the accuracy of event-based power models. Beyond

superficial problems like insufficient coverage of mod-

eled events, significant modeling inaccuracy also results

from differing characteristics between calibration work-

loads and production workloads. This is particularly

the case for unusually high power-consuming production

workloads that demand careful attention in server sys-

tem power management. To address the modeling inac-

curacy, we utilize online power measurements to adjust

and recalibrate the offline-constructed power models.

While whole-system power measurements can be ac-

quired through off-the-shelf meters, measurement results

often arrive with some lag time due to the meter report-

ing delay and data I/O latency (e.g., through a USB inter-

face). On the other hand, processor event counter-based

power models can be maintained at the much shorter la-

tency of reading CPU registers and computing simple

statistics. In order to use the power measurements to

identify modeling errors and recalibrate the model, the

measurement results and modeling estimates need to be

properly aligned.

While a poorly calibrated power model does not accu-

rately predict the power consumption, it may still iden-

tify power transitions and phases quite well [8, 30]. In

other words, aligned power measurements should follow

the fluctuation patterns of real-time power model esti-

mates. This motivates us to employ a signal processing

approach to align measurement samples and model es-

timates. Specifically, we compute the cross-correlation

metric between measurement and model power samples

at different hypothetical measurement delays. A higher

cross-correlation would indicate better matching of the

measurement/model fluctuation patterns.

Formally, let Pmeasure(0), Pmeasure(1), · · · be the

sequence of recent power measurement samples

(Pmeasure(0) is the most recent). Let Pmodel(0), Pmodel(1),
· · · be the sequence of recent modeling samples at the

same sampling frequency. Then the cross-correlation at

a hypothetical measurement delay t is:

number of matching samples∑

i=0

Pmeasure(i) · Pmodel(i + t). (4)

Figure 2 shows a case example of alignment cross-

correlation over hypothetical measurement delays from

0.0 to 5.0 seconds. The highest point of the high cor-

relation peak (specially marked in the figure) is about

1.3 seconds, which indicates the likely measurement de-

lay. Figures 3(A) and (B) show the original and aligned

(with 1.3 second delay) measurement/model power sam-

ples respectively. These results are for an measurement

using a current clamp and an external Agilent multime-

ter with a USB data connection. Alignment for a differ-

0 1 2 3 4 5
Hypothetical measurement delay (in seconds)

C
ro

s
s
 c

o
rr

e
la

ti
o
n

Figure 2: Measurement/model alignment cross-

correlation for an Agilent power meter on a Nehalem

machine. High correlation peak is specially marked in

the figure.

0 1 2 3 4 5 6 7 8
20

40

60

P
o

w
e

r
(i
n

 W
a

tt
s
)

(A) Original Agilent measurements

Modeled active power Measured active power

0 1 2 3 4 5 6 7 8
20

40

60

Progress of execution (in seconds)

P
o

w
e

r
(i
n

 W
a

tt
s
)

(B) Aligned Agilent measurements

Figure 3: Original (A) and aligned (B) measure-

ment/model power traces.

ent setup using a Wattsup meter shows a measurement

delay of about 2.1 seconds. Details on the power mea-

surement setups will be provided later in Section 4. Note

that the power measurements are for the whole system so

the alignment uses the modeled whole system power (by

adding per-core modeled power over all CPU cores).

Aligned power measurements can identify modeling

errors for the currently running workload and help re-

calibrate our multicore power model in Equation 2. The

recalibration intuitively means adding new online sample

of aligned system metrics and corresponding power mea-

sures to the original offline model parameter calibration.

Specifically, we perform online least-square-fit linear re-

gression to recalibrate the model parameters when new

online samples are available. Our parameter recalibra-

tion includes both offline workload samples and current

online measurements, weighed equally in the square er-

ror minimization target.

3.3 Request Power Accounting and Control

We construct operating system mechanisms to support

request-level power/energy containers in a server system.

Our first goal is to account for request power consump-

tion and cumulative energy usage. Our second goal is to

5

enable request-specific power/energy control (e.g., speed

throttling) according to request-level policies on resource

usage and quality-of-service. The online control requires

each request’s power/energy container to be maintained

on-the-fly—while the request executes.

Our OS support tracks request execution contexts so

that power-relevant metrics can be properly attributed

and control mechanisms can be properly applied. A re-

quest context coincides with a process (or thread) con-

text in some cases. However, request context tracking is

challenging in multi-stage servers where a request execu-

tion may flow through multiple processes. For instance,

a PHP web processor propagates the request context into

a database thread through a socket message. In another

example, a web server handler forks an external process

to render an image for desired client presentation. The

past approach of Resource Container [4] requires appli-

cations to explicitly pass request context bindings across

server stages. To relieve the burden on applications,

Magpie [5] logs system events transparently and ana-

lyzes their request context relations afterwards. Magpie’s

asynchronous analysis is highly flexible, but it is unable

to control a request’s power/energy behaviors while it ex-

ecutes.

We may identify a request context on-the-fly with

recognized patterns on how it propagates over multiple

server stages. Specifically, we recognize request con-

text propagation events as those that indicate causal de-

pendences through data and control flows between pro-

cesses. The basic idea for online flow tracking through

multiple system components isn’t new, as in the X-Trace

framework [24], our past work of workload signature

identification [44], and Google’s Dapper tracing infras-

tructure [45]. Our contribution is to develop the first

system that supports request-level power accounting and

control.

In our implementation, a process (or thread) binds to

the context of the request it currently executes. Request

contexts propagate between processes through socket

communications, IPCs, and process forking. A request

context is created when a socket connection is estab-

lished on the designated server listening port. At the

initialization time, the request context is bound to the

process receiving the socket connection. A request con-

text ends when no process binds to it. A process ends

its binding to a request context when it exits or when

a new request context binding arrives (e.g., through a

socket message from another request). The latter is im-

portant to support request pooling when a single pro-

cess executes multiple requests over its lifetime. Our

approach also supports persistent connections between

server stages where one socket connection is reused by

multiple request propagations over time. In such cases,

the socket’s old request binding is replaced when a mes-

Apache

PHP processor

MySQL

thread

Apache

httpd
Shell

processes
“latex”

process

“dvipng”

process

Request

from client

socket

socket

T
im

e
lin

e

“mv”

process

... … … ...

socket

fork

fork

wait4exit

wait4exit

fork

wait4exit

fork

wait4exit

socket

socket

socket

socket

socketResponse

to client

fork

wait4exit

fork

wait4exit

exit

exit

exit

exit

exit

exit

exit

Figure 4: A captured request execution that involves

Apache PHP processing, MySQL database, and vari-

ous external operations on content and image rendering.

This request is from the WeBWorK online homework

system [47]. Identified data and control flows between

server components are marked in arrows. Darkened por-

tions of a component timeline indicate active executions

(while the rest represent blocking waits).

sage with a new binding (inherited from the sender) flows

through the connection. Figure 4 illustrates a captured

request execution and identified request context propa-

gations across multiple components in a realistic server

application. Note that the Apache processes support re-

quest pooling so their request bindings do not end until

new bindings arrive.

Our current system is implemented entirely in the op-

erating system requiring no application change. OS-only

management, however, cannot track user-level request

stage transfers in an event-driven server. Encouragingly,

past research [11] suggests that some user-level request

stage transfers may be observed by trapping accesses to

critical synchronization data structures. We leave its im-

plementation for possible future work.

During the course of a request execution, our system

samples cumulative processor hardware event counters

including elapsed non-halt CPU cycles, retired instruc-

tions, floating point operations, last-level cache refer-

ence counts, and memory transactions. It samples at

multiple moments and calculates the counter metric for

6

0 20 40 60 80 100 120 140 160
0

0.005

0.01
M

e
m

o
ry

 t
x
n

s
/c

y
c
le

0 20 40 60 80 100 120 140 160
0

0.25

0.5

C
h

ip
 s

h
a

re

0 20 40 60 80 100 120 140 160
0

5

10

15

Request execution time (in milliseconds)

P
o

w
e

r
(i
n

 W
a

tt
s
)

Figure 5: Power-related metrics and modeled active

power over the course of a WeBWorK request on a Ne-

halem machine. The chip share metric indicates the

task’s share of the chip maintenance power (Mchipshare in

Equation 3). This illustration serializes all request execu-

tion samples according to sample wall clock timestamps.

Note that we do not suggest a canonical serialization of

the request execution stages. Indeed some stages of a

request may even execute in parallel.

each period between consecutive sampling. To main-

tain per-request event metrics, we sample the counter

values at the request context switch time to properly at-

tribute the before-switch and after-switch event counts

to the respective requests. A request context switch on

a CPU occurs in two scenarios—1) when two processes

bound to different request contexts switch on the CPU; 2)

when the running process receives a new context bind-

ing (e.g., by an arriving socket message). In addition

to context switch sampling, we sample at periodic in-

terrupts (triggered by a desired number of non-halt core

cycles) to capture fine-grained behavior variations that

affect power.

With per-request event sampling, our power model in

Equation 2 specifies the contribution from collected met-

rics to the request power. Beyond the processor/memory

power, the full system power accounting should also con-

sider power-consuming peripheral devices. Specifically

we include the active power consumption of disk and

network I/O operations in our power model. The OS

can identify responsible requests for I/O operations by

tracking the requests that consume the data received at

I/O interrupts. With the estimation of request power at

each sampling period, the cumulative energy usage can

be simply calculated as the integral of power consump-

tion over time. Figure 5 illustrates the modeled active

power along with some power-related metrics over the

course of a request execution.

In addition to power accounting, the on-the-fly request

tracking allows us to selectively apply power and energy

control mechanisms on certain requests. For example,

we can apply a particular CPU duty-cycle modulation

level to a given request execution. Effectively, when the

request starts executing on a CPU core, the core duty-

cycle level will be set appropriately. When the CPU core

switches to run another request, the core duty-cycle level

will be adjusted according to the policy setting of the new

request. Our request-specific CPU duty-cycle modula-

tion can limit the power consumption of selected requests

without hurting the performance of others. We provide a

case study of such request-level control in Section 5.1.

We can similarly support request-specific dynamic volt-

age/frequency scaling if the multicore processor allows

such scaling on a per-core basis.

A request container can be maintained over multiple

machines in a server cluster. Our single-machine request

container mechanism already tracks socket messages for

request context propagation over multiple server stages.

When a socket message crosses the machine boundary,

we tag it with local request statistics including the cu-

mulative runtime, cumulative energy usage, and most re-

cent power usage. Additional information about request

execution control may also be included. By tagging re-

quest messages, a dispatcher machine can pass container

identifier and control policy settings to execution host

machines. By tagging response messages, the execution

host machines can pass cumulative power/energy usage

information to the dispatcher machine for comprehensive

resource accounting.

3.4 Overhead Assessment

We implemented a prototype power/energy container

facility including per-request hardware counter sam-

pling, power modeling, and statistics maintenance in

Linux 2.6.30. Online container maintenance introduces

overhead in the system. A container maintenance op-

eration typically includes reading the hardware counter

values, computing modeled power values, and updating

request statistics. We measure its overhead on a machine

with a quad-core Nehalem processor. Results show that

one container maintenance operation takes about 1.3 mi-

croseconds. If the maintenance (hardware counter sam-

pling) occurs at the frequency of once every millisecond

(sufficiently fine-grained for many accounting and con-

trol purposes), the overhead is only around 0.1%.

Besides the overhead, the hardware counter sampling

and statistics maintenance also produces additional activ-

ities (and energy usage) that do not belong to the inherent

application behaviors. This behavior, called the observer

effect, introduces perturbation in the power/energy pro-

files generated. We measure such maintenance-induced

7

event metrics and find that an average container main-

tenance operation produces 2948 cycles, 1656 instruc-

tions, 16 floating point operations, 3 last-level cache ref-

erences, and no measurable memory transaction. As-

suming all four cores are busy (1/4 chip share), the av-

erage energy usage for a container maintenance is about

11 micro-Joules according to our active power model in

Equation 2. To mitigate the observer effect in our statis-

tics collection, we subtract the measured event counts of

each sampling period by the maintenance-induced addi-

tional event counts.

The measurement alignment and model recalibration

(Section 3.2) also introduce online overhead. The mea-

surement alignment does not need to occur frequently

because the measurement lag time on a given system

is unlikely to change dynamically. Our least-square fit

model recalibration requires linear algebra computation

that consumes about 16 microseconds per calibration. Its

online overhead is negligible if it is performed at the fre-

quency of once per second.

4 Request Power Evaluation

We evaluate our request power model on three differ-

ent machines. The first is a multichip/multicore machine

with two dual-core (four cores total) Intel Xeon 5160

3.0GHz “Woodcrest” processors. Two cores on each

processor chip share a single 4MB L2 cache. The sec-

ond machine contains a quad-core Intel Xeon E5520

2.26GHz “Nehalem” processor. The four cores share an

8MB L3 cache. The third machine contains two six-core

(12 cores total) Intel Xeon L5640 2.26GHz “Westmere”

processors. The six cores on each processor chip share

a 12MB L3 cache. The three processors were publicly

released in 2006, 2009, and 2010, using 65 nm, 45 nm,

and 32 nm technologies respectively. And our Westmere

processors are Intel-designated low-power version. We

configure hardware event counting registers on each pro-

cessor to assemble the input metrics for our power model

in Equation 2.

We employ two different power measurement instru-

ments. First, each machine uses a Wattsup meter that

reports the whole machine power consumption once a

second. In addition, we use a Fluke i410 current clamp

applied on the 12V wires that supply power to the pro-

cessor sockets. The clamp detects the magnetic field cre-

ated by the flowing current and converts it into voltage

levels (1mV per 1A current). The voltage levels are then

monitored by an Agilent 34410a multimeter at the gran-

ularity of 100 samples per second. This measurement

captures the power to the processor package, including

cores, caches, Northbridge memory controller, and the

quickpath interconnects. Both Wattsup and Agilent mea-

surements are fed back to the target machine through the

USB interface.

The full power includes a constant idle power con-

sumed when the server exhibits no activity. The idle

power is of little interest to modeling or resource pro-

visioning since it is a constant. Including it in the

power metric would make modeling errors look artifi-

cially small. Therefore we present evaluation results on

the active (full minus idle) power. For interested read-

ers, we briefly describe the significance of idle power

on the Nehalem machine. For the processor/memory

sub-system that our work mostly targets, its idle power

is 20.8Watts, or about 22% of total processor/memory

power at an observed high load scenario. The idle power

proportion increases to 58% when the full machine is

considered. While the idle power is still significant on

today’s production machines, we are encouraged by con-

tinuous efforts and advances toward better energy pro-

portionality [6].

4.1 Model Calibration

Our multicore server model in Section 3.1 requires an

offline calibration to acquire the coefficient parameters.

This calibration is performed once for a target machine

configuration but is subject to measurement-based online

recalibration as described in Section 3.2. We design a

set of microbenchmarks that stress different parts of the

system (including CPU spin with no cache access, CPU

spin with high instruction rate, CPU spin with high float-

ing point operations, high last-level cache access, high

memory access, high disk I/O access, high network I/O,

and finally a benchmarkwith a mixture of different work-

load patterns). For each microbenchmark, we use several

different load levels (100%, 75%, 50%, and 25% of the

peak load) to produce calibration samples. We use the

least-square-fit linear regression to calibrate the coeffi-

cients for Equation 2.

As an example, we list the coefficient parameters of

the calibrated offline model for the Nehalem machine.

While a model coefficient C may not be intuitively mean-

ingful, C ·Mmax (whereMmax is the maximum observed

value for the respective metric on the whole machine)

would approximate the maximum active power impact

of the metric—

Ccore ·M
max
core = 23.2Watts;

Cins · M
max
ins = 16.3Watts;

Cfloat ·M
max
float = 3.5Watts;

Ccache ·M
max
cache = 8.8Watts;

Cmem ·Mmax
mem = 22.8Watts;

Cchipshare · M
max
chipshare = 7.5Watts;

Cdisk · M
max
disk = 2.7Watts;

Cnet ·M
max
net = 3.6Watts.

8

0

20

40

60

80

R
SA−crypto (peak load)

R
SA−crypto (half load)

TPC
−H

 (peak load)

TPC
−H

 (half load)

W
eBW

orK (peak load)

W
eBW

orK (half load)

Stress (peak load)

Stress (half load)

H
ybrid (peak load)

H
ybrid (half load)

A
c
ti
v
e
 p

o
w

e
r

(i
n
 W

a
tt
s
)

Machine with two dual−core Woodcrest processors

0

20

40

60

80

R
SA−crypto (peak load)

R
SA−crypto (half load)

TPC
−H

 (peak load)

TPC
−H

 (half load)

W
eBW

orK (peak load)

W
eBW

orK (half load)

Stress (peak load)

Stress (half load)

H
ybrid (peak load)

H
ybrid (half load)

A
c
ti
v
e
 p

o
w

e
r

(i
n
 W

a
tt
s
)

Machine with a quad−core Nehalem processor

0

20

40

60

80

R
SA−crypto (peak load)

R
SA−crypto (half load)

TPC
−H

 (peak load)

TPC
−H

 (half load)

W
eBW

orK (peak load)

W
eBW

orK (half load)

Stress (peak load)

Stress (half load)

H
ybrid (peak load)

H
ybrid (half load)

A
c
ti
v
e
 p

o
w

e
r

(i
n
 W

a
tt
s
)

Machine with two six−core Westmere processors

Figure 6: Measured active power of application workloads on three machines and two load levels.

4.2 Request Model Evaluation

Our evaluation employs several server-style work-

loads. All applications contain only open-source soft-

ware.

• RSA-crypto is a synthetic security processing work-

load. Each request in this workload runs mul-

tiple RSA encryption/decryption procedures from

OpenSSL 0.9.8g. It contains three types of requests

each uses one of the three encryption keys provided

as examples in OpenSSL. Each request typically

runs for tens of milliseconds on our experimental

machines.

• TPC-H is a database-driven decision support bench-

mark processing 22 complex SQL queries. Some

queries require too much CPU time to be appropri-

ate for interactive server workloads. We slightly

modify them so each query takes no more than

2 seconds of CPU time. Our workload contains an

equal proportion of requests of each query type. We

use MySQL 5.5.13 database. We disable the index

key cache in MySQL, which we found scales poorly

on multiprocessors due to high contention on the

key cache mutex lock.

• WeBWorK [47] is a web-based teaching application

hosted at the Mathematical Association of Amer-

ica and used by over 240 colleges and universities.

WeBWorK lets teachers post science problems for

students to solve online. It is unique in its user

(teacher)-created content—considered by some a

distinctive “Web 2.0” feature [46]. Our installation

runs Apache 2.2.8 web server, a variety of Perl PHP

modules, and MySQL database. Tests are driven by

around 3,000 teacher-created problem sets (ranging

from pre-calculus to differential equations) and user

requests logged at the real site.

• Stress, or Stressful Application Test [2], is a

Google-released benchmark that runs the Adler-

32 checksum algorithm over a large segment of

memory with added floating point operations. It

stresses the CPU core units, floating point unit, and

cache/memory accesses simulatanously. This work-

load generates higher-than-normal power consump-

tion, particularly on recent machine models (Ne-

halem and Westmere). We adapted it to a server-

style workload with requests each running for about

100milliseconds.

• Hybrid contains a mixture of WeBWorK and Stress

requests. Approximately half the load is generated

by each application.

Figure 6 shows the measured active power consump-

tion for all the application workloads on the three ma-

chines. Our experiments employ a test client that can

send concurrent requests to the server at a desired load

level. We show results at two load levels—peak load

when the target server is fully utilized, and half load

when the server utilization is about 50%.

Both TPC-H and WeBWorK use multi-stage server ar-

chitectures. The web server in WeBWorK also pools

many request executions on each worker process. Our

power container facility is able to properly track indi-

vidual request activities and attribute request power con-

sumption during concurrent multicore execution. Fig-

ure 7 shows the distributions of mean request power for

TPC-H and Hybrid (mixture of WeBWorK and Stress)

workloads on the Nehalem machine. We observe vary-

ing request power consumption in the results. In the

Hybrid workload, Stress requests consumes substantially

higher power than WeBWorK requests due to their in-

tense CPU/memory activities. Figure 8 further shows the

request energy usage distributions. The varying request

energy usage is due both to request power variation and

to their execution time difference.

We validate the accuracy of acquired request

power/energy profiles. A direct validation is infeasible

for several reasons. First, it is challenging to directly

9

8 10 12 14 16 18

Mean request power (in Watts)

P
ro

b
a

b
ili

ty
 d

e
n

s
it
y

TPC−H

8 10 12 14 16 18

WeBWorK

Stress

Mean request power (in Watts)

P
ro

b
a

b
ili

ty
 d

e
n

s
it
y

Hybrid

Figure 7: Mean request power distributions (in his-

tograms) for TPC-H and Hybrid workloads on the Ne-

halem machine. The mean power for a request is the av-

erage power consumption over the course of the request

execution. For the Hybrid workload, we label the major

distribution masses forWeBWorK and Stress requests re-

spectively. Results were collected when each workload

runs at half server load.

measure power attribution to concurrently running tasks

on a hardware resource-sharingmulticore. Even if such a

measurement mechanism exists, it must coordinate with

fine-grained request activities (particularly frequent con-

text switches) to directly measure the power profile for

individual requests. Given such difficulties, our valida-

tion uses the acquired request energy profiles to estimate

the full system active power, which can then be compared

to the measured system active power.

Specifically for a running system, our energy contain-

ers can profile the energy usage of all request executions

that fall into a given time duration. The sum of all request

energy usage, divided by the time length, will produce

an estimation of the average system power consumption.

We validate such an estimation with measured system

power. To understand the benefits of our proposed tech-

niques, we compare the validation accuracy over three

different approaches:

• The first approach (presented in Section 3.1) em-

ploys a linear power model on a set of core-level

event metrics. It does not consider the shared chip

maintenance power.

• The second approach (also presented in Section 3.1)

additionally accounts for the multicore chip main-

tenance power and attributes it to concurrently run-

ning requests.

• The third approach (presented in Section 3.2) fur-

ther employs measurement-aligned online model

recalibration to mitigate the impact of differing

characteristics between offline calibration and pro-

duction workloads.

Validation results in Figure 9 show that our techniques

are effective in producing accurate request power/energy

0 3 6 9 12 15

Request energy usage (in Joules)

P
ro

b
a

b
ili

ty
 d

e
n

s
it
y

TPC−H

0 1 2 3 4

Request energy usage (in Joules)

P
ro

b
a

b
ili

ty
 d

e
n

s
it
y

Hybrid

Figure 8: Request energy usage distributions (in his-

tograms) for TPC-H and Hybrid workloads on the Ne-

halem machine.

profiles. Averaging over all workloads, the approach

of only modeling core-level events exhibits 17%, 18%,

and 24% validation errors for the three machines respec-

tively. Attributing shared multicore power reduces the

validation errors to 8%, 12%, and 19% for the three ma-

chines. The measurement-aligned online model recali-

bration further reduces the errors to 4% or so on all ma-

chines. The measurement-aligned recalibration is partic-

ularly effective to improve the request profiling accuracy

of the high-power Stress workload.

4.3 Prediction At New Request Composition

Validation in the previous subsection shows that nearly

all measured energy usage is accounted for and at-

tributed. However, it does not validate whether the re-

quest power/energy attribution is properly done. We ad-

dress this issue by validating power prediction at new re-

quest compositions. Specifically, we can learn the energy

profiles of different types of requests from a running sys-

tem. By assembling such per-request energy profiles, we

can predict the system power in new, hypothetical work-

load conditions (different composition/ratios of request

types, as well as different request rates). Here we assume

that the energy usage for each type of requests does not

change from the profiled system to new workload con-

ditions. A successful validation of this prediction would

indicate that the profiled per-request energy usage was

accurate. Beyond the purpose of validation, the power

prediction at new request compositions may also be uti-

lized to assess possible request distribution strategies and

enhance online load management.

For comparison, we consider two alternative ap-

proaches to predict system active power at hypo-

thetical request compositions/rates. The request-rate-

proportional approach simply assumes that all requests

have a uniform effect on the total system energy usage

so the active power consumption is exactly proportional

to the request rate. The other approach, CPU-utilization-

proportional, assumes that the active power consumption

is proportional to the CPU utilization level. It requires

10

0

10%

20%

30%

40%

V
a
lid

a
ti
o
n
 e

rr
o
r

Machine with two dual−core Woodcrest processors

R
SA−crypto (peak load)

R
SA−crypto (half load)

TPC
−H

 (peak load)

TPC
−H

 (half load)

W
eBW

orK (peak load)

W
eBW

orK (half load)

Stress (peak load)

Stress (half load)

H
ybrid (peak load)

H
ybrid (half load)

Only modeling core−level events Attribution of shared chip power Measurement−aligned online recalibration

0

10%

20%

30%

40%

R
SA−crypto (peak load)

R
SA−crypto (half load)

TPC
−H

 (peak load)

TPC
−H

 (half load)

W
eBW

orK (peak load)

W
eBW

orK (half load)

Stress (peak load)

Stress (half load)

H
ybrid (peak load)

H
ybrid (half load)

V
a
lid

a
ti
o
n
 e

rr
o
r

Machine with a quad−core Nehalem processor

0

10%

20%

30%

40%

R
SA−crypto (peak load)

R
SA−crypto (half load)

TPC
−H

 (peak load)

TPC
−H

 (half load)

W
eBW

orK (peak load)

W
eBW

orK (half load)

Stress (peak load)

Stress (half load)

H
ybrid (peak load)

H
ybrid (half load)

V
a
lid

a
ti
o
n
 e

rr
o
r

Machine with two six−core Westmere processors

Figure 9: The accuracy of different approaches to estimate system active power from aggregate profiled request energy

usage. The error is defined as
| aggregate profiled request power − measured system active power |

measured system active power
.

18 24 30 36
0

10

20

30

40

WeBWorK load (in requests/sec)

A
c
ti
v
e

 p
o

w
e

r
(i
n

 W
a

tt
s
)

(A) WeBWorK new request composition

4 6 8 10
0

10

20

30

40

50

Additional Stress load (in requests/sec)

A
c
ti
v
e

 p
o

w
e

r
(i
n

 W
a

tt
s
)

(B) WeBWorK at 18 reqs/sec with additional Stress load

Measured system active power

Request energy profile−enabled prediction

CPU−utilization−proportional

Request−rate−proportional

Figure 10: Accuracy of our request energy profile-enabled approach (and alternative approaches) to predict power at

new workload conditions. Experiments were performed on the Nehalem machine.

profiling the CPU usage of individual requests through

careful request context tracking [4, 5].

We perform evaluations on two scenarios of new

workload conditions. First, we change the request type

composition within a single application. Specifically, the

original WeBWorK problem-solving workload includes

thousands of science problem sets used in the real site.

We consider a new WeBWorK workload with only the

10 most popular problem sets. In the second scenario, we

add additional high-power Stress requests into an exist-

ing WeBWorK workload. Figure 10 shows the predicted

power and measured power for the two workload scenar-

ios on the Nehalem machine. In each workload scenario

we experiment with several request rates that lie between

half and full load of the machine.

Results show that our request energy profile-enabled

prediction achieves higher accuracy than the two alter-

natives (particularly at high load). For the new WeB-

WorK request composition shown in Figure 10(A), at

36 requests/sec load, our approach has a 2% prediction

error, compared to 16% or so errors for the two alterna-

tives. For WeBWorK with additional Stress load shown

in Figure 10(B), at the highest load, our approach has a

13% error, compared to 26% error for CPU-utilization-

proportional and 36% error for request-rate-proportional.

It is worth discussing the higher prediction errors on

the second workload scenario (WeBWorK with addi-

tional Stress load). An important assumption in our re-

quest energy profile-based prediction is that the energy

usage for each type of requests does not change from

the profiled system to new workload conditions. How-

ever, the request energy usage can be affected by the

runtime condition. In particular, resource contention be-

tween the simultaneously running requests on the multi-

core server may lead to additional power-consuming ac-

tivities. The Stress requests generate substantial load on

the multicore-shared cache and memory interconnects,

which leads to additional contention-induced power con-

sumption. Such prediction errors are not due to the

inaccuracy of our request energy profiles. Rather, it

calls for an accurate prediction of dynamic multicore

resource contention, which is the target of intense on-

going research [12, 17, 52]. Note that while the re-

source contention model is relevant to power prediction

11

at new, hypothetical workloads, it is not needed for on-

line power/energy accounting and management in our re-

quest containers.

5 Container-Enabled Management

By identifying and isolating the power/energy contri-

bution of individual requests in the multicore server, we

enable first-class management of server power and en-

ergy resources for efficiency and fairness. This paper

presents two case studies—fair request power condition-

ing using container-specific CPU execution throttling,

and container profiling-enabled energy-efficient request

distribution in a heterogeneous server cluster.

5.1 Fair Request Power Conditioning

The infrastructure cost to provision for the system

peak power usage is substantial in today’s data cen-

ters [20, 27]. While research has looked into cluster-

wide load management to control system power [20,26],

a complementary effort would be to condition each

server’s power consumption at a target level.

The system power consumption can be controlled by

throttling CPU execution. Specifically, our case study

employs the mechanism of CPU duty-cycle modulation.

On Intel processors, the operating system can specify a

portion (a multiplier of 1/8 or 1/16) of regular CPU cy-

cles as duty-cycles. During each non-duty-cycle period

(on the order of microseconds [1]), the processor is ef-

fectively halted and no memory operations are issued.

This would lead to fewer activities (including memory

transactions) and consequently lower power consump-

tion, at the cost of slower application execution. The

duty-cycle modulation can be independently adjusted on

a per-core basis. It also exhibits a simple relationship

between the duty-cycle level and active power consump-

tion, which eases the control policy decision. Figure 11

shows the power effects of duty-cycle modulation for

two (one CPU-bound and another memory-bound)work-

loads. An approximate linear power relationship exists

for the memory-bound workload because memory trans-

actions are not issued during non-duty-cycle periods.

CPU duty-cyclemodulation can control surging power

consumption. However, indiscriminate full-machine

throttling [32] would lead to slowdowns of all running

requests regardless of their power use. In particular, the

occurrence of a power virus could force speed reductions

on all concurrently running normal requests. Our power

container provides two mechanisms to enable power con-

ditioning in a fair fashion—1) request power account-

ing allows us to detect sources of power spikes; 2) the

use of a request container can precisely throttle execu-

tion of power-hungry requests. In practice, we main-

1/8 2/8 3/8 4/8 5/8 6/8 7/8 8/8
0

20

40

60

Duty cycle ratio

A
c
ti
v
e

 p
o

w
e

r
(i
n

 W
a

tt
s
)

CPU−bound workload

1/8 2/8 3/8 4/8 5/8 6/8 7/8 8/8
0

20

40

60

Duty cycle ratio

A
c
ti
v
e

 p
o

w
e

r
(i
n

 W
a

tt
s
)

Memory−bound workload

Figure 11: Power effects of duty-cycle modulation for

two (one CPU-bound and another memory-bound)work-

loads on the Nehalem machine.

tain a power consumption target for each request. Those

that exceed the specified target will be subject to request-

specific CPU duty-cycle modulation while other requests

will run at full speed.

In our implementation, we check for possible change

of CPU duty-cycle level due to request power consump-

tion variations after each periodic counter sampling (typ-

ically once per millisecond). To enforce request-specific

speed control, a request switch on a CPU core requires

adjusting the core duty-cycle level according to the new

request’s power consumption. On our machines, con-

figuring the CPU duty-cycle level requires reading and

then writing a control register. The read/write operations

take about 265 and 350 cycles respectively, or less than

0.3microsecond on our 3.0GHz and 2.26GHzmachines.

The overhead is negligible (less than 0.03%) when the

change in duty-cycle level is controlled to occur at a rate

of no more than once every millisecond.

We evaluate the effectiveness of fair power condi-

tioning. We experiment with WeBWorK on the Ne-

halem machine. The WeBWorK workload fully utilizes

all four cores on the machine. In the middle of the

experimentation, we inject high-power Stress requests

to mimic power viruses. The power viruses arrive in

a sporadic fashion at an average rate of one per sec-

ond. Each power virus occupies a CPU core for about

100milliseconds. Figure 12(A) shows that the introduc-

tion of power viruses lead to substantial power spikes.

We apply our container-based fair power conditioning

with a system active power target of 40Watts. Since

four requests may be running simultaneously on the

quad-core system, the per-request active power target is

10Watts when the system is fully busy. Figure 12(B)

shows that our request container-enabled power condi-

tioning can effectively keep power consumption at or be-

low the target level despite the power viruses.

While the above results demonstrate the effectiveness

of power conditioning, we next show that the CPU speed

adjustment has been applied fairly to each request. Fig-

ure 13 plots the applied CPU duty-cycle ratio and orig-

12

0 5 10 15 20
20

30

40

50

60

A
c
ti
v
e
 p

o
w

e
r

(i
n
 W

a
tt
s
)

Introduction of power viruses

←

(A) Behavior of the original system

0 5 10 15 20
20

30

40

50

60

A
c
ti
v
e
 p

o
w

e
r

(i
n
 W

a
tt
s
)

Progress of execution (in seconds)

Introduction of power viruses
←

(B) Behavior of the power−conditioned system

Figure 12: Measured active power for original and

power-conditioned executions of WeBWorK with power

viruses. Experiments were performed on the Nehalem

machine with Agilent power meter.

inal request power (before throttling) for each request.

Since a request power consumption may fluctuate over

its execution, different duty-cycle levels may be applied

over time. We show the time-averaged duty-cycle ratio

for each request. We also estimate its power consump-

tion in the original system (assuming a linear relation-

ship between active power and CPU duty-cycle level as

shown in Figure 11). Results show that low-powerWeB-

WorK requests suffer small CPU speed slowdown (aver-

aged at about 9%). At the same time, the power viruses

are subject to more substantial (31% on average) slow-

down.

Without our container-enabled fair power condition-

ing, the peak power can be reduced through full-machine

throttling. A full-machine duty-cycle level of 6/8 would

be required for such throttling, leading to about 25%

slowdown of all requests (low-power WeBWorK re-

quests as well as power viruses).

5.2 Heterogeneity-Aware Request Distribution

Past work has tackled the problem of energy manage-

ment in a server cluster, primarily through server consol-

idation [13, 20, 26, 40] to shut down unneeded machines

at load troughs. A production server cluster may contain

different models of machines because it is not econom-

ical to upgrade all servers at once in a data center. An-

other possible reason is that each of the machine mod-

els has unique characteristics desired in certain workload

scenario. In a heterogenous server cluster, the load place-

ment and distribution on available machines (probably

after consolidation) may affect the system energy effi-

10 11 12 13 14
5/8

6/8

7/8

8/8

← WeBWorK requests

Power viruses →

Original request power (in Watts)

D
u

ty
 c

y
c
le

 r
a

ti
o

WeBWorK with power viruses

Figure 13: Original power and duty-cycle throttling for

WeBWorK requests and power viruses. Each point repre-

sents a sample request. X-coordinate indicates the orig-

inal (before throttling) request power consumption. Y-

coordinate indicates the CPU duty-cycle ratio applied to

the request.

ciency. Previous research [15, 28, 39] has recognized the

importance of energy efficiency optimization in a hetero-

geneous system. However, heterogeneity-ware request

distribution across multicore servers is challenging in the

identification of each request’s cross-machine energy us-

age tradeoff during concurrentmulticore executions. Our

energy containers directly address this challenge by cap-

turing fine-grained request energy usage profiles, which

can later enable the preferential placement of each re-

quest on a machine where its relative energy efficiency is

high.

We assess the energy efficiency heterogeneity across

our machines. While recent processors (e.g., West-

mere) are generally more energy efficient than older

models (e.g., Woodcrest), some applications or applica-

tion requests may see more substantial cross-machine en-

ergy efficiency difference than others do. Our energy

container-enabled profiling allows us to quantify such

workload-specific relative energy efficiency. Figure 14

shows the cross-machine (Westmere overWoodcrest) en-

ergy usage ratio for different workloads. Over different

applications, the cross-machine energy usage ratio can be

as high as 0.40 (for TPC-H) and as low as 0.11 (forWeB-

WorK). Over different requests within one application

(TPC-H), the cross-machine energy usage ratio ranges

from 0.27 (q1 and q22) to 0.61 (q9). When distributing

some load from Westmere to Woodcrest becomes neces-

sary, placing q9 on Woodcrest would be 2.3 times more

energy-efficient than placing q1 or q22.

We perform a small-scale case study of request dis-

tribution over heterogeneous machines. We consider

a two-machine cluster containing the newer (generally

more energy efficient) Westmere and older Woodcrest

13

RSA TPC−H WeBWorK Stress
0

0.1

0.2

0.3

0.4

0.5

C
ro

s
s
−

m
a

c
h

in
e

 e
n

e
rg

y
 u

s
a

g
e

 r
a

ti
o (A) Energy efficiency heterogeneity over different applications

q1 q2 q3 q4 q5 q6 q7 q8 q9 q10q11q12q13q14q15q16q17q18q19q20q21q22
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

C
ro

s
s
−

m
a

c
h

in
e

 e
n

e
rg

y
 u

s
a

g
e

 r
a

ti
o (B) Energy efficiency heterogeneity over different requests within TPC−H

Figure 14: Cross-machine energy usage ratio (energy us-

age on Westmere over that on Woodcrest) for different

applications (A) and for different requests within an ap-

plication, specifically TPC-H queries (B).

machines. Our request distribution goal is to achieve

low overall system energy usage without overloading the

more energy-efficient machine. We compare three load

distribution approaches:

• Simple load balance— This approach balances the

server load by trying to maintain similar CPU uti-

lization ratios on the two machines. It is oblivious

to the energy efficiency heterogeneity in the cluster.

• Machine heterogeneity-aware—This approach rec-

ognizes the machine heterogeneity so it loads up the

more energy-efficient Westmere to a healthy high

utilization (about 90% CPU utilization to prevent

overloading) before loadingWoodcrest. However, it

is oblivious to request-level energy profiles so it dis-

tributes the exact input request composition to both

machines.

• Container heterogeneity-aware— This approach

also loads up the more energy-efficientWestmere to

its full capacity before loading Woodcrest. Beyond

that, it recognizes the per-request energy usage pro-

files using our energy containers and it preferen-

tially places requests with higher relative energy ef-

ficiency (lower energy usage ratio in Figure 14) on

Westmere.

We evaluate the effectiveness of heterogeneity-

aware request distribution on high-utilization workloads

(high utilization is typical for systems under energy-

conserving server consolidation). Specifically, our clus-

ter receives workloads at about 75% of full system ca-

pacity in our experiments. Our first experiment utilizes

0

2K Joules

4K Joules

6K Joules

8K Joules

10K Joules

12K Joules

Westmere energy usage

Woodcrest energy usage

Simple load balance

Machine heterogeneity−aware

Container heterogeneity−aware

E
n

e
rg

y
 u

s
a

g
e

 p
e

r
u

n
it
 o

f
w

o
rk

(A) A combined TPC−H/RSA−crypto workload

0

2K Joules

4K Joules

6K Joules

8K Joules

10K Joules

12K Joules

Westmere energy usage

Woodcrest energy usage

Simple load balance

Machine heterogeneity−aware

Container heterogeneity−aware

E
n

e
rg

y
 u

s
a

g
e

 p
e

r
u

n
it
 o

f
w

o
rk

(B) A TPC−H workload

Figure 15: Measured energy usage per unit of work un-

der three request distribution approaches in a heteroge-

neous server cluster. Usage for the two machines are

marked in different colors. (A) shows results of a multi-

application workload while (B) shows results of a single-

application workload.

a combined TPC-H and RSA-crypto workload (with ap-

proximately half-half load composition). We define one

unit of work as the body of requests arriving in 100 sec-

onds, which includes 1,100 TCP-H requests and 25,000

RSA requests in this experiment. Figure 15(A) shows

the energy usage per unit of work under the three load

distribution approaches. Our container heterogeneity-

aware approach saves 31% in combined two-machine en-

ergy usage compared to the simple load balance. The

saving is 18% compared to the machine heterogeneity-

aware approach that cannot recognize diverse request-to-

machine affinity. Our container-enabled request distribu-

tion achieves these energy savings by preferentially load-

ing each machine with requests of high relative energy

efficiency. Specifically, TPC-H q3, q4, q9, q14, q15, q17

queries are dispatched to the Woodcrest machine while

other TPC-H queries and RSA-crypto requests are dis-

patched to the Westmere machine.

Figure 15(B) illustrates the results of our second ex-

periment with a workload that contains only TPC-H

requests. Here one unit of work (arriving load in

100 seconds) includes 2,500 TPC-H queries. Among

14

the three request distribution approaches, our container

heterogeneity-aware approach saves 20% and 9% in

combined two-machine energy usage compared to the

two alternatives respectively. The savings are less than

those in the first experiment due to less request behav-

ior variation in a single-application workload. Never-

theless, our evaluation demonstrates strong benefits of

container-enabled heterogeneity-aware request distribu-

tion for both multi-application and single-application

workloads.

The performance under all three approaches are com-

parable in both experiments. This is because our

heterogeneity-aware approaches keep the machines un-

der a healthy utilization threshold (about 90%) to prevent

overloading.

6 Conclusion

This paper presents an operating system facility to ac-

count for and control the power/energy usage of individ-

ual requests in multicore servers. It utilizes an online per-

core power estimation model that includes cross-core en-

vironmental effects, measurement-aligned online recali-

bration, and an operating system mechanism to isolate

request-level power for accounting and control. Our sys-

tem incurs low overhead (on the order of 0.1% for a typ-

ical setup). Validation shows that the acquired request

power/energy usage profiles can be aggregated to match

measured system power (with only 4% error) and pre-

dict system power at new, hypothetical workload request

compositions (with no more than 13% error).

Power/energy containers enable the operating system

to better manage online applications with dynamic power

profiles and new computing platforms with hardware re-

source sharing and heterogeneity. We demonstrate that

the request containers can help condition the overall sys-

tem power in a fair fashion—throttling power viruses

(using processor duty-cycle modulation) while allowing

normal requests to run at full speed. Further, the ac-

quired request energy profiles can enable energy-efficient

request distribution on heterogeneous server clusters (by

saving up to 18% energy usage compared to an alterna-

tive approach that recognizes machine heterogeneity but

not per-request affinity).

While this paper focuses on per-request power ac-

counting and control, the concept of power/energy con-

tainers can also be applied to other resource principals in

a multicore system, such as virtual machines in a cloud

hosting platform. Beyond the two management case

studies presented in this paper, the abilities of request

power accounting and control can add a new dimension

to many classic server management schemes, including

classifying resource usage patterns, detecting anomalies,

and exploiting tradeoffs between quality-of-service and

power. They call for additional research in future work.

References

[1] Intel Core2 Duo and Dual-Core thermal and mechan-

ical design guidelines. http://www.intel.com/design/

core2duo/documentation.htm.

[2] Stressful application test. http://code.google.com/p/

stressapptest.

[3] D. G. Andersen, J. Franklin, M. Kaminsky, A. Phan-

ishayee, L. Tan, and V. Vasudevan. FAWN: A fast array

of wimpy nodes. In SOSP, 2009.

[4] G. Banga, P. Druschel, and J. Mogul. Resource contain-

ers: A new facility for resource management in server

systems. In OSDI, 1999.

[5] P. Barham, A. Donnelly, R. Isaacs, and R. Mortier. Using

Magpie for request extraction and workload modeling. In

OSDI, 2004.

[6] L. Barroso and U. Hölzle. The case for energy-

proportional computing. IEEE Computer, 40(12):33–37,

2007.

[7] F. Bellosa. The benefits of event-driven energy account-

ing in power-sensitive systems. In SIGOPS European

Workshop, 2000.

[8] R. Bertran, M. Gonzalez, X. Martorell, N. Navarro, and

E. Ayguade. Decomposable and responsive power models

for multicore processors using performance counters. In

ICS, 2010.

[9] D. Brooks, V. Tiwari, and M. Martonosi. Wattch: A

framework for architectural-level power analysis and op-

timizations. In ISCA, 2000.

[10] A. M. Caulfield, L. M. Grupp, and S. Swanson. Gordon:

Using flash memory to build fast, power-efficient clusters

for data-intensive applications. In ASPLOS, 2009.

[11] A. Chanda, A. Cox, and W. Zwaenepoel. Whodunit:

Transactional profiling for multi-tier applications. In Eu-

roSys, 2007.

[12] D. Chandra, F. Guo, S. Kim, and Y. Solihin. Predicting

inter-thread cache contention on a chip multi-processor

architecture. In HPCA, 2005.

[13] J. S. Chase, D. C. Anderson, P. N. Thakar, A. M. Vahdat,

and R. P. Doyle. Managing energy and server resources

in hosting centers. In SOSP, 2001.

[14] Y. Chen, A. Das, W. Qin, A. Sivasubramaniam, Q. Wang,

and N. Gautam. Managing server energy and operational

costs in hosting centers. In SIGMETRICS, 2005.

[15] B.-G. Chun, G. Iannaccone, G. Iannaccone, R. Katz,

G. Lee, and L. Niccolini. An energy case for hybrid dat-

acenters. In Workshop on Power Aware Computing and

Systems, 2009.

[16] G. Contreras and M. Martonosi. Power prediction for In-

tel XScaler processors using performance monitoring unit

events. In ISLPED, 2005.

15

[17] E. Ebrahimi, C. J. Lee, O. Mutlu, and Y. Patt. Fairness via

source throttling: A configurable and high-performance

fairness substrate for multi-core memory systems. In AS-

PLOS, 2010.

[18] D. Economou, S. Rivoire, C. Kozyrakis, and P. Ran-

ganathan. Full-system power analysis and modeling for

server environments. In Workshop on Modeling, Bench-

marking, and Simulation, 2006.

[19] M. Elnozahy, M. Kistler, and R. Rajamony. Energy con-

servation policies for web servers. In USITS, 2003.

[20] X. Fan, W.-D.Weber, and L. Barroso. Power provisioning

for a warehouse-sized computer. In ISCA, 2007.

[21] K. Flautner and T. Mudge. Vertigo: Automatic

performance-setting for Linux. In OSDI, 2002.

[22] J. Flinn andM. Satyanarayanan. Energy-aware adaptation

for mobile applications. In SOSP, 2001.

[23] R. Fonseca, P. Dutta, P. Levis, and I. Stoica. Quanto:

Tracking energy in networked embedded systems. In

OSDI, 2008.

[24] R. Fonseca, G. Porter, R. H. Katz, S. Shenker, and I. Sto-

ica. X-Trace: A pervasive network tracing framework. In

NSDI, 2007.

[25] K. Ganesan, J. Jo, W. L. Bircher, D. Kaseridis, Z. Yu, and

L. K. John. System-level max power (SYMPO): a sys-

tematic approach for escalating system-level power con-

sumption using synthetic benchmarks. In PACT, 2010.

[26] S. Govindan, J. Choi, B. Urgaonkar, A. Sivasubrama-

niam, and A. Baldini. Statistical profiling-based tech-

niques for effective power provisioning in data centers.

In EuroSys, 2009.

[27] J. Hamilton. Where does the power go in high-scale data

centers? Keynote speech at SIGMETRICS, 2009.

[28] T. Heath, B. Diniz, E. V. Carrera, W. Meira Jr., and

R. Bianchini. Energy conservation in heterogeneous

server clusters. In PPoPP, 2005.

[29] U. Hölzle. Powering a Google search. http://googleblog.

blogspot.com/2009/01/powering-google-search.html,

2009.

[30] C. Isci and M. Martonosi. Runtime power monitoring in

high-end processors: Methodology and empirical data. In

Int’l Symp. on Microarchitecture, 2003.

[31] A. Kansal, F. Zhao, J. Liu, N. Kothari, and A. Bhat-

tacharya. Virtual machine power metering and provision-

ing. In ACM Symp. on Cloud Computing, 2010.

[32] C. Lefurgy, X. Wang, and M. Ware. Power capping: A

prelude to power shifting. Cluster Computing, 11(2):183–

195, June 2008.

[33] S. Li, J. H. Ahn, R. D. Strong, J. B. Brockman, D. M.

Tullsen, and N. P. Jouppi. McPAT: An integrated power,

area, and timing modeling framework for multicore and

manycore architectures. In Int’l Symp. on Microarchitec-

ture, 2009.

[34] X. Li, Z. Li, F. David, P. Zhou, Y. Zhou, S. Adve, and

S. Kumar. Performance directed energy management for

main memory and disks. In ASPLOS, 2004.

[35] K. Lim, P. Ranganathan, J. Chang, C. Patel, T. Mudge,

and S. Reinhardt. Understanding and designing new

server architectures for emerging warehouse-computing

environments. In ISCA, 2008.

[36] J. C. McCullough, Y. Agarwal, J. Chandrasheka, S. Kup-

puswamy, A. C. Snoeren, and R. K. Gupta. Evaluating

the effectiveness of model-based power characterization.

In USENIX Annual Technical Conf., 2011.

[37] D. McIntire, K. Ho, B. Yip, A. Singh, W. Wu, and

W. Kaiser. The low power energy aware processing

(LEAP) embedded networked sensor system. In Int’l

Conf. on Information Processing in Sensor Networks,

2006.

[38] D. Meisner, B. Gold, and T. Wenisch. PowerNap: Elimi-

nating server idle power. In ASPLOS, 2009.

[39] R. Nathuji, C. Isci, and E. Gorbatov. Exploiting platform

heterogeneity for power efficient data centers. In 4th Int’l

Conf. on Autonomic Computing, 2007.

[40] E. Pinheiro, R. Bianchini, E. V. Carrera, and T. Heath.

Dynamic cluster reconfiguration for power and perfor-

mance. In Compilers and Operating Systems for Low

Power, 2003.

[41] R. Raghavendra, P. Ranganathan, V. Talwar, Z.Wang, and

X. Zhu. No ”power” struggles: Coordinated multi-level

power management for the data center. In ASPLOS, 2008.

[42] A. Roy, S. M. Rumble, R. Stutsman, P. Levis,

D. Mazières, and N. Zeldovich. Energy management in

mobile devices with the Cinder operating system. In Eu-

roSys, 2011.

[43] K. Shen. Request behavior variations. In ASPLOS, 2010.

[44] K. Shen, M. Zhong, S. Dwarkadas, C. Li, C. Stewart, and

X. Zhang. Hardware counter driven on-the-fly request

signatures. In ASPLOS, 2008.

[45] B. H. Sigelman, L. A. Barroso, M. Burrows, P. Stephen-

son, M. Plakal, D. Beaver, S. Jaspan, and C. Shanbhag.

Dapper, a large-scale distributed systems tracing infras-

tructure. Technical report, Google, Apr. 2010.

[46] C. Stewart, M. Leventi, and K. Shen. Empirical exami-

nation of a collaborative web application. In IEEE Int’l

Symp. on Workload Characterization, 2008.

[47] The Mathematical Association of America. WeBWorK:

Online homework for math and science. http://webwork.

maa.org/.

[48] M. Ware, K. Rajamani, M. Floyd, B. Brock, J. C. Rubio,

F. Rawson, and J. B. Carter. Architecting for power man-

agement: The IBM POWER7 approach. In HPCA, 2010.

[49] M. Weiser, B. Welch, A. Demers, and S. Shenker.

Scheduling for reduced CPU energy. In OSDI, 1994.

[50] A. Wissner-Gross. How you can help reduce the

footprint of the web. Times Online, UK, 2009.

http://www.timesonline.co.uk/tol/news/environment/

article5488934.ece.

16

[51] H. Zeng, C. S. Ellis, A. R. Lebeck, and A. Vahdat.

ECOSystem: Managing energy as a first class operating

system resource. In ASPLOS, 2002.

[52] S. Zhuravlev, S. Blagodurov, and A. Fedorova. Managing

contention for shared resources on multicore processors.

In ASPLOS, 2010.

17

