These are the doc cam sheets from the 4/16 class and the 4:50-6:05 pm review session, so that if you did not have time to copy them into your notes you can have them anyway. (However, these were hand-done on the spot, and so no promises are made about them; there could be typos or errors. And as 4/16 was done when we were running out of time, it at the top & bottom skips (saying “WHATEVER goes here”) things that are crucial parts of any answer. Also, on 4/16 & 4/17, the cleaning up I did on the board about removing the cardinality bars and adding a final “3” may not have made it onto the doc cam sheets, so this scanned version is better than the version I had at the review session.) Cheers, Lane
\[L_{LV/14} = \{ \langle M_1, M_2, M_3, x \rangle \mid x \in L(M_1) \cap L(M_2) \land x \notin L(M_3) \} \]

Suppose \(L_{LV/14} \) is decidable via decision \(R \).

We build a decision \(S \) for \(\text{Alt-M} \).

\(S \) on input \(\langle M, w \rangle \) does:

1. Build a TM \(\hat{M} \) that on arbitrarily ignores \(y \) and rejects.
2. Build a TM \(M' \) that on arbitrarily ignores \(y \).
3. Simulate \(R(\langle M, M, \hat{M}, w \rangle) \) and accept if \(R \) accepts, reject if \(R \) rejects.

(Note: \(R \) never loops as it is a decision)

End of \(S \)'s program.

If \(\langle M, w \rangle \in \text{Alt-M} \) then

\(\langle M, M, \hat{M}, w \rangle \in L_{LV/14} \) so \(R \) accepts \(\langle M, M, \hat{M}, w \rangle \) so \(S \) accepts \(\langle M, w \rangle \).

If \(\langle M, w \rangle \notin \text{Alt-M} \) then

\(\langle M, M, \hat{M}, w \rangle \notin L_{LV/14} \) as \(x \notin L(M) \),
so \(R(\langle M, M, M', w \rangle) \) so \(S \) rejects \(\langle M, w \rangle \),
so \(S \) is a decider for \(\text{Alt-M} \). Contradiction!

So \(L_{LV/14} \) is not decidable.
\[L_{\text{TM}} = \{ \langle M, w \rangle \mid L(M) \text{ is decidable?} \} \]

Assume \(L_{\text{TM}} \) is decided by decider \(R \).

We give a decider \(S \) for \(\text{Atm} \).

\[S \text{ on input } \langle M, w \rangle \text{ does:} \]

1. Build a TM \(M' \) that on an arb. input \(y \), ignores \(y \) and immersively simulates \(M \) on \(w \).

2. Run \(R(\langle M' \rangle) \) and if \(R \) accepts then reject and if \(R \) rejects then accept (\(R \) is a decider so it never runs forever).

3. \[\text{END of } S. \]

Note that if \(\langle M, w \rangle \in \text{Atm} \) then \(L(M') = \{\varepsilon\} \) and if \(\langle M, w \rangle \notin \text{Atm} \) then \(L(M') = \emptyset \).

Note that if \(\exists \langle M, w \rangle \mid L(M) \text{ is decidable?} \) is

\[= \exists \langle M, w \rangle \mid L(M) \text{ is decidable \& \& } \exists \cup \varepsilon, \]

and is infinite.

So if \(\langle M, w \rangle \in \text{Atm} \) then \(R(\langle M, w \rangle) \)

\(M' \) rejects since \(\varepsilon \cup \exists \langle M, w \rangle \mid L(M) \text{ is decidable?} \)

is not finite, so \(S \) accepts \(\langle M, w \rangle \).

And if \(\langle M, w \rangle \notin \text{Atm} \) then \(R(\langle M, w \rangle) \) accepts as

\(\emptyset \cup \exists \langle M, w \rangle \mid L(M) \text{ is decidable?} \) is \(\emptyset \) which is finite,

so \(S \) rejects \(\langle M, w \rangle \).

So \(S \) is a decider for \(\text{Atm} \), which is a contradiction, so \(L_{\text{TM}} \) is not decidable.
\[L_{4/16.2} = \exists \langle M \rangle \mid L(M) \cap \exists \langle M' \rangle \mid L(M') \text{ is finite? is decidable?} \]

Assume \(L_{4/16.2} \) is decided by decider \(R \).

We give decider \(S \) for \(ATM \).

\(S \) on input \(\langle M, w \rangle \) does:

1. Build a TM \(M' \) that on all inputs \(y \) accepts. Immersively simulate \(M \) on \(w \).

2. Run \(R(\langle M' \rangle) \) and if \(R \) accepts then reject and if \(R \) rejects then accept.

\((R \) is a decider so never loops.\)

3. END of \(S \).

Note that if \(\langle M, w \rangle \in ATM \) then \(L(M') = \varepsilon \) and \(L(M) = \emptyset \).

If \(\langle M, w \rangle \in ATM \) then \(R(M') \) rejects since by separate proof we can show the TM \(M' \) is finite is undecidable, so \(S \) accepts.

If \(\langle M, w \rangle \notin ATM \) then \(R(M') \) accepts as \(\emptyset \cap \exists \langle M' \rangle \mid L(M') \text{ is finite?} = \emptyset \) which is decidable, so \(S \) rejects.

So \(S \) is a decider for \(ATM \), but \(ATM \) is undecidable so this is a contradiction, so \(L_{4/16.2} \) is not decidable.
\[L_{4/6.3} = \exists \langle m_1, m_2, m_3 \rangle \ni L(m_1) \cap L(m_2) \subseteq L(m_3) \]

std. stuff goes here

\[S \text{ on input } \langle m, n \rangle \text{ does:} \]

\[
\begin{align*}
\text{Build a TM } M \text{ that on arb. inputy is greedy and rejects.} \\
\text{Build a TM } M' \text{ that on arb. inputy immersively simulates } M \text{ on } w. \\
\text{Run } R(\langle M', M', M' \rangle) \text{ and if R accepts then reject if R rejects then accept (R is a decide if never loops?)}
\end{align*}
\]

END S

proof that S is a decision for \(A_{TM} \)

so we have contradiction goes here