
Trusted CVS

Muthuramakrishnan Venkitasubramaniam Ashwin Machanavajjhala David Martin
Johannes Gehrke

Department of Computer Science, Cornell University
{vmuthu,mvnak,djm,johannes}@cs.cornell.edu

Abstract

The CVS (Concurrent Versions System) software is a
popular method for recording modifications to data objects,
in addition to concurrent access to data in a multi-user en-
vironment. In current implementations, all users have to
trust that the CVS server performs all user operations as
instructed. In this paper, we develop protocols that allow
users to verify that the server has been compromised, and
that it has performed exactly the users’ operations on the
data. We first show that communication between users is
necessary to guarantee that users can detect that the server
has been compromised. We then propose efficient proto-
cols that fast enable detection of server integrity under CVS
workloads. Our techniques also have applications in the
outsourcing model where multiple users own a common
database maintained by an untrusted third-party vendor.

1 Introduction

The Concurrent Versions System (CVS) is a popular
method for recording modifications to data objects, espe-
cially for large software development projects. In current
implementations, the data objects are stored and maintained
on a CVS server which provides concurrent read and update
access to the data to multiple users. However, current im-
plementations of the system require the users to completely
trust the CVS server. However, a malicious server can dis-
rupt the functioning of the CVS by violating the integrity
and the availability of the system in two ways:

• Single-User Integrity Violation: A malicious CVS
server can modify data even though the user did not
request the server to make any updates.

• Single-User Availability Violation: A malicious CVS
server may not perform a data update even though the
user has submitted a data update.

There are existing solutions which can detect integrity and
availability violations such as certificate revocation [6]and

authenticated data publishing [2] which involve untrusted
servers. In both these solutions, data is stored in an un-
trusted server and multiple users read from this server. The
data is stored in anauthenticated data structureusing which
the untrusted server can prove to the users that integrity
and availability are not violated [2]. For instance, in the
certificate revocation case, the user can verify that the un-
trusted server has neither maliciously revoked some certifi-
cates nor neglected to report any of the revoked certificates.
These protocols support multiple users who can read the
data, however there is only one user, the data owner, who
can update the data on the server.

In systems where multiple users can update files, like in
the case of CVS, a malicious server can violate availability
even when each user believes that the server has not ne-
glected any of their updates to the data.

• Multiple-User Availability Violation: The CVS server
can make one set of users believe that the other users
are not modifying any files.

In this paper we propose protocols which enable detec-
tion of integrity and availability violations by an untrusted
server when multiple users can modify the data on the un-
trusted server. Our solutions will be geared towards con-
structing a trusted CVS system. Our techniques, however,
have wide applicability to any scenario where a common
database which is maintained by an untrusted server oper-
ated upon by several clients.

Desiderata for Trusted CVS Protocols.Let us first dis-
cuss some desiderata for the solutions we are interested in.
First, we want our protocols to be able to detect integrity
and availability violations as soon as possible in order to
limit the amount of rollback that might be necessary. More
specifically, we want to be able to formally bound (by some
metric) how long it takes to detect a violation. In partic-
ular, we will use both time and the number of operations
performed after the violation as metrics in our protocols.
Second, to be applicable to the CVS context, we require the
protocol to be able to detect violations even when the users
are inactive for arbitrarily long periods of time. Third, we

1

want the users to be able perform any operations on the data
at the server with only a minimum overhead due to any over-
head involved by our protocols compared to a traditional
CVS system. Fourth, we want all messages either to be sent
to or be received from the server; i.e., we want only minimal
external communication among the users. External commu-
nication requires synchronization between users that is hard
to obtain for CVS users. Fifth and last, we want protocols
that do not require much resources at the users, and thus we
require that the amount of state maintained by each user is
bounded by a small constant amount of memory.

Our Approach. Let us shortly survey our approach to
building a trusted CVS.

We model an untrusted CVS by investigating how differ-
ently it behaves from a CVS executing on a trusted server.
We say that the untrusted CVS server hasdeviatedif the
users do not receive query results identical to the results re-
turned when using a trusted server. Intuitively, a deviation
from correct behaviour implies that either integrity or avail-
ability has been violated. Our aim is then to design pro-
tocols where users trust each other and can detect deviant
behaviour of the server. In particular, we are interested in
the case where deviant behavior can be detected within the
time that some user performsk further updates on the data.
Such a protocol is said to posses the property ofk-bounded
deviation detection(Section 2.2.1). We model the activity
of users using the concept of aworkloadand require our
protocols to permit workloads wherein users can be offline
for long periods of time. We formulize the requirement that
our protocol for the untrusted server does not impose too
large an overhead for carrying out user operations on the
data as compared to a trusted server using the concept of
bounded workload preservation. In Section 2, we give for-
mal definition of these properties.

Under the assumptions that the CVS server completes
every transaction in bounded time, and that the users are
partially synchronous (i.e., their local clocks do not drift
arbitrarily), we show in Section 3 that in the absence of
communication between users, there is no protocol which
guarantees bounded deviation detection, bounded workload
preservation, and permits typical CVS workloads.

Section 4 contains our main contributions. We propose
efficient protocols for implementing a CVS on an untrusted
server while guaranteeingk-bounded deviation detection.
In the first two protocols, we assume that there is a broad-
cast channel between the users. The third protocol does
not assume existence of external channels of communica-
tion, but restricts the kind of workloads allowed — every
user needs to perform at least two operations everyt time
units. The idea behind the first two protocols is that every
user verifies that the CVS server has performed a correct
state transition while performing an operation, and once ina
while the users synchronize using the broadcast channel to

check that state transitions can be pieced together to form
a single correct execution. The third protocol simulates a
broadcast channel using the untrusted server; this is possi-
ble since every user is guaranteed to perform at least two
operations every once a while. To the best of our knowl-
edge, these three protocols are the first feasible protocolsfor
implementing multi-user data management on an untrusted
server efficiently.

We describe related work in Section 5 and we conclude
in Section 6.

In closing this introduction, we would like to point out
in this preliminary work we exclude all types of failures —
for example, unreliable message delivery or crashes of the
users or the server. Failures are outside the scope of this
paper, and we leave extensions of our protocols to this case
to future work.

2 Formalisms

In this section we adopt the framework for multi-agent
systems from the book by Halpern et al [3] to formally
model our system. In Section 2.1, we describe the basic sys-
tem model. In Section 2.2 we define the protocol desiderata.

2.1 System Model

In a CVS system, there aren + 2 agents, namely, the
CVS database server, then users, and the environment. At
all times, each agent is associated with alocal state. The
local state of the CVS server includes the data stored at the
server. The local state of the users may include the history
of modifications requested by the user. The local state of
the environment includes the global clock (which the other
agents may or may not have an access to), information about
messages in transit and everything else that is relevant to the
system. A global state is the(n + 2)-tuple of local states.
The global state describes the system at any given point in
time.

The state of the system is constantly changing over time.
A run of the multi-agent system intuitively represents a pos-
sible execution sequence of agents in that system. A run is a
function from time to global states. A pair(r, m) consisting
of a runr and timem is called apoint. r(m) denote the state
of the system at that point. The time here co-incides with
the global clock maintained by the environment. Global
states change as a result of actions. Actions are performed
in rounds– roundm takes place between timem − 1 and
timem. An agent is said toknowa fact at some point(r, m)
if the fact is true at all points in the system where the agent’s
local state is the same as its local state at(r, m).

Synchrony: An agents local clock is said to “tick” ev-
ery time its local state changes. An agent’s local clock
might be slower than the global clock in the environment.

2

While it is unreasonable to assume that all the users and the
server share the same clock as the environment (perfect syn-
chrony), it is usually not the case that the local clocks are
arbitrarily slower than the global clock (asynchrony). Par-
tial synchrony is a reasonable middle ground. We assume
p-partial synchronywhere every user’s local state changes
at least once everyp rounds.

Communication: We do not explicitly model messages
in our system. Instead, message sent and received by the
agents can be modeled by appropriate changes to the lo-
cal states of the sender and the receiver. We assume lo-
cal states of the users and the CVS server accommodate
message queues from which messages are handled in order.
We assume that messages are not lost and are delivered in
bounded time. Without loss of generality, we only consider
runs of the system where messages are delivered in a single
round.

CVS Operations: For simplicity of presentation we as-
sume that only two operations are allowed on the files on
the CVS server –checkout<file names> andcommit<file
names>. The operationcheckout<file names>, is a read
request which returns the current version of the files on the
CVS server. Thecommit<file names> operation commits
the changes made by the user in the files specified. To fur-
ther simplify the model (and to widen the applicability of
our result), we consider the CVS server as a database of
data items. The checkout operation is modeled as aread
request on the database. The commit operation is modeled
as anupdaterequest on the database.

CVS operations on a Trusted Server: We first model
CVS operations in a system with a trusted CVS server. CVS
operation requested by a user are called transactions. The
start and end of transactions are marked by aquery action
and aresponse action, respectively. The query action rep-
resents a message sent to the server requesting an operation
on the data. The response action models a message from the
server telling the user that the operation has completed and
returning results if any. For simplicity, we assume that at
most one query action occurs per round. The trusted CVS
server is assumed to execute the requested operations in a
serial order mirroring the order in which requests are re-
ceived. We assumeb⋆-bounded transaction time; i.e., the
response action corresponding to every query action occurs
within b∗ rounds.

Untrusted Server and Deviation: We now can model
our untrusted CVS system and formally express our goal.
An untrusted server can maliciously violate the integrity and
availability of the system. We model violations by the un-
trusted server using the concept of deviation between runs.
Intuitively, an untrusted server is acting maliciously if it
does not behave “similar” to the trusted system.

Definition 2.1 (Deviation) A prefix of a runr deviatesfrom
a runr′ if there is some prefix ofr′ such that:

1. The set of query and response actions that occur in
the prefix ofr is not identical to the set of query and
response actions that occur in the prefix ofr′, or

2. The order in which the query and response actions oc-
cur in the prefix ofr is different from the order in which
they occur in the prefix ofr′

We say thata runr deviates from a runr′ if some prefix ofr
deviates fromr′. We say that the untrusted serverdeviatesif
some run in the untrusted system deviates from all possible
runs in the trusted system.

The only difference between a runr which does not deviate
from a runr′ is that the time points at which the query re-
sponse events happen in the two runs can be different. We
will use this notion to define one of our desiderata, bounded
workload preservation, in Section 2.2.3.

We have now formally expressed the concept of devi-
ation. We can use this to formally express our goal – to
design protocols where users can detect if a run in the un-
trusted system deviates from all runs in the trusted system.

Workload : We need to define one more concept to en-
able us to compare the untrusted system with the trusted
system. Consider a runr in the trusted system which in-
volves a sequence of operations on the data at the server.
We call this sequence of operations on the data aworkload.
Any protocol specifies a set of possible runsR. We say
that a protocolpermitsa workload if there exists a run inR
wherein the operations on the data occur in the same order
as in the workload.

2.2 Protocol Desiderata

Not only do we want our protocols to enable the users
to detect deviation, we also want the protocol to have the
following desirable properties.
2.2.1 Bounded Deviation DetectionWe are interested in
protocols which enable users to detect that the untrusted
server has deviated from the trusted system preferably
sooner than later. In fact, we would like to bound the de-
tection delay in terms of the number of transactions that are
requested after the first deviation.

We say that the system exhibitsk-bounded deviation de-
tectionif for any runr in the untrusted system, if a prefix of
r of lengthm deviates from all runs in the trusted system,
then some user knows this fact before any user completes
more thank transactions that were initiated after roundm.
(Note that we are using the formal definition of user knowl-
edge from Section 2.)

We only require that some user realizes this fact (as op-
posed to requiring that the fact become common knowledge
amongst all users) because we assume that the first user to
detect deviation will leave the system at that point and use

3

an external mechanism (e.g. law enforcement) to broadcast
this information to all other users.

The motivation behind bounding delay this way is that no
user will lose more thank transactions after the server has
deviated. We could required a stronger condition – the pro-
tocol should enable deviation detection before anyk further
operations are performed on the data, and notk operations
per user. We only give protocol for the weaker requirement.

2.2.2 CVS Workloads Ideally, we would like the un-
trusted system to handle a variety of workloads typically
found in CVS applications. For example, we want our
system to guarantee bounded deviation detection in cases
where some users sleep (i.e., go offline) indefinitely since
this often seems to be the case with actual CVS users in real
life. Unfortunately, as we shall see in the next section, some
naturally occurring classes of workloads make it difficult or
even impossible for protocols to provide bounded deviation
detection.

2.2.3 Bounded Workload PreservationWe show a sim-
ple protocol which motivates the workload preservation re-
quirement. Consider a system with an untrusted server and
a single user. Techniques from authenticated data publish-
ing ensure that integrity and availability are not violated[2].
In these protocols, every time the data is modified by the
server (on a request by the data owner), the server returns a
verification objectback to the owner. The owner can use
this verification object to verify that single-user integrity
and availability violations have not occurred.

We can use a simple extension of this protocol for the
mutli-user case as follows. The protocol forces users to up-
date the data only at pre-specified time points (say, on the
hour) and only in a pre-specified order. All users know the
initial state of the data. The first user performs an update,
and verifies that the server has not deviated using the veri-
fication object. Then the user signs this verification object
and the update performed and stores it on the server. This
goes on in a token passing style cycling through the users.
If a user does not have an operation, a signature of a null
message is stored. Since the signatures are not forgeable,
and since users are guaranteed to store a signed object in
their turn, we have simulated the single user protocol. Thus
if the single user protocol can detect deviation, so can this
multi-user protocol.

We want protocols that permit any user to be able to do
anything in the untrusted system that she could do in the
trusted system, with only a reasonable delay in verification
overhead. In a workload where a user performs two oper-
ations in succession, the above protocol forces the user to
wait for all the other users to write null records to the server
before performing her second operations! We want to dis-
allow such protocols which drastically slow down certain
workloads, and we make this formal as follows.

We say that the system exhibitsc-workload preservation

if for each possible runr∗ in the trusted system there is some
runr in the untrusted system such that

1. runr does not deviate fromr∗, and

2. the number of rounds between any two events is at
most the number of rounds between those events in
r∗ plusc times the number of query and answer events
that occur between the two events. (Intuitively,c repre-
sents the overhead of integrity verification per ordinary
transaction.)

2.2.4 Absence of External CommunicationIn a CVS
system on a trusted server, all communication is only be-
tween the users and the server. There is no communication
between users. For an untrusted server, we also want proto-
cols that do not require communication between the users.
We call any communication between usersexternal commu-
nication.

More precisely, we say that a system hasno external
communicationif the local state of each user in roundm+1
is a function of the user’s local state in roundm and the mes-
sages received by the user from the server in roundm + 1,
in case there are any. This means that the local state of each
user is conditionally independent of the local states of the
other users given the state of the server. Hence, if the users
want to communicate with each other, they can do so only
through the server.

2.2.5 Bounded Local State with UsersWe want proto-
cols that bound the local state at each user by a small con-
stant amount of memory. This means, for example, that
the protocol should not expect the users to maintain the
complete history of the requests that they ever posed to the
server.

3 Necessity of External Communication

Though all the desiderata outlined in the previous sec-
tion are very reasonable and desirable, we will show in this
section that there is no protocol with all of these desider-
ata. More precisely, we show that in the absence of reliable
external communication, there is no protocol which permits
CVS workloads and guarantees bounded workload preser-
vation andk-bounded deviation detection.

To show the necessity of reliable external communica-
tion, we introduce a class of workloads which we callparti-
tionable workloads. These workloads are very reasonable
in a CVS system. We then show that there is no proto-
col which guaranteesk-bounded deviation detection and
bounded workload preservation, while permitting a parti-
tionable workload in the absence of reliable external com-
munication.

4

3.1 Partitionable Workloads

We motivate this class of workloads with an example.
Consider a code-base in CVS which is jointly edited by a
programmer in the US and a programmer in China. The
two programmers work quite independently. They work at
different times (due to the time difference) and on different
parts of the source code, occasionally changing some com-
mon header files. It is therefore quite reasonable to assume
that the programmer in the US changes a common header
file, sayCommon.h and goes offline. Before this program-
mer comes back up, the programmer in China might make
a change which is dependent onCommon.h. We call the
change made by the Chinese programmercausally depen-
denton the change made by the US programmer. The Chi-
nese programmer might go on to makek + 1 other changes
before the American comes back up. We describe such a
situation abstractly as follows.

We say that the systempermits unboundedly partition-
able workloadsif, for every numberk, there is a partition-
ing of users into setsA andB and two runsrA andrB in
the untrusted system and roundsm < mA < mB < m′

such that:

1. rA andrB have some common prefix up to roundm

(see Figure 1).

2. the prefix ofrA up tom′ does not deviate from some
run in the trusted system.

3. the prefix ofrB up tom′ does not deviate from some
run in the trusted system.

4. some transactiont2 in rB that gets issued and com-
pleted strictly between roundsmA andmB is causally
dependent on the existence of some transactiont1 in
rA that gets issued and completed strictly between
roundsm andmA, and

5. in rB, some user (inB) issues and completes at least
k + 1 transactions between roundsmB andm′

6. in rA, no user inB issues or completes any trans-
actions (neither operations nor verifications) between
roundsmA andm′

7. in rB , no user inA issues or completes any trans-
actions (neither operations nor verifications) between
roundsmA andm′

Under such a workload, an untrusted server can mount a
partitioning attack where the US programmer is led to be-
lieve that change toCommon.h (t1) has been completed
and the Chinese programmer is led to believe thatt1 did
not happen. This is illustrated in Figure 1 as runr. Runr

deviates from all possible runs in the trusted system. This

transaction by users in A
transaction by users in B

m’

m

Am

Bm

operations
includes k+1

by one user

run rrun r run rA B

t2 causally depends on t1

t1

{} }
common prefix

Figure 1. The Partition Attack

deviation and cannot be discovered until the US program-
mer comes up, by which time the other programmer has
performed more thank operations. Hence,k-bounded de-
viation cannot be guaranteed.

Theorem 3.1 If the untrusted system lacks external com-
munication, and permits unboundedly partitionable work-
loads, thenk-bounded deviation detection is not possible
for anyk.

The proof of this theorem is omitted due to space con-
straints.

4 Protocols

In this section, we present three protocols that guaran-
tee deviation detection. From Theorem3.1, we know that
there are no protocols that can guarantee bounded devi-
ation detection while at the same time permitting typical
CVS workloads without the use of external communication.
Our first protocol guarantees bounded deviation detection
while permitting less restrictive workloads by using exter-
nal communication. Our second protocol improves on the
first in efficiency. Finally, our third protocol guarantees de-
viation detection within bounded time (as opposed to within
a bounded number of operations) with no external commu-
nication, by restricting the permitted workload.

Before describing our protocols, we first describe the
data structure we will build upon to verify that the server
has not violated integrity – Merkle Trees [7].

5

4.1 Merkle Trees

A Merkle Tree [7] is a B+-tree with digests. In a B+-tree
[15], the leaf nodes of the tree contain data, and the internal
nodes contain keys and tree pointers. Each internal node has
up tom keys andm+1 pointers to children, wherem+1 is
the maximum permissible branching factor of the B+-tree.

In a Merkle Tree, each node also stores adigest. The
digest stored in a leaf node is the hash of the data stored at
that node. A collision intractable hash function, for example
as described in [2], is used. The digest stored in an internal
node is a hash of the concatenation of the digests of the
node’s children. Figure 2 shows a root to leaf path in a
Merkle Tree.N3 is a leaf node andN2, N1 denote internal
nodes.N1 has no parent node and hence is the root of the
tree.a, b, . . . , g denote digests. Digestsa, b andc are hashes
of values stored in nodeN3. Digestsd ande are the digests
stored at the siblings of nodeN3. The digests that will be
stored in each of the nodesN1, N2 andN3 are shown in
the table in the Figure 2. The hash of the root of this tree is
called theroot hash.

A change in any of the data values in the tree will change
the digests on the path from the corresponding leaf node to
the root node. For example, if a value in the nodeN3 is
updated, the digests atN3, N2 andN1 change; the other
parts of the tree are not affected. Assume that after the up-
date inN3, the new hashes ofN3’s data values area′, b and
c, respectively,, and if we knowd, e, f andg, then we can
recompute the digests along the path and thus compute the
new root hash. Since the height of the tree is bounded by
O(log n) and the number of siblings of any node is bounded
by a constantm, for a single update we only need to know
O(log n) other digests to recompute the root hash.

Since an insert or delete operation affects onlyO(log n)
elements of the B+-tree, given the operation (insert or
delete) and the digests of theO(log n) siblings of the af-
fected nodes, it is possible to recompute the root digest of
the Merkle Tree before and after the operation has been per-
formed usingO(log n) digests.

We now describe how the above schema enables a single
user to verify operations on the database. We assume that
the current root digestM is known to the user. Given an
update query,Q, the server returns the new root hash and
the digests of theO(log n) nodes required to compute the
old and new root digests. We call theseO(log n) digests
the verification object of updateQ, denoted byv(Q, D).
Usingv(Q, D), the user recomputes the old root digest and
verifies that it is equal toM. By doing so the user verifies
that the verification object returned by the server is correct.
The user then computes the new root digest of the tree and
compares it with the returned new root hash. This helps to
check if the update was performed correctly. Finally, the
user setsM to the new root digest to be ready to verify the

Node Digest
N3 h(a ‖ b ‖ c)
N2 h(N3 ‖ d ‖ e)
N1 h(N2 ‖ f ‖ g)

Figure 2. A path in a Merkle Tree

next operation.
We will use some notation from this section in the re-

maining discussion. We denote byM(D) the root digest of
the databaseD. Recall that given a queryQ, Q(D) repre-
sents the answer to the query and,v(Q, D), the verification
object for queryQ onD.

4.2 Protocol I

In this protocol, when a user submits a query, the server
is required to return a message containing a root digest
signed by the last user to perform an operation. The user
then verifies the signature, calculates the new root digest,
and returns a signed copy of it to the server. Thus, the user
verifies its operation on the database. Notice, however, that
this does not prevent a partition attack, where the server re-
turns an out-of-date signed root digest (see Section 3). Our
protocol therefore requires users to communicate everyk

operations in order to verify that the server produced the
current states for all operations. We now describe the pro-
tocol in detail.

We assume the existence of a public key infrastructure,
for example as in[4]; it is used to verify digital signatures.
We write sign i(x) for the result of useri signing message
x. In this protocol,

• The server maintains the count of number of opera-
tions performed on the database, denoted byctr .

• Useri maintains the count of the total number of oper-
ations it has performed, denoted bylctr i, and the last
value ofctr it has seen, denoted bygctr i.

At the beginning of the protocol,lctr i, gctr i andctr are ini-
tialized to0. We denote the initial state of the database by
D0. The root digest of the initial database state isM(D0),
and is assumed to be common knowledge. Some userj

6

Notation Description
Q(D) Answer to queryQ

v(Q, D) Verification object
ctr Total number of operations performed
j User with the most recent operation onD

sig sigj(M(D) ‖ ctr)

Table 1. Notation

is elected to signh(M(D0) ‖ 0) and send the result (i.e.,
signj(h(M(D0)‖0))) to the server. When any useri issues
a queryQ, the server returns(Q(D), v(Q, D), ctr , j, sig)
where,Q(D) is the answer to queryQ, v(Q, D) is the as-
sociated verification object, andsig = sigj(M(D) ‖ ctr)
is the root hash concatenated with the counterctr signed by
userj. Table 1 gives an overview of this notation.

Given the verification object,v(Q, D), the user can
computeM(D) and hence can also compute the value of
h(M(D) ‖ ctr). The user then verifies thatsig is indeed
h(M(D) ‖ ctr) signed by userj. We call such asig le-
gitimatebecause it cannot be forged by the server. Ifsig

is legitimate, the user increments its local operation count
lctr i, updatesgctr i = ctr + 1, computes the new root di-
gestM(D′), and sends a signed copy ofh(M(D′)‖ctr+1)
back to the server. Ifsig is not legitimate, the user termi-
nates and reports an error.

The first user to completek operations announces a
“sync-up” message on the broadcast channel. On receiv-
ing the “sync-up” message, all users broadcast their local
operation countslctr i after completing their current trans-
actions. Furthermore, they do not start a new transaction
between the “sync-up” message and broadcast. Useri re-
ports success ifgctr i =

∑
k lctrk. If all users report the

check unsuccessful, they terminate and report an error. If
the server is not malicious, there is some useri for whom
gctr i =

∑
k lctrk.

Theorem 4.1 Protocol I guarantees bounded deviation de-
tection and bounded workload preservation.

Proof (sketch): Given a legitimatesig (i.e., sig =
signj(h(M(D)‖ctr))), our assumptions on hash functions
make it intractable for the server to find a databaseDbad and
ctr ′ such thatsig = signj(M(Dbad) ‖ ctr ′). Hence, the
server can not forge a legitimate state. Thus every increment
in ctr is accompanied by an increment inlctrk for some
userk. The total number of increments seen is captured by∑

k lctrk. If the server presents the same legitimatesig for
two different operations, then a single increment inctr is
accompanied by two increments in the

∑
k lctrk, once for

each of the two operations. This would mean that at the
synchronization step,gctr i would not be equal to

∑
k lctrk

for all i.

Description of Protocol I

1: Initialization:
2: Some userj is elected to signh(M(D0) ‖ 0) and send

it to the server.

1: Query Operation:
2: Useri sendsqueryQi to the server.
3: ServersendsΦ to useri, where

Φ = (Qi(D), v(Qi, D), ctr , j, sig)
4: if sig is legitimatethen
5: User setslctr i ← lctr i + 1 andgctr i ← ctr + 1.
6: Usersendssign i(h(M(D′) ‖ ctr + 1)) to server.
7: else
8: User terminates and reports and error.
9: end if

10: Server setsctr ← ctr + 1.

1: Synchronization:
2: All users broadcastlctr i to the other users
3: Useri broadcasts success ifgctr i =

∑
k lctrk.

4: If no user broadcasts success they terminate and report
an error.

The protocol guarantees bounded deviation detection be-
cause the synchronization is guaranteed to be performed
when the first user completesk operations. The communi-
cation overhead due to verification process occurs in step 6
of the query operation where an extra message is sent from
the user to the server. This is a constant communication
overhead for each operation and hence the protocol guaran-
tees bounded workload preservation

4.3 Protocol II

In Protocol I, we notice that after the server responds
to a query, it waits for the user to return the signature of
the current root digest in another message. Only after re-
ceiving this signature, the server can answer the next query.
This additional blocking step affects throughput in systems
with frequent updates. Also, the protocol requires a public
key infrastructure. In this section, we give a protocol that
avoids that extra message while still guaranteeing bounded
deviation detection. Furthermore, this protocol does not use
digital signatures, and hence does not need a PKI.

In this discussion, we associate the state of the database
with the valueh(M(D)‖ctr). We notice that every state of
the database is seen by at least by two users, except the ini-
tial state and current state which is seen by one user. While
synchronizing everyk operations, if the users could verify
this property, they are guaranteed that the states were part
of a single sequence, each transition of which is seen by
exactly one user.

7

(D0, 0)

(D1, 1)

(D2, 2)

(D′

2
, 2)

(D′′

2
, 2)

(D3, 3)

(D4, 4)1 11 1

2

3

2

3

Figure 3. Scenario 2

A first attempt towards this, would be for useri to keep
a registerσi, that contains the XOR of all states they see.
During synchronization, they XOR all their registers. All
states that occur twice, would cancel out. Only the XOR of
the first and last state would remain.

This however does not work for a simple reason. Take
the scenario depicted in Figure3. The nodes are represented
as states and counter values. The node labels must be inter-
preted ash(M(D) ‖ ctr). The label on the edge of a tran-
sition depicts the user that validated that transition. In this
case the XOR’s of all intermediate nodes cancel out to give
the first and last, since the intermediate nodes have even de-
gree. Thus, the untrusted system can violate availability by
replaying the same state to multiple users.

We however notice that in this graph, there are multiple
transition with the same end state (eg:(D3, 3)). Since each
user maintainsgctr i, which is the last seenctr value, the
two transitions cannot be seen by the same useri. This is
because, useri would detect an error when the server pro-
duces the samectr value for two of its operations. Hence,
the transitions were seen by different users. Suppose, we tag
the new stateh(M(D′)‖ctr+1) of a transition with the user
that performed the transition, i.e. if userj saw the transition
from (D, ctr) to (D′, ctr+1) then the state(D′, ctr +1), is
represented ash(M(D′)‖ctr+1‖j). This would force only
a single transition into a state. We claim that, this is enough
to guarantee that the graph is a directed path from the initial
state to the last state. We summarize the conditions of the
graph in Lemma4.1. Since our protocol satisfies the con-
ditions of the Lemma, we only need that the users perform
the XOR operation everyk operations to get Theorem4.2.

Lemma 4.1 Consider a directed graphG(V, E) with the
following properties,

P1. There are no isolated vertices

P2. In-degree of every vertex is at-most 1.

P3. There are no directed cycles.

P4. Exactly two vertices have an odd total degree (sum of

Description of Protocol II

1: Query Operation:
2: Useri sends queryQi to the server.
3: Server returns to useri, (Qi(D), v(Qi, D), ctr , j) and

incrementsctr by 1.
4: Useri reports error ifctr ≤ gctr i.
5: Useri computesM(D) andM(D′).
6: Useri updates local value

σi = σi ⊕ h(M(D) ‖ ctr ‖ j)

⊕ h(M(Q(D)) ‖ ctr + 1 ‖ i)

last i = h(M(Q(D)) ‖ ctr + 1 ‖ i)

gctr
i

= ctr + 1

1: Synchronization :
2: All users broadcastσi to the other users
3: Useri broadcasts success ifh(M(D0) ‖ 1) ⊕ last i =⊕

k σk.
4: If no user broadcasts success they terminate and report

an error

indegree and outdegree). One of these vertices has in-
degree 0.

Then,G is a directed path.

Theorem 4.2 Protocol II guarantees bounded deviation
detection and bounded workload preservation.

Proof(sketch): We visualize the state of the database as
h(M(D) ‖ ctr ‖ i) whereD is the database seen by user
i for some query, as a node in a graph. This graph con-
tains nodes corresponding to all the states the users saw.
A directed edge from nodeu = h(M(D) ‖ ctr ‖ i) to
v = h(M(D′) ‖ ctr + 1 ‖ j) occurs if for some query by
userj, the server returned(v(Q, D), ctr , i) andM(D′) =
M(Q(D)). For every edge there is some user who has
seen the transition from one node to the other. The ini-
tial state of the database is a special node represented by
s = h(M(D0) ‖ 1).

Assuming that the synchronization step completed suc-
cessfully, we show that the graph representing the states of
the database satisfy the properties of Lemma4.1.

P1. There are no isolated vertices.This is true, since all
nodes in the graph are part of some transition and have an
edge corresponding to that transition.

P2. In-degree of every vertex is at-most 1.Supposeu, v

andw are three nodes such that(u, w) and(v, w) are two
edges (thereforeindegree(w) > 1). Let

u = hash(M(Du) ‖ cu ‖ ou)

v = hash(M(Dv) ‖ cv ‖ ov)

w = hash(M(Dw) ‖ cw ‖ ow)

8

Since(u, w) and (v, w) are directed edges,cw = cu + 1
andcw = cv + 1 which meanscu = cv. Further userow

must have performed both these operations. This means the
publisher produced the same counter value (ou = ov) to the
ownerow twice which would have been detected at step 4
in that Query operation.

P3. There are no directed cycles.Since the counter
value increases along every directed edge there cannot be
any loop.

P4. Exactly two vertices have an odd total degree. One
of these vertices has in-degree 0.During synchronization,
when allσi’s are cumulatively XOR’ed, nodes with even
degree cancels out.last j is a state in the graph and is forced
to have an odd degree for some userj. Further the initial
state is forced to have odd degree too. A third vertex can-
not have odd degree because it would appear in the XOR
and fail in the check. Hence only two nodes can have odd
degree.

From Lemma4.1, it follows that the graph is a single di-
rected path. This means that, the server acted correctly, if
the synchronization step terminated successfully. Since,we
are guaranteed that the synchronization step occurs when
the first user completesk operations this protocol guaran-
tees bounded deviation detection. This guarantees bounded
workload preservation because because it has no extra mes-
sages for every operation.

4.4 Protocol III

Protocols I and II assume that there is a broadcast chan-
nel among the users. When the number of users is large it is
unrealistic to assume a broadcast channel among all users.
Furthermore, it requires that all users to be online simulta-
neously whenever the synchronization step is done.

In this section, we present a third protocol that guaran-
tees bounded detection where users do not have any external
communication channels. However, we restrict the work-
load that the protocol permits. We assume that every user
performs at least two operations everyt time units. The ad-
vantage of this solution over the previous two protocols is
that the users are not required to be online simultaneously.

As in Protocol II users maintain the registersσi and
last i.

For this protocol we shall define one epoch to bet time
units. We assume that every user performs at least two op-
erations every epoch. We illustrate the protocol in terms of
epochs with a time line shown in Figure4. Consider three
consecutive epochse, e + 1 ande + 2. Useri in its first
operation in epoche + 1 (at A) is informed by the server
that it entered a new epoch. It takes a back up of its last
state from epoche. This is stored in the server in the sec-
ond operation of epoche + 1 (at B). At the end of epoch
e + 1 it is guaranteed that all users have stored their states

Description of Protocol III

1: Query Operation:
2: Useri sends queryQi to the server. If this is the second

operation in a new epoch then along-with the query the
local states of the previous epoch is sent with a signa-
ture.

3: Server returns to useri, (v(Qi, D), ctr , j) and incre-
mentsctr by 1.

4: Useri checks ifctr > ctr i else reports error
5: Useri computesM(D) andM(D′).
6: Useri updates local value

σi = σi ⊕ h(M(D) ‖ ctr ‖ j)

⊕h(M(Q(D)) ‖ ctr + 1 ‖ i)

last i = h(M(Q(D)) ‖ ctr + 1 ‖ i)

7: If the server indicates start of new epoch then useri
takes backup of local statesσi and last i. The user re-
trieves the stored local states from the epoch before last
and verifies consistency, i.e. checks if there existsk
such that

h(M(De) ‖ le) ⊕ lasti =
⊕

k

σk

, last)(σi i

, last)(σi i
, last)(σi i

User j verifies local
states ofrom epoch e

epoch e epoch e+2epoch e+1

User i informed
of the new epoch

 User i’s local state

User i stores
sign and

A CB

 on server

Figure 4. Epochs in Protocol III

from epoche at the server. Some userj, in epoche + 2
(at C), takes the local states of all users from epoche and
runs the synchronization check from protocol II, i.e. checks
if h(M(De) ‖ le) ⊕ last i =

⊕
k σk for somei. For each

epoch, a particular user can be assigned to do the synchro-
nization check. For verification the user needs the initial
state,h(M(De)||le) . This it can compute from thelast i

values of the previous epoch.

Theorem 4.3 Protocol III guarantees detection within two
epochs assuming that every agent performs at least two op-
erations every epoch.

The proof of this theorem is omitted due to space con-
straints.

Unlike protocols I and II, in this protocol, all the users
need not be online simultaneously. We note that this pro-
tocol guarantees that a fault by the server will be detected
within two epochs. Hence, this protocol gives a guarantee

9

with respect to time, while the first two protocols guarantees
with respect to the number of operations by a user.

5 Related Work

Hash trees were developed by Merkle and used for effi-
cient authentication of a public file [7, 8] as well as a digi-
tal signature construction in [9]. Merkle’s hash tree can be
described as an authenticated dictionary data structure, al-
lowing efficient proofs of membership or non-membership
of elements in the set. Authenticated dictionaries were
adapted and enhanced to manage certificate revocation lists
in [5, 11]. Authenticated dictionaries were adapted to re-
lations in [2], where algorithms based on Merkle trees and
refinements in [11] are proposed for authenticating relations
and verifying basic relational queries. They assume either
the data is static or very infrequently updated. This is be-
cause they require the root of the Merkle tree published for
every update. Extension to semistructured data was inves-
tigated in [1], and implementation using B-trees considered
in [14]. Authenticating queries using the techniques above
may require revealing some data items that are not in the
query answer, or other information about the database in-
stance [13]. It is the goal of [10, 12] to provide authenti-
cated answers while also maintaining certain secrecy prop-
erties. Recently, techniques for proving the actual query
execution for not only range queries but also more com-
plicated compute-intensive data-mining queries were pro-
posed [16].

6 Conclusions

We have studied the problem of implementing a CVS-
like multi-user data management system on an untrusted
server. We have formalized the notion of what it means
for an untrusted system to “behave like” a trusted system by
providing definitions of deviation detection and workload
preservation. We have shown that external communication
is necessary to guarantee bounded deviation detection if we
are required to support workloads that are typical to CVS
applications. We proposed efficient protocols that use ex-
ternal communication in the form of a broadcast channel.

Possible future directions are (1) to extend these protocol
to detect exactly when the fault occurred (2) to find proto-
cols where the clients do only constant amount of work as
compared to proportional to the number of users in the sys-
tem and (3) to address failures. In future work, we plan to
extend our protocols to address these issues.

Acknowledgments.We thank Alan Demers and Jayavel
Shanmugasundaram for helpful discussions. This work was
supported by NSF Grants IIS-0330201, IIS-0133481, IIS-
0121175, and by an E-Science grant and a gift from Mi-
crosoft Corporation. Any opinions, finding, conclusions, or

recommendations expressed in this material are those of the
authors and do not necessarily reflect the views of the spon-
sors.

References

[1] P. Devanbu, M. Gertz, A. Kwong, C. Martel, G. Nuckolls,
and S. G. Stubblebine. Flexible authentication of xml docu-
ments. InProceedings of the 8th ACM conference on Com-
puter and Communications Security, pages 136–145. ACM
Press, 2001.

[2] Premkumar T. Devanbu, Michael Gertz, Chip Martel, and
Stuart G. Stubblebine. Authentic third-party data publica-
tion. In IFIP Workshop on Database Security, pages 101–
112, 2000.

[3] Ronald Fagin, Joseph Y. Halpern, Moshe Y. Vardi, and
Yoram Moses. Reasoning about knowledge. MIT Press,
Cambridge, MA, USA, 1995.

[4] R. Housley, W. Ford, W. Polk, , and D. Solo. Internet x.509
public key infrastructure certificate and crl profile. 1999.
IETF RFC2459, http://www.ietf.org/rfc/rfc2459.txt.

[5] Paul C. Kocher. On certificate revocation and validation. In
Financial Cryptography, pages 172–177, 1998.

[6] Naor M and Nissim K. Certificate revocation and certificate
update. Technical Report MCS99-05, Weizmann Institute of
Science, 1999.

[7] Ralph C. Merkle. Secrecy, authentication, and public key
systems.PhD thesis, Information Systems Laboratory, Stan-
ford University, 1979.

[8] Ralph C. Merkle. Protocols for public key cryptosystems. In
Symp. Security & Privacy, pages 122–134, 1980.

[9] Ralph C. Merkle. A certified digital signature. InCRYPTO,
pages 218–238, 1989.

[10] Silvio Micali, Michael O. Rabin, and Joe Kilian. Zero-
knowledge sets. InFOCS, 2003.

[11] Moni Naor and Kobbi Nissim. Certificate revocation and
certificate update. InUSENIX Security Symp., 1998.

[12] Rafail Ostrovsky, Charles Rackoff, and Adam Smith. Effi-
cient consistency proofs for generalized queries on a com-
mitted database. InICALP, 2004.

[13] HweeHwa Pang, Arpit Jain, Krithi Ramamritham, and Kian-
Lee Tan. Verifying completeness of relational query results
in data publishing. InSIGMOD ’05: Proceedings of the
2005 ACM SIGMOD international conference on Manage-
ment of data, pages 407–418, New York, NY, USA, 2005.
ACM Press.

[14] HweeHwa Pang and Kian-Lee Tan. Authenticating query
results in edge computing. InICDE, 2004.

[15] Raghu Ramakrishnan and Johannes Gehrke.Database Man-
agement Systems. McGraw-Hill Higher Education, 2000.

[16] Radu Sion. Query execution assurance for outsourced
databases. InVLDB, 2005.

10

