
1. The Self-Reducibility Technique

A set S is sparse if it contains at most polynomially many elements at each
length, i.e.,

(∃ polynomial p)(∀n)[||{x | x ∈ S ∧ |x| = n}|| ≤ p(n)]. (1.1)

This chapter studies one of the oldest questions in computational complexity
theory: Can sparse sets be NP-complete?

As we noted in the Preface, the proofs of most results in complexity theory
rely on algorithms, and the proofs in this chapter certainly support that claim.
In Sect. 1.1, we1 will use a sequence of increasingly elaborate deterministic
tree-pruning and interval-pruning procedures to show that sparse sets cannot
be ≤p

m-complete, or even ≤p
btt-hard, for NP unless P = NP. (The appendices

contain definitions of and introductions to the reduction types, such as ≤p
m

and ≤p
btt, and the complexity classes, such as P and NP, that are used in this

book.)
Section 1.2 studies whether NP can have ≤p

T -complete or ≤p
T -hard sparse

sets. PNP[O(log n)] denotes the class of languages that can be accepted by
some deterministic polynomial-time Turing machine allowed at most O(log n)
queries to some NP oracle. In Sect. 1.2, we will—via binary search, self-
reducibility algorithms, and nondeterministic algorithms—prove that sparse
sets cannot be ≤p

T -complete for NP unless the polynomial hierarchy collapses

to PNP[O(log n)], and that sparse sets cannot be ≤p
T -hard for NP unless the

polynomial hierarchy collapses to NPNP.
As is often the case in complexity-theoretic proofs, we will typically use

in the construction of our algorithms the hypothesis of the theorem that the
algorithm is establishing (e.g., we will build a P algorithm for SAT, and will
use in the algorithm the—literally hypothetical—sparse ≤p

m-complete set for
NP). In fact, this “theorems via algorithms under hypotheses” approach is
employed in each section of this chapter.

Furthermore, most of Sects. 1.1 and 1.2 are unified by the spirit of their
algorithmic attack, which is to exploit the “(disjunctive) self-reducibility” of
SAT—basically, the fact that a boolean formula is satisfiable if and only if
either it is satisfiable with its first variable set to False or it is satisfiable with

1 In this book, “we” usually refers to the authors and the readers as we travel
together in our exploration of complexity theory.

2 1. The Self-Reducibility Technique

its first variable set to True. A partial exception to the use of this attack
in those sections is the left set technique, which we use in Sect. 1.1.2. This
technique, while in some sense a veiled tree-pruning procedure inspired by a
long line of self-reducibility-based tree-pruning procedures, adds a new twist
to this type of argument, rather than being a direct invocation of SAT’s
self-reducibility.

Section 1.3 studies not whether there are sparse NP-complete sets, but
rather whether NP − P contains any sparse sets at all. Like the previous
sections, this section employs explicit algorithmic constructions that them-
selves use objects hypothesized to exist by the hypotheses of the theorems
for which they are providing proofs. The actual result we arrive at is that
NP−P contains sparse sets if and only if deterministic and nondeterministic
exponential time differ.

Throughout this book, we will leave the type of quantified variables im-
plicit when it is clear from context what that type is. For example, in equa-
tion 1.1, the “(∀n)” is implicitly “(∀n ∈ {0, 1, 2, . . .}),” and “(∀x)” is typi-
cally a shorthand for “(∀x ∈ Σ∗).” We will use a colon to denote a constraint
on a variable, i.e., “(∀x : R(x)) [S(x)]” means “(∀x) [R(x) =⇒ S(x)],” and
“(∃x : R(x)) [S(x)]” means “(∃x) [R(x) ∧ S(x)].” For any set A and any nat-
ural number n, we will use A≤n to denote the strings of A that are of length
at most n, and we will use A=n to denote the strings of A that are of length
exactly n. Given a Turing machine M , we will use L(M) to denote the lan-
guage accepted by the machine (with respect to whatever the acceptance
mechanism of the machine is).

1.1 GEM: There Are No Sparse NP-Complete Sets
Unless P=NP

1.1.1 Setting the Stage: The Pruning Technique

Before we turn to Mahaney’s Theorem—NP has sparse complete sets only if
P = NP—and its generalization to bounded-truth-table reductions, we first
prove two weaker results that display the self-reducibility-based tree-pruning
approach in a simpler setting. (Below, in a small abuse of notation we are
taking “1” in certain places—such as in expressions like “1∗”—as a shorthand
for the regular expression representing the set {1}.)

Definition 1.1 A set T is a tally set exactly if T ⊆ 1∗.

Theorem 1.2 If there is a tally set that is ≤p
m-hard for NP, then P = NP.

Corollary 1.3 If there is a tally set that is NP-complete, then P = NP.

We note in passing that if P = NP, then the singleton set {1} is trivially
both NP-complete and coNP-complete. Thus, all the “if...then...” theorems

1.1 GEM: There Are No Sparse NP-Complete Sets Unless P=NP 3

of this section (Sect. 1.1) have true converses. We state them in “if...then...”
form to stress the interesting direction.

Proof of Theorem 1.2 Let T be a tally set that is ≤p
m-hard for NP. Since

the NP-complete set

SAT = {f | f is a satisfiable boolean formula}

is in NP and T is ≤p
m-hard for NP, it follows that SAT≤p

mT . Let g be a
deterministic polynomial-time function many-one reducing SAT to T . Let k
be an integer such that (∀x)[|g(x)| ≤ |x|k +k]; since g is computable by some
deterministic polynomial-time Turing machine, such a k indeed must exist
since that machine outputs at most one character per step.

We now give, under the hypothesis of the theorem, a deterministic
polynomial-time algorithm for SAT, via a simple tree-pruning procedure.
The input to our algorithm is a boolean formula F . Without loss of general-
ity, let its variables be v1, . . . , vm and let m ≥ 1. We will denote the result of
assigning values to some of the variables of F via expressions of the following
form: F [v1 = True, v3 = False], where True denotes the constant true and
False denotes the constant false. For example, if F = v1 ∨ v2 ∨ v3 then

F [v1 = True, v3 = False] = True ∨ v2 ∨ False,

and
(F [v1 = True])[v3 = False] = True ∨ v2 ∨ False.

Our algorithm has stages numbered 0, 1, . . . ,m + 1. At the end of each
stage (except the final one), we pass forward a collection of boolean formulas.
Initially, we view ourselves as having just completed Stage 0, and we view
ourselves as passing forward from Stage 0 a collection, C, containing the
single formula F .

Stage i, 1 ≤ i ≤ m, assuming that the collection at the end
of Stage i − 1 is the following collection of formulas: {F1, . . . , F`}.

Step 1 Let C be the collection

{F1[vi = True], F2[vi = True], . . . F`[vi = True],
F1[vi = False], F2[vi = False], . . . F`[vi = False]}.

Step 2 Set C′ to be ∅.
Step 3 For each formula f in C (in arbitrary order) do:

1. Compute g(f).
2. If g(f) ∈ 1∗ and for no formula h ∈ C′ does g(f) = g(h), then add f to
C′.

End Stage i [C′ is the collection that gets passed on to Stage i + 1]

The action of our algorithm at Stage m + 1 is simple: F is satisfiable if
and only if some member of the (variable-free) formula collection output by
Stage m evaluates to being true.

4 1. The Self-Reducibility Technique

As to the correctness of our algorithm, note that after Stage 0 it certainly
holds that

the collection, C, contains some satisfiable formula
⇐⇒

F is satisfiable,
(1.2)

since after Stage 0 formula F is the only formula in the collection. Note also
that, for each i, 1 ≤ i ≤ m,

the collection input to Stage i contains some
satisfiable formula

⇐⇒
the collection output by Stage i contains some

satisfiable formula.

(1.3)

Will now argue that this is so, via using a self-reducibility-based argument. In
the present context, the relevant self-reducibility fact is that for any formula
F containing v as one of its variables,

F is satisfiable ⇐⇒
((F [v = True] is satisfiable) ∨ (F [v = False] is satisfiable)),

since any satisfying assignment must assign some value to each variable. So
Step 1 of Stage i does no damage to our invariant, equation 1.3. What about
Steps 2 and 3? (In terms of the connection to Step 1, it is important to keep
in mind that if, for example, formula F having variable v is in our collection
at the start of the stage and is satisfiable, then it must be the case that

(F [v = True] is satisfiable) ∨ (F [v = False] is satisfiable) ,

so it must be the case that

g(F [v = True]) ∈ T ∨ g(F [v = False]) ∈ T.

And of course, T ⊆ 1∗.) Steps 2 and 3 “prune” the formula set as follows.
Each formula f from Step 1 is kept unless either

a. g(f) 6∈ 1∗, or
b. g(f) ∈ 1∗ but some h ∈ C′ has g(f) = g(h).

Both these ways, (a) and (b), of dropping formulas are harmless. Recall that
SAT≤p

mT via function g, and so if f ∈ SAT then g(f) ∈ T . However, regard-
ing (a), T ⊆ 1∗ so if g(f) 6∈ 1∗ then g(f) 6∈ T , and so f 6∈ SAT. Regarding (b),
if g(f) = g(h) and h has already been added to the collection to be output by
Stage (i), then there is no need to output f as—since SAT≤p

mT via reduction
g—we know that

f ∈ SAT ⇐⇒ g(f) ∈ T

and
h ∈ SAT ⇐⇒ g(h) ∈ T.

1.1 GEM: There Are No Sparse NP-Complete Sets Unless P=NP 5

Thus, f ∈ SAT ⇐⇒ h ∈ SAT, and so by discarding f but leaving in h,
we do no damage to our invariant, equation 1.3. So by equations 1.2 and 1.3
we see that F is satisfiable if and only if some formula output by Stage m
is satisfiable. As the formulas output by Stage m have no free variables, this
just means that one of them must evaluate to being true, which is precisely
what Stage m + 1 checks.

Thus, the algorithm correctly checks whether F is satisfiable. But is this a
polynomial-time algorithm? |F | will denote the length of F , i.e., the number
of bits in the representation of F . Let |F | = p. Note that after any stage
there are at most pk + k + 1 formulas in the output collection, and each of
these formulas is of size at most p. This size claim holds as each formula in
an output collection is formed by one or more assignments of variables of
F to being True or False, and such assignments certainly will not cause an
increase in length (in a standard, reasonable encoding). We will say that a
string s is a tally string exactly if s ∈ 1∗. The pk + k + 1 figure above holds
as (due to the final part of Step 3 of our algorithm) we output at most one
formula for each tally string to which (nk + k-time function) g can map, and
even if g outputs a 1 on each step, g can output in pk +k steps no tally string

longer than 1pk+k. So, taking into account the fact that the empty string is a
(degenerate) tally string, we have our pk + k + 1 figure. From this, from the
specification of the stages, and from the fact that g itself is a polynomial-time
computable function, it follows clearly that the entire algorithm runs in time
polynomial in |F |. ❑

In the proof of Theorem 1.2, we used self-reducibility to split into two each
member of a set of formulas, and then we pruned the resulting set using the
fact that formulas mapping to non-tally strings could be eliminated, and the
fact that only one formula mapping to a given tally string need be kept. By
repeating this process we walked down the self-reducibility tree of any given
formula, yet we pruned that tree well enough to ensure that only a polynomial
number of nodes had to be examined at each level of the tree. By the self-
reducibility tree—more specifically this is a disjunctive self-reducibility tree—
of a formula, we mean the tree that has the formula as its root, and in which
each node corresponding to a formula with some variables unassigned has as
its left and right children the same formula but with the lexicographically
first unassigned variable set respectively to True and to False.

In the proof of Theorem 1.2, we were greatly helped by the fact that we
were dealing with whether tally sets are hard for NP. Tally strings are easily
identifiable as such, and that made our pruning scheme straightforward. We
now turn to a slightly more difficult case.

Theorem 1.4 If there is a sparse set that is ≤p
m-hard for coNP, then

P = NP.

Corollary 1.5 If there is a sparse coNP-complete set, then P = NP.

6 1. The Self-Reducibility Technique

The proof of Theorem 1.4 goes as follows. As in the proof of Theorem 1.2,
we wish to use our hypothesis to construct a polynomial-time algorithm for
SAT. Indeed, we wish to do so by expanding and pruning the self-reducibility
tree as was done in the proof of Theorem 1.2. The key obstacle is that the
pruning procedure from the proof of Theorem 1.2 no longer works, since
unlike tally sets, sparse sets are not necessarily “P-capturable” (a set is P-
capturable if it is a subset of some sparse P set). In the following proof,
we replace the tree-pruning procedure of Theorem 1.2 with a tree-pruning
procedure based on the following counting trick. We expand our tree, while
pruning only duplicates; we argue that if the tree ever becomes larger than a
certain polynomial size, then the very failure of our tree pruning proves that
the formula is satisfiable.

Proof of Theorem 1.4 Let S be the (hypothetical) sparse set that is ≤p
m-

hard for coNP. For each `, let p`(n) denote the polynomial n` + `. Let d be
such that (∀n)[||S≤n|| ≤ pd(n)].2 Since SAT ∈ NP, it follows that SAT≤p

mS.
Let g be a deterministic polynomial-time function many-one reducing SAT to
S. Let k be an an integer such that (∀x)[|g(x)| ≤ pk(n); since g is computed
by a deterministic polynomial-time Turing machine, such a k indeed exists.

We now give, under the hypothesis of this theorem, a deterministic
polynomial-time algorithm for SAT, via a simple tree-pruning procedure.
As in the proof of Theorem 1.2, let F be an input formula, and let m be the
number of variables in F . Without loss of generality, let m ≥ 1 and let the
variables of F be named v1, . . . , vm. Each stage of our construction will pass
forward a collection of formulas. View Stage 0 as passing on to the next stage
the collection containing just the formula F . We now specify Stage i. Note
that Steps 1 and 2 are the same as in the proof of Theorem 1.2, Step 3 is
modified, and Step 4 is new.

Stage i, 1 ≤ i ≤ m, assuming the collection at the end of Stage i−1
is {F1, . . . , F`}.

Step 1 Let C be the collection

{F1[vi = True], F2[vi = True], . . . F`[vi = True],
F1[vi = False], F2[vi = False], . . . F`[vi = False]}.

Step 2 Set C′ to be ∅.
Step 3 For each formula f in C (in arbitrary order) do:

1. Compute g(f).
2. If for no formula h ∈ C′ does g(f) = g(h), then add f to C ′.
2 The ||S≤n||, as opposed to the ||S=n|| that implicitly appears in the definition

of “sparse set” (equation 1.1), is not a typographical error. Both yield valid and
equivalent definitions of the class of sparse sets. The ||S=n|| approach is, as we
will see in Chap. 3, a bit more fine-grained. However, the proof of the present
theorem works most smoothly with the ||S≤n|| definition.

1.1 GEM: There Are No Sparse NP-Complete Sets Unless P=NP 7

Step 4 If C′ contains at least pd(pk(|F |))+1 elements, stop and immediately
declare that F ∈ SAT. (The reason for the pd(pk(|F |))+1 figure will be made
clear below.)

End Stage i [C′ is the collection that gets passed on to Stage i + 1]

The action of our algorithm at Stage m + 1 is as follows: If some member
of the (variable-free) formula collection output by Stage m evaluates to being
true we declare F ∈ SAT, and otherwise we declare F 6∈ SAT.

Why does this algorithm work? Let n represent |F |. Since pd(pk(n))+1 is
a polynomial in the input size, F , it is clear that the above algorithm runs in
polynomial time. If the hypothesis of Step 4 is never met, then the algorithm
is correct for reasons similar to those showing the correctness of the proof of
Theorem 1.2.

If Step 4 is ever invoked, then at the stage at which it is invoked, we
have pd(pk(n))+1 distinct strings being mapped to by the non-pruned nodes
at the current level of our self-reducibility tree. (Recall that by the self-
reducibility tree—more specifically this is a disjunctive self-reducibility tree—
of a formula, we mean the tree that has the formula as its root, and in which
each node corresponding to a formula with some variables unassigned has as
its left and right children the same formula but with the lexicographically
first unassigned variable set respectively to True and False.) Note that each
of these mapped-to strings is of length at most pk(n) since that is the longest
string that reduction g can output on inputs of size at most n. However, there
are only pd(pk(n)) strings in S≤pk(n). As usual, Σ denotes our alphabet,
and as usual we take Σ = {0, 1}. So since the formulas in our collection
map to pd(pk(n)) + 1 distinct strings in (Σ∗)≤pk(n), at least one formula in
our collection, call it H, maps under the action of g to a string in S.3 So
g(H) 6∈ S. However, SAT reduces to S via g, so H is satisfiable. Since H was
obtained by making substitutions to some variables of F , it follows that F is
satisfiable. Thus, if the hypothesis of Step 4 is ever met, it is indeed correct
to halt immediately and declare that F is satisfiable. ❑ Theorem 1.4

Pause to Ponder 1.6 In light of the comment in footnote 3, change the
proof so that Step 4 does not terminate the algorithm, but rather the algorithm
drives forward to explicitly find a satisfying assignment for F . (Hint: The
crucial point is to, via pruning, keep the tree from getting too large. The
following footnote contains a give-away hint.4)

3 Note that in this case we know that such an H exists, but we have no idea which
formula is such an H. See Pause to Ponder 1.6 for how to modify the proof to
make it more constructive.

4 Change Step 4 so that, as soon as C ′ contains pd(pk(n)) + 1 formulas, no more
elements are added to C′ at the current level.

8 1. The Self-Reducibility Technique

1.1.2 The Left Set Technique

1.1.2.1 Sparse Complete Sets for NP. So far we have seen, as the proofs
of Theorems 1.2 and 1.4, tree-pruning algorithms that show that “thin” sets
cannot be hard for certain complexity classes. Inspired by these two results,
Mahaney extended them by proving the following lovely, natural result.

Theorem 1.7 If NP has sparse complete sets then P = NP.

Pause to Ponder 1.8 The reader will want to convince him- or herself of
the fact that the approach of the proof of Theorem 1.4 utterly fails to establish
Theorem 1.7. (See this footnote for why.5)

We will not prove Theorem 1.7 now since we soon prove, as Theorem 1.10,
a more general result showcasing the left set technique, and that result will
immediately imply Theorem 1.7. Briefly put, the new technique needed to
prove Theorems 1.7 and 1.10 is the notion of a “left set.” Very informally, a
left set fills in gaps so as to make binary search easier.

Theorem 1.7 establishes that if there is a sparse NP-complete set then
P = NP. For NP, the existence of sparse NP-hard sets and the existence
of sparse NP-complete sets stand or fall together. (One can alternatively
conclude this from the fact that Theorem 1.10 establishes its result for NP-
≤p

btt-hardness rather than merely for NP-≤p
btt-completeness.)

Theorem 1.9 NP has sparse ≤p
m-hard sets if and only if NP has sparse

≤p
m-complete sets.

Proof The “if” direction is immediate. So, we need only prove that if NP
has a ≤p

m-hard sparse set then it has a ≤p
m-complete sparse set. Let S be

any sparse set that is ≤p
m-hard for NP. Since S is ≤p

m-hard, it holds that
SAT≤p

mS. Let f be a polynomial-time computable function that many-one
reduces SAT to S. Define

S′ = {0k#y | k ≥ 0 ∧ (∃x ∈ SAT)[k ≥ |x| ∧ f(x) = y]}.

The rough intuition here is that S′ is almost f(SAT), except to make the
proof work it via the 0k also has a padding part. Note that if 0k#z ∈ S′

then certainly z ∈ S. S′ is clearly in NP, since to test whether 0k#z is
in S′ we nondeterministically guess a string x of length at most k and we
nondeterministically guess a potential certificate of x ∈ SAT (i.e., we guess a
complete assignment of the variables of the formula x), and (on each guessed
path) we accept if the guessed string/certificate pair is such that f(x) = z

5 The analogous proof would merely be able to claim that if the tree were getting
“bushy,” there would be at least one unsatisfiable formula among the collection.
This says nothing regarding whether some other formula might be satisfiable.
Thus, even if the set C′ is getting very large, we have no obvious way to prune
it.

1.1 GEM: There Are No Sparse NP-Complete Sets Unless P=NP 9

and the certificate proves that x ∈ SAT. Given that S is sparse, it is not
hard to see that S′ is also sparse. Finally, S′ is NP-hard because, in light of
the fact that SAT≤p

mS via polynomial-time reduction f , it is not hard to see
that SAT≤p

mS′ via the reduction f ′(x) = 0|x|#f(x). ❑
We now turn to presenting the left set technique. We do so via proving

that if some sparse set is NP-complete under bounded-truth-table reductions
then P = NP.

Theorem 1.10 If there is a sparse set then P = NP that is ≤p
btt-hard for

NP, then P = NP.

In the rest of the section, we prove Theorem 1.10.

1.1.2.2 The Left Set and wmax. Let L be an arbitrary member of NP.
There exist a polynomial p and a language in A ∈ P such that, for every
x ∈ Σ∗,

x ∈ L ⇐⇒ (∃w ∈ Σp(|x|))[〈x,w〉 ∈ A].

For each x ∈ Σ∗ and w ∈ Σ∗, call w a witness for x ∈ L with respect to A
and p if |w| = p(|x|) and 〈x,w〉 ∈ A. Define the left set with respect to A and
p, denoted by Left [A, p], to be

{〈x, y〉 | x ∈ Σ∗ ∧ y ∈ Σp(|x|) ∧ (∃w ∈ Σp(|x|))[w ≥ y ∧ 〈x,w〉 ∈ A]},

i.e., Left [A, p] is the set of all 〈x, y〉 such that y belongs to Σp(|x|) and is “to
the left” of some witness for x ∈ L with respect to A and p. For each x ∈ Σ∗,
define

wmax(x) = max{y ∈ Σp(|x|) | 〈x, y〉 ∈ A};
if {y ∈ Σp(|x|) | 〈x, y〉 ∈ A} is empty, then wmax(x) is undefined. In other
words, wmax(x) is the lexicographic maximum of the witnesses for x ∈ L
with respect to A and p. Clearly, for every x ∈ Σ∗,

x ∈ L ⇐⇒ wmax(x) is defined,

and
x ∈ L ⇐⇒ (∃y ∈ Σp(|x|))[〈x, y〉 ∈ Left [A, p]].

Furthermore, for every x ∈ Σ∗, the set

{y ∈ Σp(|x|) | 〈x, y〉 ∈ Left [A, p]}

equals {y ∈ Σp(|x|) | 0p(|x|) ≤ y ≤ wmax(x)} if x ∈ L and equals ∅ otherwise
(see Fig. 1.1). More precisely,

(∀x ∈ Σ∗)(∀y ∈ Σp(|x|))[〈x, y〉 ∈ Left [A, p] ⇐⇒ y ∈ wmax(x)].

Also,

(∀x ∈ Σ∗)(∀y, y′ ∈ Σp(|x|))[((〈x, y〉 ∈ Left [A, p]) ∧ (y′ < y))
=⇒ 〈x, y′〉 ∈ Left [A, p]].

(1.4)

10 1. The Self-Reducibility Technique

)x(
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������

�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������

wmax

no witnesses

0...0 1...1witnesses

1...10...0

Fig. 1.1 The left set Left [A, p]. Top: The case when x ∈ L. The arrows above are
witnesses for x ∈ L with respect to A and p, wmax(x) is the rightmost arrow, and

the shaded area is {y ∈ Σp(|x|) | 〈x, y〉 ∈ Left [A, p]}. Bottom: The case when x 6∈ L.

wmax(x) is undefined and {y ∈ Σp(|x|) | 〈x, y〉 ∈ Left [A, p]} = ∅.

Note that Left [A, p] is in NP via the nondeterministic Turing machine
that, on input 〈x, y〉, guesses w ∈ Σp(|x|), and accepts if

(y ∈ Σp(|x|)) ∧ (y ≤ w) ∧ (〈x, y〉 ∈ A)

and rejects otherwise.
Below, we introduce a useful characterization of ≤p

btt reductions. Let k ≥
1. A k-truth-table condition is a (k+1)-tuple C such that the first component
of C is a boolean function of arity k and each of the other components of
C is a member of Σ∗. For a k-truth-table condition C = (α, v1, . . . , vk), we
call α the truth-table of C, call {w | (∃i : 1 ≤ i ≤ k)[w = vi]} the queries
of C, and, for each i, 1 ≤ i ≤ k, call vi the ith query of C. For a language
D, we say that the k-truth-table condition (α, v1, . . . , vk) is satisfied by D if
α(χD(v1), . . . , χD(vk)) = 1.

Proposition 1.11 Suppose that a language C is ≤p
btt-reducible to a lan-

guage D. Then there exist an integer k ≥ 1 and a polynomial-time computable
function f from Σ∗ to the set of all k-truth-table conditions, such that for all
u ∈ Σ∗,

u ∈ C ⇐⇒ f(u) is satisfied by D.

Proof of Proposition 1.11 Suppose that, for some k ≥ 1, a language C
is ≤p

k-tt-reducible to a language D via (f0, B0) such that f0 ∈ FP and B0 ∈ P.
For all u ∈ Σ∗, there exist some l, 1 ≤ l ≤ k, and v1, . . . , vl ∈ Σ∗, such that

• f0(u) = v1# · · · #vl#, and
• u ∈ Left [A, p] ⇐⇒ u#χD(v1) · · · χD(vl) ∈ B0,

where # 6∈ Σ. Let f1 be the function from Σ∗ to (Σ∗#)k defined for all u ∈ Σ∗

by
f1(u) = v1# · · · #vl#

k+1−l,

1.1 GEM: There Are No Sparse NP-Complete Sets Unless P=NP 11

where f0(u) = v1# · · · #vl#. Define B1 to be the set of all u#b1 · · · bk,
u ∈ Σ∗, b1, . . . , bk ∈ Σ, such that

u#b1 · · · bl ∈ B0,

where l is the integer such that f0(u) ∈ (Σ∗#)l. Since B0 ∈ P and f0 ∈ FP,
it holds that B1 ∈ P and f1 ∈ FP.

Let β = χD(ε). Let u ∈ Σ∗ and let f0(u) = v1# · · · #vl#. Then

u#χD(v1) · · · χD(vl) ∈ B0 ⇐⇒ u#χD(v1) · · · χD(vl)β
k−l ∈ B1.

Since f1(u) = v1# · · · #vl#
k+1−l, we have that the pair (f1, B1) witnesses

that C ≤p
k-tt D.

Define function f from Σ∗ to the set of all k-truth-table conditions as
follows: For each u ∈ Σ∗,

f(u) = (α, v1, . . . , vk),

where f1(u) = v1# · · · #vk# and α is the boolean function defined for all
b1, . . . , bk ∈ {0, 1}k by

α(b1, . . . , bk) = χB1
(u#b1 · · · bk).

Since f1 ∈ FP and k is a constant, f ∈ FP. For every u ∈ Σ∗,

u ∈ C ⇐⇒ u#χD(v1) · · · χD(vk) ∈ B1

and

u#χD(v1) · · · χD(vk) ∈ B1 ⇐⇒ α(χD(v1), . . . , χD(vk)) = 1,

where f1(u) = v1# · · · #vk#. So, for all u ∈ Σ∗,

u ∈ C ⇐⇒ f(u) is satisfied by D.

Thus, the statement of the proposition holds. ❑ Proposition 1.11
Suppose that NP has a sparse ≤p

btt-hard set, S. Since L was an arbi-
trary member of NP, it suffices to prove that L ∈ P. Since Left [A, p] ∈ NP,
Left [A, p]≤p

bttS. So, by Proposition 1.11, there exist some k ≥ 1 and f ∈ FP
such that, for all u ∈ Σ∗, f(u) is a k-truth-table condition, and

u ∈ Left [A, p] ⇐⇒ f(u) is satisfied by S.

In preparation for the remainder of the proof, we define some polynomials. Let
p1 be a strictly increasing polynomial such that for all x ∈ Σ∗ and y ∈ Σp(|x|),
|〈x, y〉| ≤ p1(|x|). Let p2 be a strictly increasing polynomial such that for all
u ∈ Σ∗, every query of f(u) has length at most p2(|u|). Let p3 be a strictly
increasing polynomial such that for all integers n ≥ 0 ||S≤n|| ≤ p3(n). Define
q(n) = p3(p2(p1(n))). Then, for all x ∈ Σ∗,

||{w ∈ S | (∃y ∈ Σp(|x|))[w is a query of f(〈x, y〉)]}|| ≤ q(|x|).
Define r(n) = k!2k(2q(n)+1)k. Also, for each d, 0 ≤ d ≤ k, define rd(n) = (k−
d)!2k−d(2q(n)+1)k−d. Note that r0 = r and rk is the constant 1 polynomial.

12 1. The Self-Reducibility Technique

1.1.2.3 A Polynomial-Time Search Procedure for wmax. To prove
that L ∈ P, we will develop a polynomial-time procedure that, on input x ∈
Σ∗, generates a list of strings in Σp(|x|) such that, if wmax(x) is defined then
the list is guaranteed to contain wmax(x). The existence of such a procedure
implies L ∈ P as follows: Let M be a Turing machine that, on input x ∈ Σ∗,
runs the enumeration procedure to obtain a list of candidates for wmax(x),
and accept if the list contains a string y such that 〈x, y〉 ∈ A and reject
otherwise. Since the enumeration procedure runs in polynomial time and
A ∈ P, M can be made polynomial-time bounded. Since the output list of
the enumeration procedure is guaranteed to contain wmax(x) if it is defined,
M accepts if x ∈ L. If x 6∈ L, there is no y ∈ Σp(|x|) such that 〈x, y〉 ∈ A, so
M rejects x. Thus, M correctly decides L. Hence, L ∈ P.

In the rest of the proof we will focus on developing such an enumeration
procedure. To describe the procedure we need to define some notions.

Let n ≥ 1 be an integer. Let I be a subset of Σn. We say that I is an
interval over Σn if there exist y, z ∈ Σn such that

y ≤ z and I = {u ∈ Σn | y ≤ u ≤ z}.

We call y and z respectively the left end and the right end of I, and write
[y, z] to denote I. Let I = [u, v] and J = [y, z] be two intervals over Σn. We
say that I and J are disjoint if they are disjoint as sets, i.e., either v < y or
z < u. If I and J are disjoint and v < y, we say that I is lexicographically
smaller than J , and write I < J .

Let x ∈ Σ∗ and let Λ be a set of pairwise disjoint intervals over Σn. We
say that Λ is nice for x if

x ∈ L =⇒ (∃I ∈ Λ)[wmax(x) ∈ I].

Note that for all x ∈ Σ∗

• { [0p(|x|), 1p(|x|)] } is nice for x regardless of whether x ∈ L, and
• if x 6∈ L, then every set of pairwise disjoint intervals over Σp(|x|) is nice

for x.

Let τ be an ordered (possibly empty) list such that, if τ is not empty then
each entry of τ is of the form (w, b) for some w ∈ Σ∗ and b ∈ {0, 1}. We
call such a list a hypothesis list. We say that a hypothesis list τ is correct if
every pair (w, b) in the list satisfies χS(w) = b. Let x ∈ Σ∗, let Λ be a set of
pairwise disjoint intervals over Σp(|x|), let Γ be a subset of Λ, and let τ be a
hypothesis list. We say that Γ is a refinement of Λ for x under τ if

((Λ is nice for x) ∧ (τ is correct)) =⇒ Γ is nice for x.

The following fact states some useful properties of refinements.

1.1 GEM: There Are No Sparse NP-Complete Sets Unless P=NP 13

Fact 1.12

1. If Λ = Γ1

⋃ · · · ⋃
Γm and Γ′1, . . . ,Γ′k are refinements of Γ1, . . . ,Γk for

x under τ , respectively, then Γ′1
⋃

. . .
⋃

Γ′k is a refinement of Λ for x
under τ .

2. If Θ is a refinement of Γ for x under τ and Θ′ is a refinement of Θ for
x under τ , then Θ′ is a refinement of Γ for x under τ .

To generate candidates for wmax(x), starting with the initial value

Λ = { [0p(|x|), 1p(|x|)] },

we repeat the following two-phase process p(|x|) times.

• Splitting Split each interval in Λ into upper and lower halves.
• Culling If ||Λ|| ≤ r(|x|), skip this phase. If ||Λ|| ≥ r(|x|) + 1, do the fol-

lowing: Set τ to the empty list. Call a subroutine CULL on input (x,Λ, τ)
to obtain Υ (Λ that has cardinality less than or equal to r(|x|) and is
nice for x. Replace Λ with Υ.

When the the two-phase process has been executed p(|x|) times, each interval
in Λ has size exactly 1, i.e., is of the form [u, u] for some u ∈ Σp(|x|). The
output of the enumeration procedure is the list of all strings u ∈ Σp(|x|) such
that [u, u] ∈ Λ.

Note that if Λ is nice for x at the beginning of the splitting phase then it is
nice for x at the end of the splitting phase. Since both p and r are polynomials,
if CULL runs in polynomial time, the entire generation procedure runs in
polynomial time. Since CULL is guaranteed to output a refinement, if x ∈ L
then there is always one interval in Λ that contains wmax(x). So, if x ∈ L,
wmax(x) is included in the list of candidates at the end. So, we have only to
show that a polynomial-time procedure CULL exists that, on input (x,Λ, τ)
with ||Λ|| ≥ r(|x|) + 1, finds Υ (Λ having cardinality at most r(|x|) such
that Υ is a refinement of Λ for x under τ .

For the sake of simplicity, in the following discussion, let x ∈ Σ∗ be fixed.
Since only splitting and elimination are the operations executed to modify
intervals, we can assume that the intervals in Λ are pairwise disjoint during
the entire enumeration procedure. So, for every pair of distinct intervals,
I and J , appearing in the input to CULL, we will assume that they are
disjoint, and thus, either I < J or I > J . We also induce a mapping from the
set of all interval over Σp(|x|) to the set of all k-truth-table conditions. Let
I = [u, v] be an interval over Σp(|x|). The image of I induced by f , denoted
by f [I], is f(〈x, u〉). Let f [I] = (α,w1, . . . , wk). For each i, 1 ≤ i ≤ k, Q[I, i]
to denote wi.

1.1.2.4 The Structure of the Culling Method. Each input (x,Γ, τ) to
CULL is supposed to satisfy the following conditions:

• τ is a hypothesis list and its length, |τ |, is less than or equal to k.

14 1. The Self-Reducibility Technique

• Γ is a set of pairwise disjoint intervals over Σp(|x|) having cardinality strictly
greater than r|τ |(|x|).

• If |τ | ≥ 1, then the following condition holds: Let d = |τ | and τ =
[(w1, b1), . . . , (wd, bd)] for some w1, . . . , wd ∈ Σ∗ and b1, . . . , bd ∈ {0, 1}.
Then, for all I ∈ Γ, there exist d pairwise distinct elements of {1, . . . , k},
j1, . . . , jd, such that for all r, 1 ≤ r ≤ d, Q[I, jr] = wr.

Given an input (x,Γ, τ) that meets this specification, CULL may call itself
recursively in the case when |τ | < k. The number of recursive call that CULL
makes is less than or equal to 2(k − |τ |)(2q(|x|) + 1) and the input to each
recursive call is a triple of the form (x,Γ′, τ ′) for some Γ′ ⊆ Γ and a hypothesis
list τ ′ such that |τ ′| = |τ | + 1. Thus, the computation of CULL on input
(x,Γ, τ) can be viewed as a tree of depth bounded by k − |τ |.

The hypothesis list τ is used to refine, for each interval I ∈ Γ, the
k-truth-table condition f [I] to a (k − |τ |)-truth-table condition. We de-
note the refinement of f [I] with respect to τ by fτ [I]. Suppose that τ =
[(w1, b1), . . . , (wd, bd)] for some d ≥ 1, w1, . . . , wd ∈ Σ∗, and b1, . . . , bd ∈
{0, 1}. Let I be an arbitrary interval in Γ and let f [I] = (α, v1, . . . , vk).
Then, fτ [I] = (β, vj1 , . . . , vjk−d

), where β and vj1 , . . . , vjk−d
are defined as

follows:

• For s = 1, . . . , d, in that order, let ρs be the smallest of r, 1 ≤ r ≤ k, such
that (Q[I, r] = ws) ∧ (∀t : 1 ≤ t ≤ s− 1)[r 6= ρt].

• For every i, 1 ≤ i ≤ k−d, let ji be the ith smallest element in {1, . . . , k}−
{ρ1, . . . , ρd}.

• β is the boolean function of arity (k − d) that is constructed from α by
simultaneously fixing for all s, 1 ≤ s ≤ d, the argument at position ρs to
bs.

We will write βτ [I] to denote the truth-table of fτ [I] and Qτ [I] to denote
the queries of fτ [I]. Note that if the hypothesis list τ is correct, then for all
I ∈ Γ, f [I] is satisfied by S if and only if fτ [I] is satisfied by S.

Suppose that |τ | = k. Then, for all I ∈ Γ, fτ [I] is a boolean function of
arity 0, i.e., a boolean constant. Since rk(|x|) = 1, CULL cannot select more
than one interval from Γ to generate its output. CULL computes S = {I ∈
Γ | fτ [I] = (True)}. If S is nonempty, CULL selects the largest element in
S in lexicographic order; if S is empty, CULL outputs the empty set. We
claim that the output of CULL is a refinement of Γ for x under τ . To see
why, suppose that Γ is nice for x and that the hypothesis list τ is correct.
Then, for every interval I = [u, v] ∈ Γ, wmax(x) is less than or equal to u if
βτ [I] = True and is strictly greater than u otherwise. So, for every interval
I ∈ Γ, wmax(x) 6∈ I if either βτ [I] = False or I is not the largest element in
S in lexicographic order. Thus, it is safe to to select the largest element in S
in lexicographic order.

On the other hand, suppose that |τ | < k. Then CULL executes two
phases, Phases 1 and 2. In Phase 1, CULL eliminates intervals from Γ so that

1.1 GEM: There Are No Sparse NP-Complete Sets Unless P=NP 15

fτ [I] 6= fτ [J] for every pair of distinct intervals I, J ∈ Γ. In Phase 2, CULL
selects from Γ disjoint subsets, Γ1, . . . ,Γl, 1 ≤ l ≤ 2(k − |τ |)(2q(n) + 1),
where it is guaranteed that no intervals in the rest of Γ contain wmax(x)
if τ is correct. For each of the subsets, CULL makes exactly two recursive
calls. The output of CULL(x,Γ, τ) is the union of the outputs of all the 2l
recursive calls.

Below we describe the two phases of CULL. Let (x,Γ, τ) be an input to
CULL. Let d = |τ |. Suppose that 0 ≤ d ≤ k − 1.

Phase 1: Making fτ unambiguous CULL executes the following:

• While there exist two intervals I, I ′ ∈ Γ such that I < I ′ ∈ Γ and fτ [I] =
fτ [I ′], find the smallest such pair (I, I ′) in lexicographic order and eliminate
I from Γ.

Let Γ′ be the set Γ when CULL quits the loop. We claim that Γ′ is a
refinement of Γ for x under τ . To see why, assume that τ is correct. Suppose
that Γ contains two intervals I = [u, v] and I ′ = [u′, v′] such that I < I ′ and
fτ [I] = fτ [I ′]. Then fτ [I] is satisfied by S if and only if fτ [I ′] is satisfied by
S. Since τ is correct, fτ [I] is satisfied by S if and only if f [I] is satisfied by
S. Also, fτ [I ′] is satisfied by S if and only if f [I ′] is satisfied by S. So, f [I]
is satisfied by S if and only if f [I ′] is satisfied by S. Then, by equation 1.4,
we have

wmax(x) ≥ u ⇐⇒ wmax(x) ≥ u′.

In particular, wmax(x) ≥ u =⇒ wmax(x) ≥ u′. This implies that either
wmax(x) < u or wmax(x) ≥ u′. Since u′ > v ≥ u, it holds that either
wmax(x) < u or wmax(x) > v. Thus, wmax(x) 6∈ I. So, Γ − {I} is a re-
finement of Γ for x under τ . By part 2 of Fact 1.12, each time an interval is
eliminate by executing the above algorithm, the resulting set is a refinement
of Γ for x under τ . Thus, Γ′ is a refinement of Γ for x under τ .

Phase 2: Refining Γ′ CULL splits Γ′ into two groups ∆0 and ∆1, where
for each b ∈ {0, 1},

∆b = {I ∈ Γ′ | βτ [I](0, . . . , 0) = b}.

CULL refines ∆0 and ∆1 separately.

Refining ∆0: Suppose ∆0 is nonempty. CULL computes an integer m ≥ 1
and a sequence of intervals I1, I2, . . . , Im ∈ ∆0, I1 < I2 < · · · < Im, as
follows:

• I1 is the lexicographic minimum of the intervals in ∆0.
• For each t ≥ 1 such that It is defined, let St+1 = {I ∈ ∆0 | (∀j : 1 ≤ j ≤ t)

[Qτ [I]
⋂

Qτ [Ij] = ∅]}. If St+1 = ∅, then It+1 is undefined. If St+1 6= ∅,
then It+1 is the lexicographic minimum of the intervals in St+1.

• m is the largest t such that It is defined.

16 1. The Self-Reducibility Technique

Define

∆′
0 =

{
∆0 if m ≤ q(|x|),
{J ∈ ∆0 | J < Iq(|x|)+1} otherwise.

We claim that ∆′
0 is a refinement of ∆0 for x under τ . If m ≤ q(|x|), then

∆′
0 = ∆0, so ∆′

0 clearly is a refinement of ∆0 for x under τ . So, suppose
that m ≥ q(n) + 1, and thus, that ∆′

0 (∆0. Suppose that τ is correct. For
each j, 1 ≤ j ≤ m, let Ij = [uj , vj]. Assume uq(|x|)+1 ≤ wmax(x). Then
for all j, 1 ≤ j ≤ q(|x|) + 1, uj ≤ wmax(x). Since τ is correct, for all j,
1 ≤ j ≤ q(|x|) + 1, fτ [Ij] is satisfied by S. For each j, 1 ≤ j ≤ q(|x|) + 1,
βτ [Ij](0, . . . , 0) = 0, and thus, Qτ [Ij]

⋂
S 6= ∅. The intervals I1, . . . , Im are

chosen so that Qτ [I1], . . . , Qτ [Im] are pairwise disjoint. Thus,

||S
⋂ ⋃

1≤j≤q(|x|)+1

Qτ [Ij] || ≥ q(|x|) + 1.

This is a contradiction, because the number of strings in S that may appear
as a query string in f(〈x, y〉) for some y ∈ Σp(|x|) is at most q(|x|). Thus,
wmax(x) < uq(|x|)+1. So, all intervals I ∈ ∆0 whose left end is greater than or
equal to uq(|x|)+1 can be safely eliminated from ∆0. Hence, ∆′

0 is a refinement
of ∆0 for x under τ .

Let m0 = min{m, q(|x|)} and

R =
⋃

1≤j≤m0

Qτ [Ij].

Let h = ||R||. Then h ≤ (k−d)m0. For every I ∈ ∆′
0, there exists some y ∈ R

such that y ∈ Qτ [I]. Let y1, . . . , yh be the enumeration of the strings in R
in lexicographic order. For each j, 1 ≤ j ≤ h, let

Θj = {I | (I ∈ ∆0) ∧ (∀s : 1 ≤ s ≤ j − 1)[I 6∈ Θs] ∧ (yj ∈ Qτ [I])}.
By the choice of the intervals I1, . . . , Im, Θ1, · · · ,Θh are all nonempty and
∆′

0 = Θ1

⋃ · · · ⋃
Θh. For each j, 1 ≤ j ≤ h, and each b ∈ {0, 1}, let Θ′

j,b be
the set of intervals that CULL on input (x,Θj , τ) outputs as a refinement
of Θj for x under τ ′, where τ ′ is τ with the pair (yj , b) appended at the end.
Let Υ0 =

⋃
1≤j≤h

⋃
b∈{0,1} Θ′

j,b. By part 1 of Fact 1.12, if CULL correctly
computes a refinement for all the recursive calls, then Υ0 is a refinement of
∆0 for x under τ .

Dividing ∆1: Suppose that ∆1 6= ∅. CULL computes an integer m ≥ 1
and a sequence of intervals I1, I2, . . . , Im ∈ ∆0, I1 > I2 > · · · > Im, as
follows:

• I1 is the lexicographic maximum of the intervals in ∆1.
• For each t ≥ 1 such that It is defined, let St+1 = {J ∈ ∆1 | (∀j : 1 ≤ j ≤ t)

[Qτ [I]
⋂

Qτ [Ij] = ∅]}. If St+1 = ∅, then It+1 is undefined. If St+1 6= ∅,
then It+1 is the lexicographic maximum of the intervals in ∆1.

• m is the largest t such that It is defined.

1.1 GEM: There Are No Sparse NP-Complete Sets Unless P=NP 17

Define

∆′
1 =

{
∆1 if m ≤ q(|x|) + 1,

{J ∈ ∆′
1 | J ≥ Iq(|x|)+1} otherwise.

We claim that ∆′
1 is a refinement of ∆1 for x under τ . If m ≤ q(|x|) + 1,

then ∆′
1 = ∆1, so ∆′

1 clearly is a refinement of ∆1 for x under τ . So, suppose
that m ≥ q(n) + 2, and thus, that ∆′

1 (∆1. Suppose that τ is correct. For
each j, 1 ≤ j ≤ m, let Ij = [uj , vj]. Assume uq(|x|)+1 > wmax(x). Then
for all j, 1 ≤ j ≤ q(|x|) + 1, uj > wmax(x). Since τ is correct, for all j,
1 ≤ j ≤ q(|x|)+1, fτ [Ij] is not satisfied by S. For every j, 1 ≤ j ≤ q(|x|)+1,
βτ [Ij](0, . . . , 0) = 1. So, for every j, 1 ≤ j ≤ q(|x|) + 1, Qτ [Ij]

⋂
S 6= ∅.

The intervals I1, . . . , Im are chosen so that Qτ [I1], . . . , Qτ [Im] are pairwise
disjoint. Thus,

||S ∩
⋃

1≤j≤q(|x|)+1

Qτ [Ij] || ≥ q(|x|) + 1.

This is a contradiction. So, wmax(x) ≥ uq(|x|)+1. This implies that if τ is
correct, then all intervals I ∈ ∆1 whose right end is strictly less than uq(|x|)+1

can be eliminated from ∆1. Hence, ∆′
1 is a refinement of ∆1 for x under τ .

The rest of the procedure is essentially the same as that of Case 1. The only
difference is that the number of selected intervals is at most q(|x|) + 1, and
thus, the total number of refinements that are combined to form a refinement
of ∆′

1 is at most 2(k−d)(q(|x|)+1). Let Υ1 denote the union of the refinements
obtained by the recursive calls.

The output Υ of CULL is Υ0

⋃
Υ1. Suppose that for each b ∈ {0, 1},

Υb is a refinement of ∆b for x under τ . Since ∆ = ∆0

⋃
∆1, by part 1 of

Fact 1.12, Υ is a refinement of ∆ for x under τ . The total number of recursive
calls that CULL makes is 2(k − |τ |)(2q(|x|) + 1).

1.1.2.5 Correctness and Analysis of the Culling Method. Since the
depth of recursion is bounded by k, the entire culling procedure runs in time
polynomial in |x|. The correctness of CULL can be proven by induction on
the length of the hypothesis list, going down from k to 0. For the base case,
let the length be k. We already showed that if the length of hypothesis list
is k then CULL works correctly. For the induction step, let 0 ≤ d ≤ k − 1
and suppose that CULL works correctly in the case when the length of the
hypothesis list is greater than or equal to d + 1. Suppose that (x,Γ, τ) is
given to CULL such that |τ | = d. In each of the recursive calls that CULL
makes on input (x,Γ, τ), the length of the hypothesis list is d + 1, so by the
induction hypothesis, the output of each of the recursive calls is correct. This
implies that the output of CULL on (x,Γ, τ) is a refinement of Γ.

We also claim that, for every d, 0 ≤ d ≤ k, the number of intervals in the
output of CULL in the case when the hypothesis list has length d is at most
rd(|x|). Again, this is proven by induction on d, going down from k to 0. The
claim certainly holds for the base case, i.e., when d = k, since the output of

18 1. The Self-Reducibility Technique

CULL contains at most one interval when the hypothesis list has length k
and rk is the constant 1 function. For the induction step, let d = d0 for some
d0, 0 ≤ d0 ≤ k − 1, and suppose that the claims holds for all values of |τ |
between d0 + 1 and k. Let (x,Γ, τ) be an input to CULL such that |τ | = d.
The number of recursive calls that CULL on input (x,Γ, τ) is at most

2((k − d)q(|x|) + 2(k − d)(q(|x|) + 1)) = 2(k − d)(2q(|x|) + 1).

In each of the recursive calls that are made, the length of the hypothesis list
is d + 1, so by the induction hypothesis, the output of each recursive call
has at most rd+1(|x|) elements. So, the number of intervals in the output of
CULL on input (x,Γ, τ) is at most

2(k − d)(2q(|x|) + 1)rd+1(2q(|x|) + 1).

This is rd(|x|). Thus, the claim holds for d.
Since r0 = r, the number of intervals in the output of the culling phase is

at most r(|x|) as desired. Hence, L ∈ P. ❑

1.2 The Turing Case

In the previous section, we saw that if any sparse set is NP-hard or NP-
complete with respect to many-one reductions or even bounded-truth-table
reductions, then P = NP. In this section, we ask whether any sparse set can
be NP-hard or NP-complete with respect to Turing reductions. Since Turing
reductions are more flexible than many-one reductions, this is a potentially
weaker assumption than many-one completeness or many-one hardness. In
fact, it remains an open question whether these hypotheses imply that P =
NP, though there is some relativized evidence suggesting that such a strong
conclusion is unlikely. However, one can achieve a weaker collapse of the
polynomial hierarchy, and we do so in this section.

Unlike the previous section, the results and proofs for the ≤p
T -

completeness and ≤p
T -hardness cases are quite different. We start with the

≤p
T -complete case, which uses what is informally known as a “census” ap-

proach. The hallmark of algorithms based on the census approach is that
they first obtain for a set (usually a sparse set) the exact number of elements
that the set contains up to some given length, and then they exploit that
information.

The Θp
2 level of the polynomial hierarchy (see Sect. A.4) captures the

power of parallel access to NP. In particular, is known to equal the down-
ward closure under truth-table reductions (see Sect. B.1) of NP; this clo-
sure is denoted (see the notational shorthands of Sect. B.2) Rp

tt(NP). Thus,
Theorem 1.14 proves that if NP has Turing-complete sparse sets, then the en-
tire polynomial hierarchy can be accepted via parallel access to NP. However,
the following equality is known to hold.

1.2 The Turing Case 19

Proposition 1.13 Rp
tt(NP) = PNP[O(log n)].

We will use the latter form of Θp
2 in the proof below.

Theorem 1.14 If NP has sparse, for NP ≤p
T -complete sets then PH = Θp

2.

Proof Let S be a sparse set that is ≤p
T -complete for NP. For each `, let

p`(n) denote n` + `. Let j be such that (∀n)[||S≤n|| ≤ pj(n)]. Let M be
a deterministic polynomial-time Turing machine such that SAT = L(MS);
such a machine must exist, as S is Turing-hard for NP. Let k be such that
pk(n) bounds the runtime of M regardless of the oracle M has; without loss
of generality, let M be chosen so that such a k exists.

Pause to Ponder 1.15 Show why this “without loss of generality claim”
holds.

(Answer sketch for Pause to Ponder 1.15: Given a machine M , let the
machines M1, M2, . . ., be as follows. MA

i (x) will simulate the action of exactly
pi(|x|) steps of the action of MA(x), and then will halt in an accepting state
if MA(x) halted and accepted within pi(|x|) steps, and otherwise will reject.
Note that since the overhead involved in simulating one step of machine is at
most polynomial, for each i, there will exist an î such that for every A it holds
that MA

i runs in time at most p̂i(n). Furthermore, in each relativized world
A in which MA runs in time at most pi, it will hold that L(MA) = L(MA

i).
Relatedly, in our proof, given the machine M such that SAT = L(MS), we
will in light of whatever polynomial-time bound MS obeys similarly replace
M with an appropriate Mj from the list of machines just described.)

Let L be an arbitrary set in Σp
2. Note that, since SAT is NP-complete, it

is clear that Σp
2 = NPSAT. So, in particular, there is some nondeterministic

polynomial-time Turing machine N such that L = L(NSAT). Let ` be such
that p`(n) bounds the nondeterministic runtime of N for all oracles; without
loss of generality, let N be chosen such that such an integer exists (see Pause

to Ponder 1.15). Note that L = L(NL(MS)).
Define:

V = {0#1n#1q | ||S≤n|| ≥ q}
⋃

{1#x#1n#1q | (∃Z ⊆ S≤n)[||Z|| = q ∧ x ∈ L(NL(MZ))]}.
Note that, in light of the fact that S is an NP set, V ∈ NP.

We now give a Θp
2 algorithm that accepts L. In particular, we give an

algorithm that makes O(log n) calls to the NP oracle V . Suppose the input
to our algorithm is the string y.

Step 1 In O(log |y|) sequential queries to V determine ||S≤pk(p`(|y|))||.
Our queries will be of the form “0#1pk(p`(|y|))#1z,” where we will vary
z in a binary search fashion until we home in on the exact value of
||S≤pk(p`(|y|))||. Since ||S≤pk(p`(|y|))|| is bounded by a polynomial in y, namely,

20 1. The Self-Reducibility Technique

by pj(pk(p`(|y|))), it holds that O(log |y|) queries indeed suffice for binary
search to pinpoint the census value. Let the census value obtained be de-
noted r.
Step 2 Ask to V the query 1#y#1p`(pk(|y|))#1r, and accept if and only if
the answer is that 1#y#1p`(pk(|y|))#1r ∈ V .

That completes the statement of the algorithm. Note that the algorithm
clearly is a Θp

2 algorithm. Furthermore, note that the algorithm indeed ac-
cepts L. This is simply because, given that Step 1 obtains the true census r,
the Step 2 query to V can accept only if the actual strings in S≤pk(p`(|y|))

are guessed (because there are only r strings at those lengths, so if r distinct
strings in S have been guessed, then we have guessed all of S≤pk(p`(|y|))) and,
when used by M to generate a prefix of SAT (and note that this prefix is
correct on all queries to SAT of length at most p`(|y|), since such queries
generate queries to S of length at most pk(p`(|y|))), causes N to accept.

So, since L was an arbitrary set from Σp
2, we have Σp

2 = Θp
2. Since Θp

2

is closed under complementation, this implies Σp
2 = Πp

2, which itself implies
PH = Σp

2. So PH = Σp
2 = Θp

2, completing our proof. ❑
The proof for the case of ≤p

T -hardness is more difficult than the case of
≤p

T -completeness, since the census proof used above crucially uses the fact
that the sparse set is in NP. The proof below rolls out a different trick. It
extensively uses nondeterminism to guess a set of strings that, while perhaps
not the exact elements of a prefix of the sparse NP-≤p

T -hard set, function
just as usefully as such a prefix. The following result is often referred to as
the Karp–Lipton Theorem.

Theorem 1.16 (The Karp–Lipton Theorem) If NP has sparse ≤p
T -

hard sets then PH = NPNP.

Proof Let S be a sparse set that is ≤p
T -hard for NP. For each `, let p`(n)

denote n` + `. Let j be such that (∀n)[||S≤n|| ≤ pj(n)]. Let M be a deter-
ministic polynomial-time Turing machine such that SAT = L(MS); such a
machine must exist, as S is Turing-hard for NP. Let k be such that pk(n)
bounds the runtime of M for all oracles; without loss of generality, let M be
such that such an integer exists (see Pause to Ponder 1.15).

Let L be an arbitrary set in Σp
3. We will give a Σp

2 algorithm for L. This
establishes that Σp

2 = Σp
3, which itself implies that PH = Σp

2, thus proving
the theorem.

Note that, since SAT is NP-complete, it is clear that Σp
3 = NPNPSAT

. So, in
particular, there are two nondeterministic polynomial-time Turing machines

N1 and N2 such that L(N
L(NSAT

2)
1) = L. Let ` be such that p`(n) bounds

the nondeterministic runtime of N1 for all oracles, and such that p`(n) also
bounds the nondeterministic runtime of N2 for all oracles; without loss of
generality, let N1 and N2 be such that such an integer exists (see Pause to
Ponder 1.15).

1.2 The Turing Case 21

Define

V0 = {0#1n#S′ | (∃z ∈ (Σ∗)≤n)[(a) z is not a well-formed formula

and MS′(z) accepts; or (b) z is a well-formed formula free
variables and either (b1) MS′(z) accepts and z 6∈ SAT or
(b2) MS′(z) rejects and z ∈ SAT; or (c) z is a well-formed
formula variables z1, z2, . . . and it is not the case that: MS′(z)
accepts if and only if

(MS′(z[z1 = True]) accepts ∨MS′(z[z1 = False]) accepts)] },
where, as defined earlier in this chapter, z[...] denotes z with
the indicated variables assigned as noted.

V1 = {1#S′#z | z ∈ L(N
L(MS′)
2)}.

V = V0

⋃
V1.

Note that V ∈ NP. Informally, V functions as follows. The 0#1n#S′ strings
in V determine whether given sets of strings “work” as sparse oracles that (on
all instances of length at most n) allow M to correctly accept SAT. Or, more
exactly, it checks if a given set fails to simulate SAT correctly. Of course,
the fact that S is a sparse Turing-hard set for NP ensures that there are
some such sets S′ that do simulate SAT correctly in this sense; however, it
is possible that sets S′ other than prefixes of S may also happen to simulate
SAT correctly in this sense. The 1# · · · part of V takes a set of strings that
happens to simulate SAT as just described, and uses them, in concert with
M , to simulate SAT.

We now give a NPNP algorithm that accepts L. In particular, we give
an NPV algorithm. Suppose the input to our algorithm is the string y. Note
that the longest possible query to SAT that N2 will make on queries N1 asks

to its oracle during the run of N
L(NSAT

2)
1 (y) is p`(p`(|y|)). Note also that M ,

on inputs of length p`(p`(|y|)), asks its oracle only questions of length at
most pk(p`(p`(|y|))). And finally, note that there is some sparse oracleU such

that L(M (U≤pk(p`(p`(|y|))))) = SAT≤p`(p`(|y|)); for example, the set S is such
an oracle.

Step 1 Nondeterministically guess a set S ′ ⊆ (Σ∗)≤pk(p`(p`(|y|))) satisfying
||S′|| ≤ pj(pk(p`(p`(|y|)))). If 0#1pk(p`(p`(|y|)))#S′ ∈ V then reject. Other-
wise, go to Step 2.
Step 2 Simulate the action of N1(y) except that, each time N1(y) makes a
query z to its L(NSAT

2) oracle, ask instead the query 1#S′#z to V .
That completes the description of the algorithm. Note that the algorithm

we have given is clearly a Σp
2 algorithm. Furthermore, note that the algorithm

indeed accepts L. This is simply because Step 1 obtains a valid set of strings S ′

that either are S≤pk(p`(p`(|y|))), or that, in the action of machine M , function
just as well as S≤pk(p`(p`(|y|))) in simulating SAT. That is, we obtain a set of
strings S′ such that

22 1. The Self-Reducibility Technique

SAT≤pk(p`(p`(|y|))) =
(
L(MS′)

)≤pk(p`(p`(|y|)))
.

This correct prefix of SAT is just long enough that it ensures that Step 2 of
the algorithm will correctly simulate NSAT

2 . ❑
This result has been extended in various ways. One very useful strength-

ening that we will refer to later is that one can replace the base-level
NP machine with an expected-polynomial-time probabilistic machine. (The
parenthetical equivalence comment in the theorem is based on the well-
known fact, which is an easy exercise that we commend to the reader, that
Rp

T ({S | S is sparse}) = P/poly.)

Theorem 1.17 If NP has sparse ≤p
T -hard sets (equivalently, if NP ⊆

P/poly), then PH = ZPPNP.

1.3 The Case of Merely Putting Sparse Sets in NP − P:
The Hartmanis–Immerman–Sewelson Encoding

In the previous sections we studied whether classes such as NP had com-
plete or hard sparse sets with respect to various reductions. We know from
Theorem 1.7, for example, that there is no NP-complete sparse set unless
P = NP.

In this section, we ask whether there is any sparse set in NP − P. Note
in particular that we are not here asking whether there is any sparse set in
NP − P that is NP-complete; by Theorem 1.7 the answer to that question
is clearly “no.” We here are instead merely asking whether any sparse set in
NP can be so complex as to lack deterministic polynomial-time algorithms.

Before approaching this question, let us motivate it from a quite dif-
ferent direction. One central goal of computational complexity theory is to
understand the relative power of different complexity classes. For example,
is deterministic polynomial-time computation a strictly weaker notion than
nondeterministic polynomial-time computation, that is P 6= NP? The ideal
results along such lines are results collapsing complexity classes or separating
complexity classes.

In fact, complexity theorists have achieved a number of just such results—
outright, nontrivial complexity class collapses and separations. For example,
the strong exponential hierarchy—an exponential-time analog of the poly-
nomial hierarchy—is known to collapse, and for very small space bounds a
space analog of the polynomial hierarchy is known to truly separate. The
famous time and space hierarchy theorems also provide unconditional sepa-
ration results. Unfortunately, not one such result is known to be useful in the
realm between P and PSPACE. It remains plausible that P = PSPACE and
it remains plausible that P 6= PSPACE.

Given this disturbingly critical gap in our knowledge of the power of com-
plexity classes between P and PSPACE—exactly the computational realm in

1.3 The Case of Merely Putting Sparse Sets in NP−P: The H-I-S Encoding 23

which most interesting real-world problems fall—what can be done? One ap-
proach is, instead of directly trying to separate or collapse the classes, to link
the many open questions that exist within this range. The philosophy behind
this is very similar to the philosophy behind NP-completeness theory. There,
we still do not know whether NP-complete problems have polynomial-time
algorithms. However, we do know that, since all NP-complete problems are
≤p

m-interreducible, they stand or fall together; either all have polynomial-time
algorithms or none do.

In the context of complexity classes between P and PSPACE, the goal
along these lines would be to link together as many open questions as pos-
sible, ideally with “if and only if” links. It turns out that it often is easy to
“upward translate” collapses, that is, to show that if small classes collapse
then (seemingly) larger classes collapse. The truly difficult challenge is to
“downward translate” equalities: to show that if larger classes collapse then
(seemingly) smaller classes collapse.

In this section we study a famous downward translation that partially
links the P = NP question to the collapse of exponential-time classes. In
particular, we will ask whether the collapse of deterministic and nondeter-
ministic exponential time implies any collapse in the classes between P and
PSPACE. The really blockbuster result to seek would be a theorem estab-
lishing that E = NE =⇒ P = NP. However, it is an open question whether
this can be established. What is known, and what we will here prove, is the
following theorem, which says that the collapse of NE to E is equivalent to
putting into P all sparse sets in NP.

Theorem 1.18 The following are equivalent:

1. E = NE.
2. NP− P contains no sparse sets.
3. NP− P contains no tally sets.

Proof Part 2 clearly implies part 3, as every tally set is sparse. The
theorem follows immediately from this fact, and from Lemmas 1.19 and
Lemma 1.21. ❑

The following easy lemma shows that if no tally sets exist in NP−P, then
NE collapses to E.

Lemma 1.19 If NP− P contains no tally sets then E = NE.

Proof Let L be some set in NE, and assume that NP − P contains no
tally sets. Let N be a nondeterministic exponential-time machine such that
L(N) = L. Define L′ = {1k | (∃x ∈ L)[k = (1x)bin]}, where for any string
(over {0,1}) z the expression (z)bin denotes the integer the string represents
when viewed as a binary integer, e.g., (1000)bin = 8.

Note that L′ ∈ NP, since the following algorithm accepts L′. On input y,
reject if y is not of the form 1k for some k > 0. Otherwise y = 1k for some

24 1. The Self-Reducibility Technique

k > 0. Write k in binary, and let s be the binary of representation of k to the
right of, and not including, its leftmost one, viewed as a binary string. Call
this string w. (If k = 1, then w = ε.) Simulate N(w) (thus accepting if and
only if N(w) accepts). Though N is an exponential-time machine, the length
of w is logarithmic in the length of y, and thus the overall nondeterministic
runtime of this algorithm is, for some constant c, at most O(2c log n).

Thus, L′ ∈ NP. However, by hypothesis this implies that L′ is in P. So,
let M be a deterministic polynomial-time machine such that L(M) = L′. We
now describe a deterministic exponential-time algorithm for L. On input a,
compute the string b = 1(1a)bin , and then simulate M(b), accepting if and only
if M(b) accepts. Since M is a polynomial-time machine and |b| ≤ 2|a|, the
number of steps that M(b) runs is (2n)c = 2cn. As the overhead of doing the
simulation and the cost of obtaining b from a are also at most exponential in
the input’s length, clearly our algorithm for L is a deterministic exponential-
time algorithm. Thus, L ∈ E, which completes our proof. ❑

Finally, we must prove that if E = NE then all sparse NP sets in fact are
in P.

Pause to Ponder 1.20 As an easy warmup exercise, try to prove the sim-
pler claim: If E = NE then all tally sets in NP are in P.

A sketch of the solution to Pause to Ponder 1.20 is as follows. If L is a tally
set in NP, then let L′ = {x|(x is 0 or x is a binary string of nonzero length
with no leading zeros) and 1(x)bin ∈ L}. It is not hard to see that L′ ∈ NE.
Thus by assumption L′ ∈ E, and thus there is a natural P algorithm for L,
namely, the algorithm that on input a rejects if a 6∈ 1∗ and that if a = 1k

writes k as 0 if k = 0 and otherwise as k in binary with no leading zeros,
and then simulates the E algorithm for L′ on this string. This concludes the
proof sketch for Pause to Ponder 1.20.

However, recall that we must prove the stronger result that if E = NE then
all sparse NP sets are in P. Historically, the result in Pause to Ponder 1.20
was established many years before this stronger result. If one looks carefully
at the proof just sketched for Pause to Ponder 1.20, it is clear that the
proof, even though it works well for the stated case (tally sets), breaks down
catastrophically for sparse sets. The reason it fails to apply to sparse sets is
that the proof is crucially using the fact that the length of a string in a tally
set fully determines the string. In a sparse set there may be a polynomial
number of strings at a given length. Thus the very, very simple encoding
used in the proof sketch of Pause to Ponder 1.20, namely, representing tally
strings by their length, is not powerful enough to distinguish same-length
strings in a sparse set.

To do so, we will define a special “Hartmanis–Immerman–Sewelson en-
coding set” that crushes the information of any sparse NP set into extremely
bite-sized morsels from which the membership of the set can be easily recon-
structed. In fact, the encoding manages to put all useful information about a

1.3 The Case of Merely Putting Sparse Sets in NP−P: The H-I-S Encoding 25

sparse NP set’s length n strings into length-O(log n) instances of the encod-
ing set—and yet maintain the easy decodability that is required to establish
the following lemma.

Lemma 1.21 If E = NE then NP− P contains no sparse sets.

Proof Let L be some sparse NP set, and assume that E = NE. Given that
L is sparse, there is some polynomial, call it q, such that (∀n)[||L=n|| ≤ q(n)].
Define the following encoding set:

L′ = {0#n#k | ||L=n|| ≥ k}
⋃

{1#n#c#i#j | (∃z1, z2, . . . , zc ∈ L=n)[z1 <lex z2 <lex

· · · <lex zc ∧ the jth bit of zi is 1]}.
Since L ∈ NP, it is clear that L′ ∈ NE. So by our assumption, L′ ∈ E.

We will now use the fact that L′ ∈ E to give a P algorithm for L. Our
P algorithm for L works as follows. On input x, let n = |x|. Query L′ to
determine which of the following list of polynomially many strings belong
to L′: 0#n#0, 0#n#1, 0#n#2, . . . , 0#n#q(n), where here and later in the
proof the actual calls to L′ will for the numerical arguments (the n’s, c, i,
j, and k of the definition of L′) be coded as (and within L′ will be decoded
back from) binary strings. Given these answers, set

c = max{k | 0 ≤ k ≤ q(n) ∧ 0#n#k ∈ L′}.

Note that c = ||L=n||. Now ask the following questions to L′:

1#n#c#1#1, 1#n#c#1#2, . . . , 1#n#c#1#n,
1#n#c#2#1, 1#n#c#2#2, . . . , 1#n#c#2#n,

· · · ,
1#n#c#c#1, 1#n#c#c#2, . . . , 1#n#c#c#n.

The answers to this list of polynomially many questions to L′ give, bit by bit,
the entire set of length n strings in L. If our input, x, belongs to this set then
accept, and otherwise reject. Though L′ ∈ E, each of the polynomially many
queries asked to L′ (during the execution of the algorithm just described) is
of length O(log n). Thus, it is clear that the algorithm is indeed a polynomial-
time algorithm. ❑

Theorem 1.18 was but the start of a long line of research into downward
translations. Though the full line of research is beyond the scope of this book,
and is still a subject of active research and advances, it is now known that the
query hierarchy to NP itself shows certain downward translations of equality.
In particular, the following result says that if one and two questions to Σp

k

yield the same power, then the polynomial hierarchy collapses not just to
PΣp

k[1] but in fact even to Σp
k itself.

Theorem 1.22 Let k > 1. Σp
k = Πp

k if and only if PΣp
k[1] = PΣp

k[2].

26 1. The Self-Reducibility Technique

1.4 OPEN ISSUE: Does the Disjunctive Case Hold?

Theorem 1.7 shows that NP lacks sparse ≤p
m-complete sets unless P = NP.

Does this result generalize to bounded-truth-table, conjunctive-truth-table,
and disjunctive-truth-table reductions: ≤p

btt, ≤
p
ctt, and ≤p

dtt?
Theorem 1.10 already generalizes Theorem 1.7 to the case of ≤p

btt-
hardness. Using the left set technique it is also easy to generalize the result
to the case of ≤p

ctt-hardness: If NP has ≤p
ctt-hard sparse sets then P = NP.

The case of ≤p
dtt-hardness remains very much open.

Open Question 1.23 Can one prove: If NP has ≤p
dtt-hard sparse sets, then

P = NP?

However, it is known that proving the statement would be quite strong. In
particular, the following somewhat surprising relationship is known.

Proposition 1.24 Every set that ≤p
btt-reduces to a sparse set in fact ≤p

dtt-
reduces to some sparse set.

Thus, if one could prove the result of Open Question 1.23, that result would
immediately imply Theorem 1.10.

1.5 Bibliographic Notes

Theorem 1.2 (which is often referred to as “Berman’s Theorem”) and
Corollary 1.3 are due to Berman [Ber78], and the proof approach yields
the analog of these results not just for the tally sets but also for the
P-capturable [CGH+89] sets, i.e., the sets having sparse P supersets.
Theorem 1.4 and Corollary 1.5 are due to Fortune [For79]. Among the re-
sults that followed soon after the work of Fortune were advances by Ukko-
nen [Ukk83], Yap [Yap83], and Yesha [Yes83].

Theorems 1.7 (which is known as “Mahaney’s Theorem”) and
Theorem 1.9 are due to Mahaney [Mah82]. The historical motivation for his
work is sometimes forgotten, but is quite interesting. The famous Berman–
Hartmanis Isomorphism Conjecture [BH77], which conjectures that all NP-
complete sets are polynomial-time isomorphic, was relatively new at the time.
Since no dense set (such as the NP-complete set SAT) can be polynomial-
time isomorphic to any sparse set, the existence of a sparse NP-complete set
would immediately show the conjecture to be false. Thus, Mahaney’s work
was a way of showing the pointlessness of that line of attack on the Berman–
Hartmanis Isomorphism Conjecture (see [HM80]): if such a set exists, then
P = NP, in which case the Berman–Hartmanis Isomorphism Conjecture fails
trivially anyway.

Theorem 1.10 (which is often referred to as “the Ogiwara–Watanabe
Theorem”) is due to Ogiwara and Watanabe ([OW91], see also [HL94]),

1.5 Bibliographic Notes 27

who introduced the left set technique in the study of sparse complete sets.
Somewhat more general results than Theorem 1.10 are now known to hold,
due to work of Homer and Longpré [HL94], Arvind et al. [AHH+93], and
Glaßer ([Gla00], see also [GH00]). Our presentation is based on the work of
Homer and Longpré [HL94].

These results are part of a rich exploration of sparse completeness results,
with respect to many complexity classes and many types of reductions, that
started with Berman’s work and that continues to this day. Numerous surveys
of general or specialized work on sparse complete sets exist [HM80,Mah86,
Mah89,You92,HOW92,vMO97,CO97,GH00].

Regarding the relativized evidence mentioned on page 18, Immerman
and Mahaney [IM89] have shown that there are relativized worlds in which
NP has sparse Turing-hard sets yet P 6= NP. Arvind et al. [AHH+93] ex-
tended this to show that there are relativized worlds in which NP has sparse
Turing-complete sets yet the boolean hierarchy [CGH+88] does not collapse,
and Kadin [Kad89] showed that there are relativized worlds in which NP
has sparse Turing-complete sets yet some Θp

2 languages cannot be accepted
via P machines making o(log n) sequential queries to NP.

Proposition 1.13 is due to Hemachandra [Hem89]. Theorem 1.14 is due
to Kadin [Kad89]. Theorem 1.16 is due to Karp and Lipton [KL80], and we
prove it here using a nice, intuitive, alternate proof line first suggested by
Hopcroft ([Hop81], see also [BBS86]). The fact that Rp

T ({S | S is sparse}) =
P/poly appears in a paper by Berman and Hartmanis [BH77], where it is
attributed to Meyer. Theorem 1.17 is due to Köbler and Watanabe ([KW98],
see also [KS97]) based on work of Bshouty et al. [BCKT94,BCG+96].

Cai [Cai01] has proven that the “symmetric alternation” version of NPNP,
a class known as Sp

2 [Can96,RS98], satisfies Sp
2 ⊆ ZPPNP. In light of Sen-

gupta’s observation (see the discussion in [Cai01]) that a Hopcroft-approach
proof of Theorem 1.16 in fact can be used to conclude that Sp

2 = PH, Cai’s
result says that Sengupta’s collapse to Sp

2 is at least as strong as, and poten-
tially is even stronger than, that of Theorem 1.16.

The collapse of the strong exponential-time hierarchy referred to near the
start of Sect. 1.3 is due to Hemachandra [Hem89], and the separation of small-
space alternation hierarchies referred to in Sect. 1.3 is due, independently
(see [Wag93]), to Lískiewicz and Reischuk [LR96,LR97], von Braunmühl,
Gengler, and Rettinger [vBGR93,vBGR94], and Geffert [Gef94]. The study
of time and space hierarchy theorems is a rich one, and dates back to the
pathbreaking work of Hartmanis, Lewis, and Stearns [HS65,LSH65,SHL65].

Lemma 1.19 and the result stated in Pause to Ponder 1.20—and thus the
equivalence of parts 1 and 3 of Theorem 1.18—are due to Book [Boo74b].

The Hartmanis–Immerman–Sewelson Encoding, and in particular
Lemma 1.21 (and thus in effect the equivalence of parts 1 and 2 of
Theorem 1.18), was first employed by Hartmanis [Har83]. The technique
was further explored by Hartmanis, Immerman, and Sewelson ([HIS85], see

28 1. The Self-Reducibility Technique

also [All91,AW90]). Even the Hartmanis–Immerman–Sewelson Encoding has
its limitations. Though it does prove that E = NE if and only if NP − P
has sparse sets, it does not seem to suffice if we shift our attention from NP
(and its exponential analog, NE) to UP, FewP, ⊕P, ZPP, RP, and BPP (and
their respective exponential analogs). In fact, the Buhrman–Hemaspaandra–
Longpré Encoding [BHL95], a different, later encoding encoding based on
some elegant combinatorics [EFF82,EFF85,NW94], has been used by Rao,
Rothe, and Watanabe [RRW94] to show that the ⊕P and “FewP” analogs of
Theorem 1.18 do hold. That is, they for example prove that E equals, “⊕E,”
the exponential-time analog of ⊕P, if and only if ⊕P − P contains sparse
sets. In contrast with this, Hartmanis, Immerman, and Sewelson showed
that there are oracles relative to which the coNP analog of Theorem 1.18
fails. Hemaspaandra and Jha [HJ95a] showed that there are oracles relative
to which the the ZPP, R, and BPP analogs of Theorem 1.18 fail, and they also
showed that even for the NP case the “immunity” analog of Theorem 1.18
fails. Allender and Wilson [All91,AW90] have shown that one claimed “su-
persparse” analog of Theorem 1.18 fails, but that in fact certain analogs can
be obtained. For some classes, for example UP, it remains an open question
whether an analog of Theorem 1.18 can be obtained.

The proof of Lemma 1.21 proves something a bit stronger than what the
lemma itself asserts. In particular, the proof makes it clear that: If E = NE
then every sparse NP set is P-printable (i.e., there is an algorithm that on
input 1n prints all length n strings in the given sparse NP set). This stronger
claim is due to Hartmanis and Yesha [HY84].

Regarding downward translations of equality relating exponential-time
classes to smaller classes, we mention that a truly striking result of Babai,
Fortnow, Nisan, and Wigderson [BFNW93] shows: If a certain exponential-
time analog of the polynomial hierarchy collapses to E, then P = BPP. This
is not quite a “downward” translation of equality, as it is not clear in gen-
eral whether BPP ⊆ E (though that does hold under the hypothesis of their
theorem, due to the conclusion of their theorem), but this result nonethe-
less represents a remarkable connection between exponential-time classes and
polynomial-time classes.

A Σp
k = Πp

k conclusion, and thus a downward translation of equal-
ity for classes in the NP query hierarchy, was reached by Hemaspaandra,
Hemaspaandra, and Hempel [HHH99a] for the case k > 2. Buhrman and
Fortnow [BF99] extended their result to the k = 2 case. These appear as
Theorem 1.22. Downward translations of equality are known not just for the
1-vs-2 query case but also for the j-vs-(j+1) query case ([HHH99a,HHH99b],
see also [HHH98]), but they involve equality translations within the bounded-
access-to-Σp

k hierarchies, rather than equality translations to Σp
k = Πp

k.
In contrast with the difficulty of proving downward translations of equal-

ity, upward translations of equality are so routine that they are considered
by most people to be “normal behavior.” For example, it is well-known for

1.5 Bibliographic Notes 29

almost all pairs of levels of the polynomial hierarchy that if the levels are
equal then the polynomial hierarchy collapses. This result dates back to the
seminal work of Meyer and Stockmeyer, who defined the polynomial hierar-
chy [MS72,Sto76]. The fascinating exception is whether Θp

k = ∆p
k implies that

the polynomial hierarchy collapses. Despite intense study, this issue remains
open—see the discussion in [Hem94,HRZ95].

Nonetheless, it is far from clear that the view that upward translation
of equality is a “normal” behavior of complexity classes is a itself a correct
view. It does tend to hold within the polynomial hierarchy, which is where
the intuition of most complexity theorists has been forged, but the polyno-
mial hierarchy has many peculiar properties that even its close cousins lack
(stemming from such features as the fact that the set of all polynomials hap-
pens to be closed under composition—in contrast to the set of logarithmic
functions or the set of exponential functions), and thus is far from an ideal
basis for predictions. In fact, Hartmanis, Immerman, and Sewelson [HIS85]
and Impagliazzo and Tardos [IT89] have shown that there is an oracle rel-
ative to which upward translation of equality fails in an exponential-time
analog of the polynomial hierarchy, and Hemaspaandra and Jha ([HJ95a],
see also [BG98]) have shown the same for the limited-nondeterminism hier-
archy of NP—the so-called β hierarchy of Kintala and Fischer [KF80] and
Dı́az and Torán [DT90].

Proposition 1.24 is due to Allender et al. [AHOW92]. Though Open
Question 1.23, with its P = NP conjectured conclusion from the assump-
tion of there being sparse ≤p

dtt-hard sets for NP, indeed remains open,
some consequences—though not as strong as P = NP—are known to fol-
low from the existence of sparse ≤p

dtt-hard sets for NP. In particular, Cai,
Naik, and Sivakumar have shown that if NP has sparse ≤p

dtt-hard sets then
RP = NP [CNS96]. It is also known that if NP has sparse ≤p

dtt-hard sets,
then there is a polynomial-time set A such that every unsatisfiable boolean
formula belongs to A and every boolean formula that has exactly one satis-
fying assignment belongs to A (implicit in [CNS95], as noted by van Melke-
beek [vM97] and Sivakumar [Siv00]). That is, A correctly solves SAT on all
inputs having at most one solution, but might not accept some satisfiable
formulas having more than one satisfying assignment.

