Counting
in
Structural Complexity Theory

Lane Adrian Hemachandra
Ph.D. Thesis

87-840
June 1987

Department of Computer Science
Cornell University
Ithaca, New York 14853-7501

Counting in Structural Complexity Theory

A Thesis
Presented to the Faculty of the Graduate School
of Cornell University
in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy

by
Lane Adrian Hemachandra

May 31, 1987

(© Lane Adrian Hemachandra 1987
ALL RIGHTS RESERVED

COUNTING IN STRUCTURAL COMPLEXITY THEORY

Lane Adrian Hemachandra, Ph.D.
Cornell University 1987

Structural complexity theory is the study of the form and meaning of compu-
tational complexity classes. Complexity classes—P, NP, ProbabilisticP, PSPACE,
etc.—are formalizations of computational powers—deterministic, nondeterminis-
tic, probabilistic, etc. By examining the structure of and the relationships between
these classes, we seek to understand the relative strengths of their underlying com-
putational paradigms.

This thesis studies counting in structural complexity theory. We are interested
in complexity classes defined by counting and in the use of counting to explore the
structure of these and other classes.

We consider the structure of the strong exponential hierarchy, an exponen-
tial time analogue of the polynomial time hierarchy. A careful investigation of
the census functions of nondeterministic computation trees shows that the strong
exponential hierarchy collapses.

Next, we move from computing census functions of computation trees to com-
puting census functions of sets. The ranking problem for a fixed set is to deter-
mine the position of elements within the set. We give strong structural evidence
that ranking of any type—uniform, nonuniform, strong, weak, or enumeratively
approximate—is computationally complex. Indeed, we can believe that most types
of ranking are computationally hard with at least the certainty with which we be-
lieve that P # NP.

Returning to the combinatorics of computation trees and their accepting paths,
we study robust machines. A robust machine is a nondeterministic Turing ma-
chine that maintains certain computational properties in every relativized world.
We show that, due to the limited combinatorial control of NP machines, robust

machines accept only simple languages. A robust machine will accept, for every

oracle A, a language that can be accepted by a polynomial time Turing machine
with oracles for NP and A.

Finally, we turn to the count “one,” and its effect on computation trees, ac-
cepting paths, and the structure of the satisfiability problem. We prove a UP
(unique polynomial time) converse to the Borodin-Demers Theorem, and, under a
complexity-theoretic assumption related to uniqueness, we show that there is an
algorithm that quickly finds satisfying assignments for satisfiable formulas with
few satisfying assignments.

Throughout this thesis, our goal is to use counting as a tool in understanding

the structure of feasible computations.

Biographical Sketch

Lane Adrian Hemachandra was born in New York on February 21, 1960. When
he was ten years old he proved that the product of the least common multiple
and the greatest common divisor of two positive integers equals the product of
the integers.! After this first theorem, he spent many years reading books and
listening to classical music. He eventually resurfaced at Yale University and in
1981 received a Bachelor of Science degree, summa cum laude, in Mathematics &
Physics and Computer Science. In 1982 he received a Master of Science degree
in Computer Science from Stanford University. Since then, he has been proving
theorems as a graduate student at Cornell University and appreciating the scenic

beauty of Ithaca.

1The author has been informed that this result has been proven, independently and almost
simultaneously, by Euclid (personal communication). A joint paper is planned [HE].

iii

To my mother.

v

Acknowledgements

Professor Juris Hartmanis, my advisor, has been a model of insight, warmth,
integrity, and grace. From him [’ve learned not only the mechanics of theorem
statement and proof but also a philosophy of scientific inquiry. His intuitive ability
to understand results within the context of the broad themes and needs of our field
is striking and inspiring.

Professor John Hopcroft’s confidence and encouragement have been invalu-
able. From him I learned the value of seeking alternative approaches to difficult
problems.

I thank Professors Robert Bland and David Gries for serving on my committee
with interest and concern. During my undergraduate years at Yale, Professors
Dana Angluin, Dan Gusfield, David Lichtenstein, and Alan Perlis ignited my love
of computer science and provided wise advice and guidance during my first en-
counters in theoretical computer science.

For wonderful suggestions, comments, and ideas that contributed to the re-
search described in this thesis, I’m grateful to Eric Allender, Jin-yi Cai, Joan
Feigenbaum, Judy Goldsmith, Juris Hartmanis, Paris Kanellakis, Dexter Kozen,
Jeffrey Lagarias, Robert McCurley, Mark Novick, Steven Rudich, Vijay Vazirani,
and Osamu Watanabe. For reading and improving drafts of this thesis, I thank
Lee Barford, Robert Bland, David Gries, Juris Hartmanis, John Hopcroft, Mark
Novick, William Pugh, Kenneth Regan, Geoffrey Smith, and Bradley Vander Zan-
den.

The Hertz Foundation generously supported my graduate education with a
Fannie and John Hertz Fellowship. NSF grants DCR-8301766 and DCR-8520597

also supported my thesis research.

I’m overwhelmed and overjoyed by the number of friends who have made my
graduate school years a time not only of proving theorems but also of enjoying
concerts, parks, skiing, restaurants, and a generally eclectic lifestyle.

From quiet evenings of reading to moonlit snowshoe treks through the North
Maine Woods, the joys I’ve shared with Anne Freedman form the core of my
Cornell years.

I'll remember with warmth the years of haggling with Lee Barford over where
to eat lunch. The first round bids were always McDonalds and L’Auberge du
Cochon Rouge; we never went to either. Thanks to my friendship with Lee, I
not only understand carburetors [Ste79] and television screens but also almost
understand the “computer” in computer science.

My friends Joan Feigenbaum, Judy Goldsmith, and Yoram Moses gave unde-
served support, unasked but not unappreciated. Knowing that I'll see them at
conferences forever is a pleasure.

My fellow members of the Birthday Dinner Club—Lee Barford, Anne Freed-
man, Mark Novick, Bill Pugh, and Brad Vander Zanden—have been friends on
more than just our birthdays. Happy October 14tt, February 24*®, April 4**, June
14** and February 39!

Jin-yi Cai, Bruce Esrig, and Jennifer Widom meet life with degrees of (respec-
tively but not exclusively) reflection, kindness, and élan refreshingly different from
the norm. My friendships with them have broadened the way I view the world.

For a lifetime of understanding and advice, I'm grateful to my family—Aunt
Hattie and Uncle John, Uncle Bill, Grandmother Ruth, and above all my mother.

4

Contents

1 Introduction 1
2 A Primer of Complexity Classes 5
21 P:Determinism 5
2.2 NP: Nondeterminism 7
2.3 Oracles and Relativized Worlds 9
2.4 The Polynomial Hierarchy and Polynomial Space: The Power of
Quantifiers L 10
2.4.1 The Polynomial Hierarchy 10
242 Polynomial Space. 11
2.5 E, NE, and the Strong Exponential Hierarchy 14
26 P/Poly: Small Circuits 14
2.7 UP and FewNP: Uniqueness 18
28 #P:Counting, 23
3 The Strong Exponential Hierarchy Collapses 27
3.1 Chapter Overview 27
3.2 Introduction. 28
3.3 On the Strong Exponential Hierarchy 29
3.3.1 The Strong Exponential Hierarchy Collapses 29
3.3.2 Relationship of Our Collapse to Other Collapses and to the
Polynomial Hierarchy 39
3.3.3 The Strong Exponential Hierarchy and Sensitivity to Padding 40
3.3.4 Downward Separations 41
3.4 Quantitative Relativization Results 43
3.4.1 Definitions 43
3.4.2 Introduction and Background 46
3.4.3 Quantitative Relativization Theorems 46
3.44 More Quantitative Relativization Theorems 50
3.4.4.1 Paying Only for the First Occurrence 50

vii

3.5

3.44.2 Many “No” Strings
3.4.43 Truth-TableClasses
Conclusions and Open Problems

4 The Complexity of Ranking

4.1
4.2
4.3
4.4

4.5
4.6
4.7

Chapter Overview
Introduction L
When Can Uniform Complexity Classes be Ranked?
Small Ranking Circuitsand P
4.4.1 If P has Small Strong-Ranking Circuits then P#P C D) S
4.4.2 If P has Small Weak-Ranking Circuits or Small Ranking

Circuits then P#F C D3 S
Ranking P/Poly
Enumerative Ranking
Conclusions and Open Problems

5 Robustness

5.1
5.2
5.3
5.4
5.5
5.6

Chapter Overview
Introduction
Robustness Theorems
A Note on Weakening the Hypotheses
Proof Sketches for Robustness Theorems
Conclusions

6 Uniqueness

6.1
6.2
6.3

6.4

Chapter Overview
A UP Analogue of the Borodin-Demers Theorem
Conditionally Fast Algorithms for Finding Satisfying Assignments:
On Distinguishing Zero from One
6.3.1 Introduction
6.3.2 Theorems, Algorithms, Proofs
Conclusions and Open Problems

A Complexity Class Summary Sheets

B Structural Inclusions

Bibliography

viil

88
88
90
94

95

104

109

List of Tables

3.1 Binary Search over Calls to NE, Discovers that there are Three Yes
Strings at Level 3 of the Computation Tree of N17NE“(11101) - 1
3.2 Nomenclature of Quantitative Relativization 44

List of Figures

2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
2.10
2.11
2.12

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8

Al
A2
A3
A4
A5
A.6
A7
A8

P e 6
NP . e 8
The Polynomial Hierarchy and PSPACE 12
The Structure of The Polynomial Hierarchy 13
E, NE, and the Strong Exponential Hierarchy 15
The Structure of the Strong Exponential Hierarchy 16
P/Poly e 17
The Structure of UP and US within the Polynomial Hierarchy . . . 19
UP—Partl 20
UP—PartII. 21
#P o e 24
The Structure of #P and the Polynomial Hierarchy 25
Nondeterministic Computation Tree 31
NPNE Computation Tree . . . o o o oo oo v e e e e 33
Our Strategy e 34
The True NPNE Tree and Five Snapshots 36
Quantitative Relativizations 45
One Query per Path, but Many Levels Have Queries 48
Query Depths 49
First-Occurrence Depths 51
P o e 96
NP . e 97
The Polynomial Hierarchy and PSPACE 98
E, NE, and the Strong Exponential Hierarchy 99
P/Poly e e e e e 100
UP—PartI e 101
UP—PartII. 102
HP 103

B.1 The Structure of The Polynomial Hierarchy 105

B.2 The Structure of the Strong Exponential Hierarchy 106
B.3 The Structure of UP and US within the Polynomial Hierarchy . . . 107
B.4 The Structure of #P and the Polynomial Hierarchy 108

Chapter 1
Introduction

The form is the meaning, and indeed the classic Greek mind, with an
integrity of perception lost by later cultures which separated the two,
firmly identified them.

—Vincent Scully, The Earth, the Temple, and the Gods [Scu62].

To the computer scientist, structure is meaning. Seeking to understand na-
ture’s diverse problems with man’s pathetic resources, we simplify our task by
grouping similarly structured problems.

The resulting complexity classes, such as P, NP, and PSPACE, are simply
families of problems that can be solved with a certain underlying computational
power. The range of interesting computational powers is broad—deterministic,
nondeterministic, probabilistic, unique, table lookup, etc.—and an equally rich
spectrum of classes symbolize the powers—P, NP, PP, UP, P/poly, etc. These
structurally motivated classes can themselves be studied in terms of their internal
structure and behavior. For example, we might seek to understand the nature of
the class NP by asking if NP contains any hard sparse sets (HIS85] or by asking
if there is only one NP-complete set, which appears in many p-isomorphic guises
[BH77].

This thesis studies the interaction between counting and structural complexity
theory. We study the structure of classes defined by counting and how combina-

torics and counting give us insight into the structure of complexity classes.

Chapter 2 briefly reviews the definitions of, meanings of, and previous research
on the complexity classes we study. Summary sheets are collected in the appen-
dices.

Chapter 3 studies the strong exponential hierarchy, an exponential time ana-
logue of the polynomial time hierarchy. We study the structure of the computa-
tions at the second level (NPNE) of the strong exponential hierarchy. This work
is related to the quantitative relativizations of the polynomial hierarchy of Book;
Léﬁg, and Selman [BLS84,Lon85|. By carefully building up a profile of the number
of “yes” answers the base NP machine receives (the “census profile”) we see that
PNE_NPNE. [t follows that the strong exponential hierarchy collapses to PNE,

Chapter 3 shows how to compute census functions of computation trees. Chap-
ter 4 discusses the complexity of computing census functions of sets. For a fixed
set, the ranking problem is to determine the position (rank) of input strings within
the set. As an example, the ranking problem is easy for the set of odd numbers.
We can quickly tell that 1001 is the 501st odd number. Ranking was first studied
by Blum, Goldberg, and Sipser [GS85], who showed that if a certain P set can be
ranked in polynomial time, then the counting functions of NP machines (which
are the functions counting the number of accepting paths of NP machines) can be
computed in polynomial time.

Do all easy (P) sets have easily computable ranking functions? Do all NP
sets have easily computable ranking functions? The latter might seem less likely.
However, we show that all sets in P have easy ranking functions if and only if
all sets in NP have easy ranking functions. Thus, though it is likely that the
membership problems for P and NP are of different complexities, their ranking
problems stand or fall together.

We also ask if there are small circuits for the ranking problem and if we can
enumeratively approximate ranking functions. We can not, if standard assump-
tions about complexity classes hold.

A machine that maintains a property for every oracle! is said to have the
property robustly [Sch84]. For example, if two nondeterministic Turing machines

accept complementary languages for every oracle we say they are robustly com-

1QOracles and relativized computations are defined and discussed in Section 2.3.

plementary. Maintaining a property robustly strains a machine’s combinatorial
control; it is hard for a machine to be flexible enough to show a certain behavior
with all oracles and also to accept complex languages.

Chapter 5 studies robustness and shows that machines with robustness prop-
erties accept only simple languages. For example, if two machines are robustly
complementary then for every oracle 4 each of the machines accepts a language in
PNPO®4 where @ represents disjoint union. In particular, if P =NP then for each
oracle A all robustly complementary machines accept languages in polynomial
time relative to A.

Chapter 6 studies properties of a unique count—one. Borodin and Demers
[BD76] show that if P#NPNcoNP then there exists a polynomial time set § of
satisfiable boolean formulas such that no polynomial time machine computes satis-
fying assignments for all formulasin §—that is, for no polynomial time computable
function g do we have (VF € §)[g(F) is a satisfying assignment of F|. Intuitively,
we have a set of formulas that we can easily recognize as satisfiable, but we cannot
easily determine why they are satisfiable.

It is not known if the converse of the Borodin-Demers Theorem holds. The first
part of Chapter 6 proves a “uniqueness” version of the theorem and its converse:
P #UPNcoUP if and only if there is a polynomial time set § so that each element
of § is a formula with exactly one solution but no polynomial time machine com-
putes satisfying assignments for all formulas in §—that is, for no polynomial time
computable function g do we have (VF € §)[g(F) is the unique satisfying assign-
ment of F]. Intuitively, we have a set of formulas that we can quickly recognize as
each having exactly one solution, but we cannot get our hands on these solutions
quickly.

The second part of Chapter 6 shows, if a complexity-theoretic assumption
holds, that fast algorithms exist to find satisfying assignments for satisfiable boolean
formulas that have few satisfying assignments. Our complexity-theoretic assump-
tion is that we can distinguish zero from one. Call (*x) the assumption that there

is a polynomial time Turing machine that

e given any unsatisfiable formula prints “unsatisfiable,” and

e given any formula with exactly one solution prints “satisfiable.”

Note that given a formula with many solutions we don’t know what this machine
will say; it may lie.

Valiant and Vazirani [VV85] show that (%) implies P=UP and NP equals R,
random polynomial time. Assumption (**) does not appear to imply P=NP. We
show that (xx) implies that we can find a satisfying assignment to a satisfiable
formula-f in-time-O(|f[*-||f||- (mmaogﬁf”ﬁ,'gv)ar(f) /z)))’ where ||f|| is the number
of satisfying assignments of f, |f| is the size of f, and #wvar(f) is the number
of distinct variables in f, and k is a constant. In particular, (%) implies that
for formulas with few solutions we have witness finding algorithms faster than
the known (exponential time) algorithms. We interpret this as strong evidence
that (*x) is false.

All these chapters strive to understand counting and its effects on the struc-
ture of the complexity classes that formalize our view of the world of feasible

computations.

Chapter 2
A Primer of Complexity Classes

This chapter briefly reviews the definitions, meanings, and histories of the com-
plexity classes this thesis studies. Detailed discussions of previous work related to

this thesis are included in each chapter.

2.1 P: Determinism
P={L| Lis accepted by a polynomial time deterministic Turing machine}.

P, deterministic polynomial time, is the class that is widely thought to em-
body the power of reasonable computation (Figure 2.1). In the 1930s, Gédel,
Church, Turing, and Post [God31,Chu36,Tur36,Chu41,Pos46,Dav58] asked what
could be effectively solved by computing machines—that is, what problems are
recursive? Starting in the 1960s, computer scientists have asked which problems
can be efficiently solved by computers. The theory of P and NP, and indeed struc-
tural complexity theory itself, sprang from this desire to understand the limits of
feasible computation.

The notion that polynomial time, g TIME[nk], is the right class to represent
feasible computation is due to Cobham and Edmonds [Cob64,Edm65]. Polynomi-
als grow slowly and are closed under composition (thus allowing subroutine calls).
These features support the claim that P is a reasonable resource bound. The view

that P loosely characterizes “feasibility” is widely accepted.

P - Polynomial Time

Power
Feasible computation.

Definition
P=U; TIME[n"].

Background
P was described as embodying the power of feasible computation by Cob-

ham [Cob64] and Edmonds [Edm65]. The field of design and analysis of

algorithms attempts to place as many problems as possible in P.

Complete Languages
P has well-known complete languages under < fff,’,f’;feme reductions, e.g., the

emptiness for context-free grammars [HU79].

Sample Problem
In a fixed, reasonable proof system, asking if z is a proof of T is a polynomial
time question. In particular, in polynomial time we can check if assignment

z satisfies boolean formula F.

Figure 2.1: P

