
An Efficient Parallel Repetition Theorem
for Arthur-Merlin Games

Rafael Pass
Cornell University

rafael@cs.cornell.edu

Muthuramakrishnan
Venkitasubramaniam

Cornell University
vmuthu@cs.cornell.edu

ABSTRACT
We show a parallel-repetition theorem for constant-round
Arthur-Merlin Games, using an efficient reduction. As a
consequence, we show that parallel repetition reduces the
soundness-error at an optimal rate (up to a negligible fac-
tor) in constant-round public-coin argument systems, and
constant-round public-coin proofs of knowledge. The former
of these results resolves an open question posed by Bellare,
Impagliazzo and Naor (FOCS ’97).

Categories and Subject Descriptors
F.1.2 [Theory of Computation]: Interactive and reactive
computation

General Terms
Theory

Keywords
parallel repetition, computationally-sound arguments, public-
coin protocols, Arthur-Merlin games, proofs of knowledge

1. INTRODUCTION
Interactive proof system were introduced independently

by Goldwasser, Micali and Rackoff [17] and Babai and Moran
[1]. Roughly speaking, interactive proofs are protocols that
allow one party P , called the Prover (or Merlin), to convince
a computationally-bounded party V , called the Verifier (or
Arthur), of the validity of some statement x ∈ L. In contrast
to traditional “written” proofs (e.g., NP witnesses), in an in-
teractive proof a cheating proof can convince the verifier of
a false statement x /∈ L with some small probability ǫ; this
ǫ is called the soundness-error of the interactive proof sys-
tem. It is well-known (see e.g. [1]) that both sequential and
parallel repetition can be used to reduce the soundness error
at an exponentially decaying rate: k parallel repetitions of
an interactive proof system (P, V) with soundness error ǫ

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
STOC’07, June 11–13, 2007, San Diego, California, USA.
Copyright 2007 ACM 978-1-59593-631-8/07/0006 ...$5.00.

results in an interactive proof systems with soundness error
ǫk. In other words, the probability that a cheating prover
succeeds in convincing k independent parallel executions of
V , of a false statement, is bounded by ǫk.

1.1 Variants of interactive proofs
Since their original introduction, several variants of inter-

active proofs have been proposed in the literature.

Public v.s. Private Coins. For one, the notion of interactive
proofs introduced by Goldwasser, Micali and Rackoff consid-
ers arbitrary probabilistic polynomial-time verifiers, whereas
the notion introduced by Babai and Moran, called Arthur-
Merlin Games considers verifiers that only send truly ran-
dom messages; such proof systems are also called public coin.

Interactive Arguments. Subsequently, Brassard, Chaum
and Crepeau [5] introduced the notion of an interactive argu-
ment. In contrast to interactive proofs, where soundness is
required to hold with respect to all (potentially unbounded)
cheating provers, in an interactive argument, soundness need
only to hold for computationally bounded cheating provers.

Proofs of Knowledge. A proof of knowledge protocol is
an interactive proof where the prover not only convinces
the verifier of the validity of some statement x, but also
that it “knows” a (short) certificate for the validity of x.
Proof of knowledge protocols were intuitively introduced by
Goldwasser, Micali and Rackoff, and were later formalized
in [9, 12, 23, 3].

1.2 Parallel Repetition of Interactive Proofs
As mentioned, it is known that parallel-repetition reduces

the soundness error in all interactive proofs (and thus also
for public-coin interactive proofs). However, the situation
is less clear when considering the other above-mentioned
variants of interactive proofs.

Bellare, Impagliazzo and Naor [2] obtain the first posi-
tive results regarding parallel repetition of interactive argu-
ments: they show that parallel repetition reduces the sound-
ness error at an exponentially fast rate in 3-round interactive
arguments (an essentially optimal error reduction rate was
recently obtained in [6]). On the other hand, [2] also shows
that there exists 4-round interactive arguments where par-
allel repetition does not reduce the soundness error.1 More

1Pedantically, the lower-bounds of [2], as well as sub-
sequent results, only apply to a more general type of
computationally-sound interactive protocols where some
public-parameter – honestly chosen according to some dis-
tribution – is available to both the prover and the verifier.

precisely, they show that for every k, there exists a protocol
(P, V) with communication and computation polynomial in
k, such that k-parallel repetitions of (P, V) do not reduce
the soundness error below some fixed constant. Addition-
ally, they show the existence of a 4-round protocol for which
even arbitrary many parallel repetitions cannot be used to
reduce the soundness error by a black-box reductions. Very
recently, the result of Pietrzak and Wikstrom extends the
results of [2] to show the existence of a constant-round pro-
tocol for which arbitrary parallel-repetition does not reduce
the soundness error ([20]).

Nevertheless, although severe negative results were shown
in [2] regarding parallel-repetition of interactive arguments,
Bellare et al note that their impossibility results seemingly
only apply to interactive protocols where the verifier uses
private coins. Consequently, they leave as an open question
whether parallel-repetition reduces the soundness error in
public-coin (i.e., Arthur-Merlin) arguments.

Regarding proofs of knowledge even less is known. Bellare
and Goldreich [3] (see also [13]) point out difficulties with
parallel-repetition of proofs of knowledge, but as far as we
know, no general results have been shown in the literature.

1.3 Our results
In this paper, we focus on establishing parallel repetition

theorems for interactive proofs, with efficient reductions.
Our main theorem shows the existence of such a repetition
theorem for constant-round public-coin protocols. As a first
corollary of this main theorem, we show that parallel repe-
tition reduces the soundness-error at an essentially optimal
rate in constant-round public-coin argument systems (re-
solving one of the open questions in [2]). As a second corol-
lary, we show that parallel repetition reduces the soundness-
error at an essentially optimal rate also in constant-round
public-coin proof of knowledge protocols.

We mention that most “classical” argument, or proof of
knowledge, protocols (e.g. [19, 4]) are public-coin and re-
quire 4 rounds of communication.2 Although it is a well-
known fact that parallel repetition decreases both the sound-
ness error, and the so called “knowledge-error” (in the con-
text for proofs of knowledge) in these particular protocols,
as far as we know, our results present the first general the-
orems for showing this.

Our techniques To prove our results we show a black-box
reduction S which transforms any prover B that convinces
k “parallel” verifiers with probability ǫ, into a “stand-alone”
prover B′ = SB that only talks to a single verifier. Further-
more (and most importantly), the success probability of the

stand-alone prover B′ is “roughly” ǫ1/k. The idea behind
the reduction is quite straight-forward: S selects one of the
k executions that B expects to participate in; this execution
will be forwarded externally, while all other executions are
“emulated” internally. The complication that arises with
this approach is that once a message has been sent exter-
nally it becomes hard to “rewind” B behind the point where
B sent this message. To circumvent this problem, we thus
make sure to only externally send messages that allow us to

2Recall that these protocols rely on the existence of a
commitment scheme. When using a 2-round commitment
scheme (which is needed in the case of statistically-hiding
commitments, but also required by most constructions of
even computationally-binding commitments) the resulting
protocol becomes 4 rounds.

maintain the desired success probability. On a high-level,
this is obtained by recursively sampling the success prob-
ability of our reduction S, while only selecting executions
paths that maximize the “recursive” success probability (in
a sense, our reduction is somewhat reminiscent of the con-
current zero-knowledge simulation techniques of [21]). The
main contribution of this paper is to show that this approach
indeed works: the principal technique we employ to analyze
the success probability of the reduction is a carefully defined
sequence of (quite non-standard) hybrid experiments (as in
[15])– this allows us to, step-by-step, reduce the problem to
an information-theoretic parallel-repetition question (which
becomes simple to analyze).

Open questions We mention that, due to the recursive na-
ture of our reduction, its running-time grows exponentially
with the number of communication rounds in the protocol
(and is thus only applicable to constant-round protocols).
This leaves open the question of whether parallel repetition
reduces the soundness error in public-coin arguments (or
proofs of knowledge) with a non-constant number of com-
munication rounds.

1.4 Related Work
We mention that the questions investigated in this pa-

per, as well as the techniques employed, are very related to
hardness amplification (see e.g. [24, 7]). The question inves-
tigated is also related to the large body of work on parallel
repetition of multi-prover games (e.g., [8, 10, 11]), and in
particular Raz’ repetition theorem [22]. However, we men-
tion that both our techniques and desiderata (i.e., efficiency
of the reduction) are very different.

We finally mention that parallel repetition in the context
of zero-knowledge proofs [17] has also received a lot atten-
tion. For instance, Goldreich and Krawczyk [14] show that
the notion of zero-knowledge is not closed under parallel
repetition; furthermore, they also show that the notion of
black-box zero-knowledge is not closed under parallel repeti-
tion, even when considering only constant-round public-coin
protocols. In this paper we, however, will not consider “se-
crecy” properties of interactive proofs, such as the notion of
zero-knowledge.

1.5 Overview
Section 2 contains basic notation and definitions of inter-

active proofs, arguments and proofs of knowledge. Section
3 contains formal statements of our results. In Section 4,
we provide an overview of the proof of our main theorem.
Details of the proof are found in Section 5.

2. DEFINITIONS

2.1 General Notation
Throughout our paper we use the terms ”Turing machine”

and “algorithm” interchangeably. We assume familiarity
with the basic notions of an Interactive Turing Machine [17]
(ITM for brevity) and a protocol (in essence a pair of ITMs3).

3Briefly, a protocol is pair of ITMs computing in turns. In
each turn, called a round, only one ITM is active. A round
ends with the active machine either halting —in which case
the protocol halts— or by sending a message m to the other
machine, which becomes active with m as a special input.

Probabilistic notation The following probabilistic no-
tation follows almost verbatim [18]. If S is a probability

space and p a predicate, then “x
R
← S” denotes the ele-

mentary probabilistic algorithm consisting of choosing an
element x at random according to S and returning x, and

“x
R
← S | p(x)” that of choosing x according to S un-

til p(x) is true and then returning x. Let p be a pred-
icate and S1, S2, . . . probability spaces, then the notation

Pr[x1
R
← S1; x2

R
← S2; . . . : p(x1, x2, . . .)] denotes the

probability that p(x1, x2, . . .) will be true after the ordered

execution of the probabilistic assignments x1
R
← S1; x2

R
←

S1; . . . If S, T , . . . are probability spaces, the notation

{x
R
← S; y

R
← T ; · · · : (x, y, · · ·)} denotes the new proba-

bility space over {(x, y, · · ·)} generated by the ordered exe-

cution of the probabilistic assignments x
R
← S, y

R
← T, · · · .

Negligible functions The term “negligible” is used for
denoting functions that are asymptotically smaller than the
inverse of any fixed polynomial. More precisely, a function
ν(·) from non-negative integers to reals is called negligible if
for every constant c > 0 and all sufficiently large n, it holds
that ν(n) < n−c.

2.2 Interactive Proofs and Arguments
We state the standard definitions of interactive proofs [17]

and arguments [5]. Given a pair of interactive Turing ma-
chines, P and V , we denote by 〈P (y), V 〉(x) the random
variable representing the (local) output of V when interact-
ing with machine P on common input x, when the random
input to each machine is uniformly and independently cho-
sen, and P has auxiliary input y.

Definition 1 (Interactive Proof System). A pair
of interactive machines (P, V) is called an interactive proof

system for a language L with soundness error s(·) if ma-
chine V is probabilistic polynomial-time and the following
two conditions hold:

• Completeness: For every x ∈ L there exists a (witness)
string y such that

Pr[〈P (y), V 〉(x) = 1] = 1

• Soundness: For every x /∈ L, every interactive ma-
chine B and every z ∈ {0, 1}∗

Pr[〈B(z), V 〉(x) = 1] ≤ s(|x|)

In case that the soundness condition is required to hold only
with respect to all probabilistic polynomial-time provers B,
the pair (P, V) is called an interactive argument. Further-
more, if V only sends the prover consecutive and disjoint
subsets of its random tape (starting from the beginning of
the tape), (P, V) is called public-coin or Arthur-Merlin.

2.3 Proofs of knowledge
Loosely speaking, an interactive proof is a proof of knowl-

edge if the prover convinces the verifier that it possesses,
or can feasibly compute, a witness for the statement proved.
This notion is formalized by requiring the existence of a
probabilistic polynomial-time “extractor”-machine that can,
given the description of any (malicious) prover that succeeds
in convincing the honest verifier, readily compute a valid
witness to the statement proved. We proceed to a formal
definition, following Bellare and Goldreich [3].

Definition 2 (Proofs of Knowledge). An interac-
tive proof (argument) (P, V) is a said to be a proof of knowl-

edge for the witness relation R with knowledge error κ if the
following two conditions hold:

• Non-triviality: For all x ∈ L and yx ∈ R(x):

Pr[〈P (x, yx), V 〉(x)] = 1] = 1

• Validity: There exists a polynomial q and a probabilis-
tic oracle machine K, called the knowledge extrac-
tor, such that for every interactive machine P ′, every
x ∈ L and every y, r ∈ {0, 1}∗ the machine K with ora-
cle access to P ′

x,y,r outputs a solution s ∈ RL(x) within
an expected number of steps bounded by q(|x|, 1

δ
), where

δ = Pr[〈P ′
x,y,r, V 〉(x)] − κ(|x|) and P ′

x,y,r denotes the
machine P with common input fixed to x, auxiliary
input fixed to y and random tape fixed to r.

Remarks

(1) We point out that our definition is slightly weaker than
that of [3], in that we only require that the extractors
running-time is bounded by q(|x|, 1

δ
), whereas [3] re-

quires it to be bounded by q(|x|) 1
δ
. (In other words,

[3] require an extraction with a “smaller” overhead).
We mention that our results do not seem applicable
to the more stringent definition of [3]. In any case,
our definition implies previous definitions of proofs of
knowledge (e.g., [9, 23]) and is sufficient for traditional
applications of proofs of knowledge.

(2) Note that the definition of proofs of knowledge con-
siders unbounded prover machines P ′. At first sight,
one might therefore think that soundness-error reduc-
tion would follow by information-theoretic arguments.
Note, however, that the definition of a proof of knowl-
edge requires the existence of an efficient extractor ma-
chine (which thus complicates the analysis).

(3) We finally mention that the definition of a proof of
knowledge can be relaxed to consider only efficient
prover machines P ′; this leads to the definition of an
argument of knowledge. Our results remain valid also
for such a relaxed definition.

3. MAIN THEOREM AND APPLICATIONS
Let (P, V) be a 2m-round interactive argument for a lan-

guage L. k-parallel repetition of a (P, V) denotes k inde-
pendent parallel execution of (P, V): We denote by Vk the
verifier that runs k independent executions of V and ac-
cepts if and only if V accepts in all the executions. More
formally, the random tape R of Vk has the form R1, . . . , Rk

where each Ri is a random tape for V . The j’th message in
the protocol, Mj , is parsed as Mj = Mj,1 . . . Mj,k. The
reply Mj+1 = Vk(x,M1, . . . , Mj ; R) of V k to some mes-
sage Mj is defined via Mj+1,i = V (x, M1,i . . . Mj,i; Rj) for
j = 1, . . . , m. The verifier Vk finally accepts if and only if
all of the executions are accepted by V .

Note, however, that a malicious prover may not act inde-
pendently in the k executions. In particular, such a prover
might compute a reply Mj+1 to Mj by choosing Mj+1,i to
depend on all previous information, including values Mt,l

where l 6= i (and t ≤ j).
Our main theorem is presented below.

Theorem 1. Let (P, V) be a 2m-round public-coin inter-
active argument for L. Then for every k, there exists a prob-
abilistic oracle machine S, such that for every x 6∈ L, ǫ′ > 0,
integer c, every interactive machine B, such that

Pr
h
〈B, Vk〉 (x) = 1

i
≥ ǫ′

it holds that

Pr
h
〈SB(x, ǫ′, c), V 〉(x) = 1

i
≥
“
ǫ′(1−

1

nc
)
” 1

k
−

1

nc

Furthermore, the running-time of S is poly
“

1
ǫ′m

, |x|, nc, nm
”
.

The proof of Theorem 1 is found in section 4. We point out
that since we are only interested in public-coin argument
systems, the verifiers next message is always independent of
the history; in fact it will always be a truly random string.
The proof of Theorem 1 crucially relies on this fact.

By applying Theorem 1 we show that parallel repetition
reduces the soundness error at an essentially optimal rate
for both constant-round public-coin interactive arguments
and proofs of knowledge.

Theorem 2. Let (P, V) be a constant-round public-coin
interactive argument for the language L with soundness er-
ror ǫ(·). Then (Pk, Vk) has soundness error ǫ(·)k + ν(·),
where ν is a negligible function.

Theorem 3. Let (P, V) be a constant-round public-coin
proof of knowledge for the witness relation R with knowledge
error ǫ(·). Then (Pk, Vk) has knowledge error ǫ(·)k + 1

nd for
any d.

The proofs of Theorem 2 and Theorem 3 have been omitted
and can be found in the full version. We mention, however,
that the constant-round restriction is due to the fact that
the running-time of the reduction, guaranteed by Theorem
1, is exponential in the number of rounds in the protocol.

4. PROOF OVERVIEW
We assume, without loss of generality, that in (P, V), P

sends both the first and the last message. Furthermore, for
simplicity, we assume that in each round the verifier sends
messages of length n. We show how to construct an oracle
machine S that satisfies the conditions of Theorem 1. As
already mentioned, the construction of S is very generic (and
relatively straight-forward); the main challenge, however, is
to bound its success probability.

4.1 Description of S

On a high-level, SB on input a statement x and given
oracle access to a prover B, proceeds as follows. In a first
stage, SB will decide on a good “coordinate” i′ ∈ [k]. In
the second stage, S makes use of B in order to convince
an outside verifier: S will interact with B while emulating
the honest verifier strategy V for B in all executions except
execution i (recall that B is supposed to convince k parallel
executions of V); on the other hand, messages in execution
i will be forwarded externally.

Now we proceed to describe S. It proceeds in the following
two phases:

Pre-processing Phase: For each i ∈ [k], S estimates the
probability that its execution phase (described below) suc-
ceeds in convincing V , when coordinate i is selected. This

estimation is performed by sampling an appropriate number
of executions and computing the average success probabil-
ity. Finally, the coordinate i′ with the highest estimate is
selected.

Execution Phase: Given a coordinate i, S will perform an
“almost” straight-line invocation of B, externally forward-
ing all messages that are part of B’s i’th executions (i.e., all
incoming messages are directly forwarded to B as part of its
i’th execution, and all messages sent by B in its i’th exe-
cution are externally forwarded), and internally generating
the messages that are part of the other executions of B. The
invocation of B will, however, not be entirely straight-line:
in order to select the messages that are internally generated,
S will run “look-aheads” of B in order to evaluate whether
these generated messages are “good”. More precisely (but
still informally), given a history of messages rq sent to B, S
proceeds as follows:

1. S starts by externally forwarding the output of B.

2. Upon receiving back an answer r from the outside, S
will feed r to B as part of its i’th execution (i.e. as part
of its i’th coordinate). However, in order to do this S
must also feed B messages for all k−1 other executions.
S, thus carefully chooses a “good” extension sq+1 of
the history rq; r where the new verifier message r is
placed in the i’th coordinate. S will choose a good
extension as follows:

(a) It samples an appropriate number of random ex-
tensions of rq; r (by picking random messages as
the q+1’s verifier message in all k−1 executions).

(b) For each such sample sq+1, it then estimates the
probability that S succeeds in convincing V given
the history sq. Again, this estimation is per-
formed by sampling an appropriate number of ex-
ecutions and computing the average success prob-
ability of S.

(c) Finally, the sample sq+1 with the highest estimate
is selected.

3. Next, given a “good” extension sq+1, S now feeds the
history sq+1 to B, and continues as in step 1 until the
external execution has finished.

We proceed to a formal description of S. Towards this goal,
we first introduce some notation.

Histories and Extensions A history is a sequence of
tuples of messages. Since we are interested in the “view”
of B, we will only consider histories of verifier messages.
We distinguish between two types of histories: prover-step
histories and verifier-step history: verifier-step histories are
of the form h = rq , where rq = (r1

1 , .., r1
k), .., (rq

1, .., r
q
k) is

a sequence of k-tuples of n-bit strings, whereas prover-step
histories are of the form h = rq; r. We say that a history
rq is of length q if it consists of a sequence of q k-tuples.
We also let rq ; (s1, . . . , sk) denote the q + 1-length history
obtained by concatenating the q-length history rq and the
k-tuple (s1, . . . , sk),

Let Exti(r
q; r) denote the set of all length q + 1 histories

of the form rq ; (s1, . . . , sk) where si = r and s1, . . . , sk ∈
{0, 1}n. Any extension in Exti(r

q; r) will be called an i-
extension of the history rq; r. We will refer to as it as just
an extension whenever i is obvious from context.

Formal Description of S A formal description of S can
be found in Figure 1. For convenience of analysis, we let the
algorithm Si (described in Figure 2) denote the algorithm
that performs the execution phase described above, given
that coordinate i has been selected. S is then simply a ma-
chine that performs a preprocessing stage to find an “good”
i and then calls Si.

Algorithm 1 : SB

1: for i = 1 to M do

2: Let N = n3. Run SB
i (·, true), N times. Let count

denote the number of times SB outputs 1.
3: Compute an estimate, Xj , of the success probability

of SB
i given the samples, i.e., Xj ←

count

N
.

4: Let i′ be the index of the coordinate with the largest
estimate, i.e. i′ ← argmaxi{Xi}.

5: Run SB
i (·, false).

Figure 1: Description of the machine SB

Algorithm 2 : SB
i (rq, internal)

1: Let (c1, . . . , ck) be the output of B when fed the mes-
sages in rq , i.e. (c1, . . . , ck)← B(rq).

2: if rq is a complete history then

3: if internal = false then

4: Externally forward ci and halt.
5: else

6: Output whether B succeeds in convincing V in co-
ordinate i, when fed the messages in rq and halt.

7: else

8: if internal = false then

9: Externally forward ci and let r be the message ex-
ternally received.

10: else

11: Pick a random message r, i.e. r ← {0, 1}n.

12: Let M = 2nc+1

ǫ′
and Mq = ⌈42qn2c log(4qncM)⌉.

13: Pick M extensions s1
q+1, . . . , sM

q+1 of rq; r.
14: for j = 1 to M do

15: Run SB
i (sj

q+1, true), Mq+1 times. Let count de-
note the number of times SB

i outputs 1.
16: Compute an estimate Xj , of the success probability

of SB
i on sj

q+1. More precisely, let Xj ←
count

Mq+1
.

17: Let j′ be the index of the sample with the largest
estimate, i.e. j′ ← argmaxj{Xj}.

18: Run SB
i (sj′

q+1, internal).

Figure 2: Description of the machine SB
i

4.2 Analyzing the success probability of S

We proceed to analyzing the success probability of S on
input a machine B. Our analysis proceeds in several steps.

Step 1: Defining bSi In the first step we define a par-

ticular unbounded algorithm bSi. Whereas Si “samples” to

Algorithm 3 : eSB
i (rq)

1: Let (c1, . . . , ck) be the output of B when fed the mes-
sages in rq , i.e. (c1, . . . , ck)← B(rq).

2: if rq is a complete history then

3: Externally forward ci and halt.
4: else

5: Externally forward ci and let r be the message exter-
nally received.

6: Pick M extensions s1
q+1, . . . , sM

q+1 of rq; r.

7: Let j′ be the sample on which eSB
i on input sj′

q+1 wins
with highest probability.

8: Run eSB
i (sj′

q+1).

Figure 3: Description of the machine eSB
i

find “good” messages to send to B, bSi always picks the best

messages to send to B (this is possible since bSB
i is compu-

tationally unbounded). A formal description of bS can be
found in Figure 4. In contrast to Si, it will however be sim-

ple to analyze the success probability of bSi. In particular,
we show:

Claim 1. For any interactive machine B, it holds that

kY

i=1

Pr
h
〈bSB

i (x, ǫ′, c), V 〉(x) = 1
i
≥ Pr

h
〈B, Vk〉 (x) = 1

i

Intuitively, the claim holds by the following argument: Con-
sider a prover Q for the protocol (Pk, Vk) that forwards mes-

sages in its execution j (for j ∈ [k]) to and from bSB
j . It can

be seen that such a Q does better than B (since bSB
j maxi-

mizes its success probability), and furthermore Q acts inde-
pendently in each of the executions; thus the claim follows.

By Claim 1 we conclude that there exists some i, such that
bSB

i wins with high probability (in fact, with probability at

least Pr [〈B, Vk〉 (x) = 1]
1
k).

Furthermore, as we will show in the following steps, the
success probability of SB

i will not be too far from the success

probability of bSB
i .

Step 2: Defining eS Towards the goal of showing that the
success probability of SB

i is close to the success probabil-

ity of bSB
i , we define an intermediary computationally un-

bounded machine eSi. eSi will proceed exactly as Si, except
that instead of estimating its own success probability when

evaluating if a sample extension is “good”, eSi, computes its

actual success probability. A formal description of eSi can
be found in Figure 3. We show that the success probability

of SB
i is close to the success probability of eSB

i . Intuitively
(on a very high-level) this follows since by a Chernoff bound,
the estimates computed by SB

i will be “close enough”. More
formally, we show:

Claim 2. For any interactive machine B and any i ∈ [k],
it holds that

Pr
h
〈S

B(x,y)
i (x, ǫ′, c), V 〉(x) = 1

i

≥ Pr
h
〈eSB(x,y)

i (x, ǫ′, c), V 〉(x) = 1
i
− 1

nc

We proceed to show that the success probability of eSB
i is

not too far from the success probability of bSB
i .

Algorithm 4 : bSB
i (rq)

1: Let (c1, . . . , ck) be the output of B when fed the mes-
sages in rq , i.e. (c1, . . . , ck)← B(rq).

2: if rq is a complete history then

3: Externally forward ci and halt.
4: else

5: Externally forward ci and let r be the message exter-
nally received.

6: Pick the extension sq+1 of rq ; r on which bSB
i on input

sq+1 wins with highest probability.

7: Run bSB
i (sq+1).

Figure 4: Description of the machine bSi

Step 3: Defining eB Note that since eSi (just as Si) only
uses a polynomial number of samples to determine what ex-
tension to pick, we can never expect it to find the actual

best extension (as bSi does). To make the game more fair,

we instead compare the success probability of eSB
i , with the

success probability of bSi when executed on a “hybrid” cheat-

ing prover eB. eB will proceed exactly as B, except that it
will abort when fed views on which its success probability is

“too” high. We show that eB can be defined in such a way

that 1) the success probability of eB is still “high enough”,

yet 2) the success probability of eSB
i is “close” to the success

probability of bS eB
i .

We proceed to formally defining the (computationally un-

bounded) prover eB. Towards this goal we start by introduc-
ing some additional notation.

Given a length q history h = rq, we denote by Hi(r
p; r)

a subset of the valid i-extensions of rq; r that contains the
ǫ′

nc fraction of extensions, on which eSi has the highest prob-
ability of winning, where ǫ′ is the success probability of B.
The extensions in Hi(r

p; r) are called strong (as these are

the “best” extensions for eSi) and the remaining ones weak.

We define H(rq−1) =
[

i∈[k],r∈{0,1}n

Hi(r
q−1; r).

We next proceed to defining eB. At a high level, all that
eB does, is to abort whenever it receives a strong view. For-

mally, at any stage if rq ∈ H(rq−1), then eB returns ⊥ and
terminates the protocol (we here assume without loss of gen-
erality that the honest verifier V always rejects whenever it
receives the ⊥ symbol).

We have the following claims:

Claim 3. Let B be an interactive machine such that

Pr
h
〈B(y), Vk〉 (x) = 1

i
≥ ǫ′

Then

Pr
h D
eB(y), Vk

E
(x) = 1

i
≥ ǫ′

“
1−

km

nc

”

Claim 4. For any interactive machine B and any i ∈ [k],
it holds that

Pr
h
〈eSB(x,y)

i (x, ǫ′, c), V 〉(x) = 1
i

≥ Pr
h
〈bS eB(x,y)

i (x, ǫ′, c), V 〉(x) = 1
i
− e−n

The first of these claims follows from a simple counting ar-
gument. The proof of the second claim is more complex;

however, on a high-level it will follow from the fact that eSB

with high probability will “hit” a strong extension, and thus

will perform better than bS eB .

Step 4: Putting it all together In the above steps we
have thus provided a lower bound on the success probabil-
ity of SB

i for the best coordinate i. It only remains to lower
bound the success probability of SB . Recall that S estimates
the success probability of Si for each i, and then executes
the Si which obtained the highest estimate. We finally show
(again applying the Chernoff bound) that the success prob-
ability of S, will not be far from the success probability of
Si for the actual best i.

5. PROOF OF MAIN THEOREM
In this section, we provide the details of the proof of the

main theorem. We start by proving the claims stated in
Section 4. Next, we conclude the proof given these claims.

In the remainder of the proof we focus on inputs x, ǫ′, c
for S. To simplify notation, we omit these inputs to S (e.g.,
we assume that they are hardcoded in S). We also assume
that the argument system (P, V) has 2m rounds, for some
fixed constant m. We start by providing some additional
notation that will by used throughout the proof.

Additional Notation Let wini[M
B , h] denote the proba-

bility that machine M with oracle access to B wins in its
external execution with V , if 1) starting from history h, and
2) using coordinate i for forwarding messages to the external
V . It follows immediately from the definition that

wini[M
B , rq] = E

h
r ← {0, 1}n : wini[M

B , rq; r]
i

since the verifier picks a random string r independent of the
history rq , and the probability of MB winning from history
rq; r is wini[M

B , rq; r]. Thus,

wini[M
B , rq] =

1

2n

X

r∈{0,1}n

wini[M
B , rq ; r]

We will also let win[B, rp] denote the probability that
prover B wins in (B, V k) on a given history rp. Before
proving the theorem, we show the following a simple obser-
vation which will be useful in the proof of Claim 2 and the
conclusion of the theorem (in Section 5.2).

An observation on sampling Suppose we have n events
with probabilities y1, . . . , yn respectively. Given n “good”
estimates x1, . . . , xn of the true probabilities y1, . . . , yn, we
wish to select the event i∗ with the highest true probabil-
ity. The following simple observation states that if simply
selecting the event i′ that has the highest estimate yi′ , it
holds that the true success probability xi′ of i′ is “close” to
the success probability xi∗ of the optimal event i∗.

Observation 1. Consider any two sequences, X =
(x1. . . . , xn) and Y = (y1, . . . , yn) such that for all i ∈ [n],

|xi − yi| < δ. Then, for i′ = argmaxi{xi} it holds that
yi′ ≥ maxi{yi} − 2δ.

Proof: We are given that |xi − yi| < δ for all i. Hence, for
all i we have that

xi ≥ yi − δ and yi ≥ xi − δ

Thus,

yi′ ≥ xi′−δ = max
i
{xi}−δ ≥ max

i
{yi−δ}−δ = max

i
{yi}−2δ

5.1 Proof of Claims
We first restate the claims with the notation described in

the beginning of this section, and next proceed to proving
them.

kY

i=1

wini[bSB
i , ·] ≥ win[B, ·] (Claim 1)

wini[S
B
i , ·] ≥ wini[eSB

i , ·]−
1

nc
(Claim 2)

wini[eSB
i , ·] ≥ wini[bS

eB
i , ·]− e−n (Claim 4)

5.1.1 Proof of Claim 1
We start by giving some intuition to this claim. Consider

a prover Q that for each i, behaves like bSB
i in coordinate

i. This new prover Q behaves independently in each coordi-
nate, and hence the probability it wins in all coordinates isQk

i=1 wini[bSB
i , ·]. The claim says that the success probabil-

ity of Q is at least the success probability of B. Informally,

this holds since bSB
i does the best it can do in coordinate

i with unbounded computation using complete information
about B.

We proceed to a formal treatment by induction on the
length of histories, starting at length m and ending at length

1. Given any history rq , we show that
Qk

i=1 wini[bSB
i , rq] ≥

win[B, rq].

Base case: q = m Given a complete view rm, bSB
i wins in

coordinate i, if B wins in all coordinates, i.e. wini[bSB
i , rm]

is 1, if win[B, r̄(m)] = 1. Therefore,
Qk

i=1 wini[bSB
i , rm] ≥

win[B, rm].

Induction step Assume that the induction hypothesis
holds for all length q histories. We show that it also holds
for q− 1 length histories. Let rq−1 be a q− 1 length history.
It holds that

kY

i=1

wini[bSB
i , rq−1] =

kY

i=1

0
@ 1

2n

X

si∈{0,1}n

wini[bSB
i , rq−1; si]

1
A

We expand this as a sum of product terms. Since every

term can be expressed as
Qk

i=1 wini[bSB
i , rq−1; si], where for

each i, si ∈ {0, 1}n, we get

kY

i=1

0
@ 1

2n

X

si∈{0,1}n

wini[bSB
i , rq−1; si]

1
A

=
1

2nk

X

s1,...,sk∈{0,1}n

kY

i=1

wini[bSB
i , rq−1; si]

!

Since bS eB
i always finds the best extension to any history

rq−1; si, it holds that for all s1, . . . , sk ∈ {0, 1}n,

wini[bSB
i , rq−1; si] ≥ wini[bSB

i , rq−1; (s1, . . . , sk)]

Therefore,

1

2nk

X

s1,...,sk∈{0,1}n

kY

i=1

wini[bSB
i , rq−1; si]

!

≥
1

2nk

X

s1,...,sk∈{0,1}n

kY

i=1

wini[bSB
i , rq−1; (s1, . . . , sk)]

!

Since, by the induction hypothesis, the following holds for
every q-length history sq

kY

i=1

wini[bSB
i , sq] ≥ win[B, sq]

it follows that

kY

i=1

wini[bSB
i , rq−1]

≥
1

2nk

X

s1,...,sk∈{0,1}n

win[B, rq−1; (s1, . . . , sk)]

= win[B, rq−1]

This concludes the induction step and the proof of the claim.

5.1.2 Proof of Claim 2
We will show by induction that for all q, rq and rq−1; r,

wini[S
B
i , rq] ≥ wini[eSB

i , rq]−
1

4qnc

wini[S
B
i , rq−1; r] ≥ wini[eSB

i , rq−1; r]−
1

4q−1nc

Base case: q = m Given a complete view rm, both SB
i

and eSB
i win exactly when B wins on rm in coordinate i.

Therefore, the base case is true.

Induction step There are two parts to proving the induc-
tion step: either the history is of the form rq, or of the form
rq−1; r. First, consider the case when h = rq is the history
at a verifier-step. By the induction hypothesis, for every r
we have that

wini[S
B
i , rq; r] ≥ wini[eSB

i , rq; r]−
1

4qnc

From the definition we know that,

wini[S
B
i , rq] =

1

2n

X

r∈{0,1}n

wini[S
B
i , rq ; r]

Thus,

wini[S
B
i , rq] ≥ wini[eSB

i , rq]−
1

4qnc

Next, consider the case when h = rq−1; r is the history at
a prover-step. We, here, need to compare the probabilities

wini[S
B
i , rq−1; r] and wini[eSB

i , rq−1; r]. Recall that both SB
i

and eSB
i pick M samples that are extensions of rq−1; r. Given

these M samples, eSB
i chooses the sample which maximizes

its probability of winning. On the other hand, since SB
i is

computationally bounded, it cannot efficiently find the one

that maximizes its success probability; instead it estimates
the success probability in each of these samples by sampling
and then chooses the one that has the maximum estimate.
Given an extension sq of rq−1; r, let the random variable
est[SB

i](sq) denote the estimate computed by SB
i on sq. We

have,

wini[S
B
i , rq−1; r] =

1

2(k−1)nm
×

X

sz
q∈Exti(r

q−1 ;r)
1≤z≤M

E
h
j′ ← argmax

j
{est[SB

i](sj
q)} : wini[S

B
i , sj′

q]
i

wini[eSB
i , rq−1; r] =

1

2(k−1)nm
×

X

sz
q∈Exti(r

q−1;r)
1≤z≤M

max
j
{wini[eSB

i , sj
q]}

To show the induction step, it thus suffices to show that
given any set of samples (s1

q , . . . , sM
q),

E
h
j′ ← argmax

j
{est[SB

i](sj
q)} : wini[S

B
i , sj′

q]
i

≥ max
j
{wini[eSB

i , sj
q]} −

1

4q−1nc
(1)

By the induction hypothesis it follows that for every j,

wini[S
B
i , sj

q] ≥ wini[eSB
i , sj

q]−
1

4qnc

Therefore,

max
j
{wini[S

B
i , sj

q]} ≥ max
j
{wini[eSB

i , sj
q]} −

1

4qnc
(2)

Below we will show that,

E
h
j′ ← argmax

j
{est[SB

i](sj
q)} : wini[S

B
i , sj′

q]
i

≥ max
j
{wini[S

B
i , sj

q]} −
3

4qnc
(3)

Thus, combining equations (2) and (3) we prove equation
(1) and the induction step follows. We proceed to showing
equation (3).

Recall that for each sample sj
q, SB

i picks Mq samples to
compute est[SB

i](sj
q). By construction,

E[est[SB
i](sj

q)] = wini[S
B
i , sj

q]

We say that an estimate X for sj
q is ”good”, if

˛̨
˛X − wini[S

B
i , sj

q]
˛̨
˛ ≤ 1

4qnc

Otherwise we call the estimate X ”bad” for sj
q . We now

analyze the expectation when all the estimates are ”good”.
It follows by Observation 1 that

E
h
j′ ← argmax

j
{est[SB

i](sj
q)} : wini[S

B
i , sj′

q]
˛̨
˛

∀j est[SB
i](sj

q) is ”good” for sj
q
i

≥ E
h
max

j

n
wini[S

B
i , sj

q]−
2

4qnc

o˛̨
˛

∀j est[SB
i](sj

q) is ”good” for sj
q
i

= max
j
{wini[S

B
i , sj

q]} −
2

4qnc
(4)

We show that except with “small” probability, for any j, the
estimate est[SB

i](sj
q) is ”good” for sj

q. In fact, it directly
follows by the Chernoff bound that

Pr[est[SB
i](sj

q) is ”bad” for sj
q] ≤ 2

−
Mq

n2c42q .

Using the union bound,

Pr[∀j est[SB
i](sj

q) is ”good” for sj
q]

≥ 1−M · 2
−

Mq

n2c42q ≥ 1−
1

4qnc
(5)

where the last inequality follows since Mq =
⌈42qn2c log (4qncM)⌉. Therefore, by expanding the left hand
side of equation (3) we get

E
h
j′ ← argmax

j
{est[SB

i](sj
q)} : wini[S

B
i , sj′

q]
i

≥ E
h
j′ ← argmax

j
{est[SB

i](sj
q)} : wini[S

B
i , sj′

q]
˛̨
˛

∀j est[SB
i](sj

q) is ”good” for sj
q
i

×Pr[∀j est[SB
i](sj

q) is ”good” for sj
q]

≥
h
max

j
{est[SB

i](sj
q)} −

2

4qnc

i
×
“
1−

1

4qnc

”

using (4) and (5)

≥ max
j
{est[SB

i](sj
q)} −

3

4qnc

This concludes the proof of equation (3) and the induction
step. Returning to the original claim, we have that

Pr
h
〈S

B(x,y)
i (x, ǫ′, c), V 〉(x) = 1

i
= wini[S

B
i , ·]

≥ wini[eSB
i , ·]−

1

40nc

= Pr
h
〈eSB(x,y)

i (x, ǫ′, c), V 〉(x) = 1
i
−

1

nc

5.1.3 Proof of Claim 3
Recall that prover eB acts exactly as prover B on all histo-

ries that are weak. On the other hand, on strong histories, eB
returns ⊥ and thus by our assumption on the proof system

(P, V), eB always loses. Consequently, to compare the suc-

cess probabilities of B and eB, we upper bound the fraction
of histories that are strong.

First, we determine the fraction of strong histories (or
correspondingly weak histories) for a coordinate i. For any
weak history, the fraction of extensions that are weak is 1−
ǫ′

nc = 1−α (where α = ǫ′

nc). The overall fraction of histories
that are weak is thus, (1 − α)m. Therefore, the fraction of
histories that are strong for coordinate i is 1−(1−α)m ≤ mα.

Using union bound, the total fraction that are strong for
all coordinates is at most kmα. Thus,

Pr
h D
eB(y), Vk

E
(x) = 1

i
≥ Pr

h
〈B(y), Vk〉 (x) = 1

i
− kmα

= ǫ′
“
1−

km

nc

”

5.1.4 Proof of Claim 4
We will show by induction that eS loses at most by (1−α)M

in each prover-step, where α = ǫ′

nc , i.e., for all q, rq and

rq−1; r,

wini[eSB
i , rq] ≥ wini[bS eB

i , rq]− (m− q)(1− α)M

wini[eSB
i , rq−1; r]

≥ wini[bS eB
i , rq−1; r]− (m− q + 1)(1− α)M

Base case: q = m At the final verifier-step, either the

verifier accepts or rejects. Given a complete history rm, we

know that eSB
i wins whenever B wins in coordinate i on rm

and bS eB
i wins whenever eB wins in coordinate i on rm. Since

eB is strictly a weaker prover than B, the base case follows.

Induction step As in Claim 2, there are two parts to
proving the induction step: either the history if of the form
rq, or of the form rq−1; r. We first consider the case when
h = rq is the history at a verifier-step. The induction step in
this case follows exactly as in Claim 2. Next, we consider the
case when h = rq−1; r, is history at a prover-step. Towards
the goal of proving the induction step, we show that for any
weak extension sq of rq−1; r, the following holds.

wini[eSB
i , rq−1; r] ≥ wini[eSB

i , sq]− (1− α)M

Intuitively, this follows since except with small probability
eSB

i on input rq−1; r finds a strong extension. We proceed to
a formal proof.

Recall that in a prover-step, eSB
i samples M extensions of

(rq−1; r). Among the M samples, eSB
i picks the extension

that maximizes its probability of winning. Since, sq is a

weak extension, eSB
i on rq−1; r will succeed with probability

at least wini[eSB
i , sq], if any of the M samples of eSB

i hits
a strong extension (since by definition of strong extensions,

the success probability of eSB
i on strong extensions is at least

as high as on any weak extension). We call the set of M
samples ”good” if at least one of the samples hits a strong
extension, and ”bad” otherwise.

We proceed to show that the probability of a random
sample-set being ”bad” is small. Recall that, the fraction of
extensions that are strong is α. Hence, the probability that
none of the samples hit a strong extension is ≤ (1− α)M .
By the union bound,

Pr [eSB
i loses on rq−1; r]

≤ Pr[eSB
i loses |eSB

i picks a ”good” sample-set]

+Pr[eSB
i picks a ”bad” sample-set]

≤ 1− wini[eSB
i , sq] + (1− α)M

Thus,

wini[eSB
i , rq−1; r] = 1− Pr[eSB

i loses on rq−1; r]

≥ wini[eSB
i , sq]− (1− α)M

≥ wini[bS
eB

i , sq]− (m− q)(1− α)M − (1− α)M

= wini[bS
eB

i , sq]− (m− q + 1)(1− α)M

where the second inequality follows by the induction hypoth-
esis. Since, this is true for any weak extension sq of rq−1; r,
and in particular it holds for the weak extension that maxi-

mizes the probability of bS eB
i winning, we have that

wini[eSB
i , rq−1; r]

≥ wini[bS eB
i , rq−1; r]− (m− q + 1)(1− α)M

This concludes the induction step. Recall that, M = 2nc+1

ǫ′
=

2n 1
α

> (n + log m) 1
α
. Therefore, we have

Pr[〈eSB(x,y)
i (x, ǫ′, c), V 〉(x) = 1]

≥ Pr[〈bS eB∗(x,y)
i (x, ǫ′, c), V 〉(x) = 1]−m(1− α)M

≥ [〈bS eB∗(x,y)
i (x, ǫ′, c), V 〉(x) = 1]− e−n

5.2 Proof of Theorem 1
Using Claims 1 and 3 we get that

kY

i=1

Pr
h
〈bS eB(x,y)

i (x, ǫ′, c), V 〉(x) = 1
i
≥ ǫ′

“
1−

km

nc

”

Since each of the factors in the product is positive (as they
are all probabilities), it holds that at least one of factors

must be ≥
h
ǫ′
“
1 − km

nc

”i 1
k
. Thus, there exists an i∗ such

that

Pr
h
〈bS eB(x,y)

i∗ (x, ǫ′, c), V 〉(x) = 1
i
≥
h
ǫ′
“
1−

km

nc

”i 1
k

It follows from Claims 2 and 4 that

Pr
h
〈S

B(x,y)
i∗ (x, ǫ′, c), V 〉(x) = 1

i
≥
h
ǫ′
“
1−

km

nc

”i 1
k
−e−n−

1

nc

i.e.,

wini∗ [SB
i∗ , ·] ≥

h
ǫ′
“
1−

km

nc

”i 1
k
−

1

nc
− e−n (6)

Recall that in the preprocessing phase, SB estimates the
success probability of SB

i for all i, and chooses the one with
the highest estimate. The estimate for i is denoted by the
random variable est[SB

i]. An estimate Xi is called ”good”,
if

˛̨
˛Xi − wini[S

B
i , ·]

˛̨
˛ ≤ 1

nc

and ”bad” otherwise. When all the estimates are ”good”, it
follows by Observation 1 that

E
h
i′ ← argmax

i
Xi : wini′ [S

B
i′ , ·]

˛̨
˛∀i Xi is ”good”

i

≥ E
h
max

i

n
wini′ [S

B
i′ , ·]−

2

nc

o˛̨
˛∀i Xi is ”good”

i

= max
i
{wini′ [S

B
i′ , ·]} −

2

nc
(7)

We now show that except with ”small” probability for all i
estimate Xi is ”good”. It follows from the Chernoff bound
that,

Pr[Xi is ”bad”] ≤ 2
− N

n2

By applying the union bound and recalling that N = n3 ≥
n2 log (knc), we get

Pr[∀i Xi is ”good”] ≥ 1− k · 2
− N

n2 ≥ 1−
1

nc
(8)

We conclude that

Pr
h
〈SB(x,y)(x, ǫ′, c), V 〉(x) = 1

i

= E
h
i′ ← argmax

i
{est[SB

i]} : wini′ [S
B
i′ , ·]

i

≥ E
h
i′ ← argmax

i
{est[SB

i]} : wini′ [S
B
i′ , ·]

˛̨
˛∀i est[SB

i] is ”good”
i

×Pr[∀i est[SB
i] is ”good”]

≥
h
max

i
{wini′ [S

B
i′ , ·]} −

2

nc

i“
1−

1

nc

”

using (7) and (8)

≥ max
i
{wini′ [S

B
i′ , ·]} −

3

nc

≥ wini∗ [SB
i∗ , ·]−

3

nc

≥
h
ǫ′
“
1−

km

nc

”i 1
k
− e−n −

4

nc
using (6)

Running time analysis: We first determine the number
of oracle queries made by SB

i . Let T (q) be the number of
oracle queries made by SB

i on any history rq of length q.
Recall that, SB

i on rq , first makes an oracle query (see step
(1) in Figure 2). Then, it samples M extensions of rq . For
each sample sj

q+1 (all of which are of length q + 1), it runs
SB

i recursively on sj
q+1, Mq+1 times. Finally, in the last

step, it runs SB
i on a history of length q +1. Thus, the total

number of recursive calls made on histories of length q +1 is
MMq+1 + 1. Therefore, including the first oracle query the
total number of queries made by SB

i on a history of length
q is given by,

T (q) = 1 + (MMq+1 + 1)T (q + 1)

Since, M > 2 it follows that

T (q) ≤ 2MMq+1T (q + 1) ≤ (2M)m−q
mY

j=q+1

Mj

We now analyze the number of oracle queries made by bS eB .
There are two phases: the preprocessing and the execution
phase. In the preprocessing phase, SB runs SB

i (on the
empty history) N times for every i. Hence the number of or-
acle queries in this phase is kN ·T (0) ≤ kN(2M)mM1 · · ·Mm.
In the execution phase, SB runs SB

i (again on the empty
history) for a particular i. Therefore, the number of oracle
queries in this phase is T (0) ≤ (2M)mM1 · · ·Mm. We con-
clude that the total number of oracle queries made by SB is
upper bounded by

(1 + kN)(2M)mM1 · · ·Mm

Recall that Mq = ⌈42qn2c log (4qncM)⌉, N = n3 and M =
2nc+1

ǫ′
. Since, the oracle B runs in time polynomial in |x| and

n, we have that the total running time of SB is polynomial
in |x|, 1

ǫ′m
, nc and nm.

Acknowledgements
We wish to thank Moni Naor for suggesting this problem to
us (a few years back), and Douglas Wikström, for a conver-
sation which reminded us of it.

6. REFERENCES
[1] L. Babai and S. Moran. Arthur-Merlin games: A

randomized proof system, and a hierarchy of complexity
classes. JCSS, Vol. 36, pages 254–276, 1988.

[2] M. Bellare, R. Impagliazzo and M. Naor. Does Parallel
Repetition Lower the Error in Computationally Sound
Protocols? In 38th FOCS, pages 374–383, 1997.

[3] M. Bellare and O. Goldreich. On Defining Proofs of
Knowledge. In CRYPTO ’92, pages 390-420,1993.

[4] M. Blum. How to prove a Theorem So No One Else Can
Claim It. Proc. of the International Congress of
Mathematicians, Berkeley, California, USA, pages
1444-1451, 1986.

[5] G. Brassard, D. Chaum and C. Crépeau. Minimum
Disclosure Proofs of Knowledge. JCSS, Vol. 37, No. 2, pages
156–189, 1988. Preliminary version by Brassard and
Crépeau in 27th FOCS, 1986.

[6] R. Canetti and S. Halevi and M. Steiner. Hardness
Amplification of Weakly Verifiable Puzzles. In 2nd TCC,
Springer LNCS 3876, pages 17-33, 2005.

[7] O. Goldreich and R. Impagliazzo and L. A. Levin and
R. Venkatesan and D. Zuckerman. Security Preserving
Amplification of Hardness. In 31th FOCS, pages 318-326,
1990.

[8] M. Ben-or and S. Goldwasser and J. Kilian and
A. Wigderson. Multi Prover Interactive Proofs: How to
Remove Intractability. In 20th STOC, pages 113-131, 1988.

[9] U. Feige and A. Fiat and A. Shamir. Zero-Knowledge Proofs
of Identity. In J. Cryptology, 1(2), pages 77-94, 1988.

[10] U. Feige and J. Kilian. Two prover protocols: low error at
affordable rates. In 26th STOC, pages 172-183, 1994.

[11] L. Fortnow and J. Rompel and M. Sipser. On the power of
multi-prover interactive protocols. In Theor. Comput. Sci.,
134(2), pages 545-557, 1994.

[12] U. Feige and A. Shamir. Zero Knowledge Proofs of
Knowledge in Two Rounds. In Crypto89, Springer LNCS
435, pages. 526–544, 1989.

[13] O. Goldreich. Foundations of Cryptography – Basic Tools.
Cambridge University Press, 2001.

[14] O. Goldreich and H. Krawczyk. On the composition of
Zero-Knowledge Proof Systems. SIAM Journal on
Computing, Vol. 25(1), pages 169–192, 1996.

[15] S. Goldwasser and S. Micali. Probabilistic Encryption.
JCSS, Vol. 28, No 2, pages 270-299, 1984.

[16] S. Goldwasser, S. Micali, and C. Rackoff. The knowledge
complexity of interactive proof-systems. In STOC 85, pages
291–304, 1985.

[17] S. Goldwasser, S. Micali and C. Rackoff. The Knowledge
Complexity of Interactive Proof Systems. SIAM Jour. on
Computing, Vol. 18(1), pp. 186–208, 1989.

[18] S. Goldwasser, S. Micali and R.L. Rivest. A Digital
Signature Scheme Secure Against Adaptive Chosen Message
Attacks. SIAM Jour. on Computing, Vol. 17, No. 2, pp.
281–308, 1988.

[19] S. Goldwasser, S. Micali and A. Wigderson. Proofs that
Yield Nothing But Their Validity or All Languages in NP
Have Zero-Knowledge Proof Systems. JACM, Vol. 38(1), pp.
691-729, 1991.

[20] K. Pietrzak and D. Wikström. Parallel Repetition of
Computationally Sound Protocols Revisited. To appear in
TCC 2007.

[21] R. Richardson and J. Kilian. On the Concurrent
Composition of Zero-Knowledge Proofs. Eurocrypt 99,
Springer LNCS 1592, pages 415-431, 1999.

[22] R. Raz. A parallel repetition theorem. In 27th STOC, pages
447-456, 1995.

[23] M. Tompa, H. Woll. Random Self-Reducibility and Zero
Knowledge Interactive Proofs of Possession of Information.
In 28th FOCS, pages 472–482, 1987.

[24] A. Yao. Theory and Applications of Trapdoor Functions. In
23th FOCS, pages 80-91, 1982.

