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the problem of optimizing the cost of a plan,
and execution costs. The
optimal strategy is the fact that the
of
is itself a function of the strategy
The proposed escape from the difficulty

fundamental

a goal and the costs and

strategy will continue

strategy has been proved

for a certain version of the multi-box monkey-
successfully hand-simulated 1in a

STRIPS-type robot’'s world of fairly realistic magnitude.

1. Introduction

The need to allow for the cost of
planning in controlling a planning
process s apparent even for simple
problems. Consider the monkey-and-
bananas problem, generalized so that
many alternative boxes scattered about
the monkey's cage could be used by the
monkey to reach the bananas. By
pondering the cost of using each box,

the monKey can formulate a plan whose
expected egxecution cost is minimal; this
is the type of plan optimization
considered by Feldman & Sproull (1974},
However, thinking is not free; if the

number of available boxes is large, the
monkey will spend more time 'optimizing’
his choice of a box than he would take
to reach the bananas using the wvery
first box he sees. Feldman & Sproull
recommend abandoning efforts to improve
a plan and switching to execution mode
when the cost of the next plamning step
exceeds the difference between the
maximum and expected utility of the
plan. However , this criterion is
unusable in a hierarchical planning
situation, where ' improving a plan’ is
not clearly distinct from merely
proceeding with its elaboration.
Besides, the effect of the criterion
depends entirely upon the choice of
planning ‘quantum’ : if planning effort
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is allocated in sufficiently small
quanta, then additional planning will
aiways win over execution as long as
there is any potential for improvement.
This is the same type of criticism that
is often levelled at optimizing
strategies such as A* (see Nilsson,
18980). For example, a robot using A* to
collect a few hundred nuts and bolts
spilied on the floor wou id be
immobilized by the explosively complex
problem of optimizing the sequence of
moves for accomplishing the task.

The strateay we will propose
resembles that of MULTIPLE (Slagle &
Bursky 1968) in that it relies on

characterizations of subgoals which are
supplied by heuristic functions at the
tip nodes of the current planning tree
and are ‘"backed up" to the top level
whenever new subgoals are sprouted. The
characterizations of subgoals involve
cost estimates (f.e., estimates of the
cost of completing and executing a plan
to achieve the goal), sSuccess
probability estimates, and approximate
distributions describing the changes in
cost and probability estimates which may
result from an initial investment of
effort in the subgoals. We argue that
such multiparameter characterizations
are unavoidable in general.

The strategy
correct decisions

makes intuitively
in cases where pure.
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utility-based or probability-based
methods go astray. It is in some cases
provably optimal; specifically, we have
established its theoretical optimality
in a version of the multi-box monkey-
and-bananas problem (recast somewhat
more realistically as the problem of
purchasing a low-cost item such as a
snow shovel or a used tricycle through
the want ads in a city newspaper). We
have also carried out two successful
hand-simulations of the strategy in a
STRIPS-type robot's world. (For full
details of the present work see Johnson,
19771).

2. Atlowing for the cost of planning

The cost of planning has two
components: the cost of expanding a non-
primitive goal into a sequence of one or
more simpler subgoals {i.e.,
transforming the goal or forming a plan
for achieving it?. and the cost of
selecting a goal for expansion.

We propose to take formal account of
the cost of goal! expansion by lumping it
together with the cost of execution. In
other words, we think of the cost of
‘executing’ a higher-level goal or plan
as including the cost of fully expanding
it into a sequence of primitive steps as
well as the cost of carrying out those
primitive steps. Of course, goal costs
will then depend on the planning control
strategy,; howewver , for a system
operating with a fixed control strategy,
there should be no more difficulty in
formulating (and adaptively modifying)
heuristic estimators for these
comprehensive costs than in formulating
them for execution costs alone. The real
difficulty lies in determining how the
costs of alternative subgoals of a given
goal combine, since this combined cost
is strategy-dependent. This problem has
therefore been the main focus of our
investigation.

Can the goal selection cost be added
to the execution cost as well?
Apparently not, since that cost is

context-dependent. Ffor example, if some
goal G is the only available choice at
some point  in  a planning process, the
cost of selecting it will be lower than
if there are many alternative choices
requiring comparative evaluation.
Attempts to allow for goal selection
cosis in the goal selection strategy are
thwarted by an even more insidious

difficulty: anticipating those costs
will itself be more or less costly, so
that an optimal strategy should also

anticipate the cost of

estimating the
cost of goal

selection; and so on ad

infinitum. This is one point at which we
encounter the classic 'cost of analysis’
problem of decision theory.

However, the difficulties concerning
goal selection cost become unimportant
if we can assume that the goal selection
cost constitutes a relatively small
fraction of the total planning cost,
i.e., that goal selection is cheap
compared to goal expansion  and
execution. If we proceed on that
assumpticn and arrive at a contrgl
strategy which is indeed computationally

inexpensive, then the assumption is
vindicated.
We now turn to the required

characterization of
first place, we
estimate at each

subgoals. In the
require a total cost
subgoal, i.e., an

estimate of the cost of fully
elaborating a plan {(to the level of
immediately executable actions) and
executing it. The need for such cost

estimates is easily appreciated for
problems such as the multi-box monkey-
and-bananas problem, where the success
probability may bhe unity for all
subgoals, so that a purely probability-
based method like MULTIPLE is left with
ne basis for preferring one over
another. On the other hand probabilities
seem to be indispensable as well,
despite attempts such as that of Feldman

& Sproull (1974) to  parameterize
ptanning problems in terms of wutility
alone. As will be seen below, the
correct measure of '‘worthiness’ of
aiternative goals 1in certain simple
cases is their ratio of SUCCEeSS

probability to cost; this is obviously
not a monotonic function of utility
lexcept at constant probabiliy) and so
in general will produce a different goal
ranking than wuwtility. Nor is that
measure of ‘worthiness’ sufficient by
itself, since a different measure is
needed for conjoined goals, namely the
ratio of failure probability to cost.

But even cost and  probability
estimates are inadequate for rational
planning in general. Consider another

variant of the monkey-and-bananas
problem, in which the monkey is next to

a box which may be either very easy
(cheap! or wvery hard (expensive) to
push. He must choose between this box

and a second, more distant box whose
cost has a Xnown, intermediate value.
Even though the expected cost of the the
first box may be higher than that of the
second (perhaps even infinite, 1f the
box might be bolted to the floor), it
may well be to the monkey' s advantage to
try the first box initially, on the




chance that it may be very easy to push.
Thus, a higher-expected-cost plan may be
preferable to a lower-expected-cost plan
if it offers some chance of a very cheap
solution {and can be  abandoned
prematurely if it proves unprofitablel.
Similarly, a lower-probability plan may
be preferable te a higher-probabiltity
plan, even 1if its expected cost is no
lower, in a case where a small initiai
investment may greatly improve fhe
chance of its success, (This intuition
presumably motivated the use of a
measure of ‘merit’, or absolute rate of
change of probability, in MULTIPLE.) For
these reasans, and because of the
specific needs arising from the attempt
to formulate a strategy which
anticipates its own behaviour, we have
chosen a subgoal characterization which
supplies not only the current cost and
probabi ity estimates, but also
distributions over the anticipated
changes in these estimates after an
initial investment of effort. These
characterizations are assumed to be
supplied by heuristic functions at the
tip nodes of the planning tree, and are
backed up to the non-terminal hades to
allow selection of a globally optimal
subgoal.

3._The goal selection strategy

Suppose that a goal G of 8 plan can
be pursued in either of two ways, namely
by pursuing goal G1 or goal G2. Suppose
further that G1 and G2 are tip nodes of
the current planning tree and that we
have heuristic estimates (pt!, t1}, (p2,

t2) of their probability and cost. The
cost estimate for a tip node reflects
the expected cost of pursuing the

corresponding goal exclusively until it
succeeds or fails, with failure becoming

evident after a finite investment of
effort. We now wish to characterize the
probability and cost of G if G is
pursued exclusively but the choice
between G1 and G2 s subject to

reconsideration. In the same way we then
want to back up characterizations from G
and its "siblings" to G's parent,
assuming exclusive commitment to G's
parent but allowing for reconsideration

of the choice among G and its siblings;
and so on. Each bacKking-up step is also
required to ¢ ute and record the

choice of subgoa! to which the next unit
of effort should be devoted Imuch as in
MULTIPLE). Eventually we should arrive
at a characterization of the 1top goal
which presupposes an exclusive
commitment to this goal but allows fully
for reconsideration of lower - level
choices. The ability to reconsider
choices is of course crucial to a goal

selection strategy: it must be possibie
to abandon a selected goal in favour of
an alternative if an initia)l attempt to
expand it indicates that 4t is much
costlier or less likely to succeed than
previously anticipated.

Optimizing the initial choice between
G and G2 in a way which allows for
subseguent reconsideration of the choice
immediately confronts us with the
central conundrum: the choice should
minimize the expected cost of G, but
that cost depends not only on the
initial cheice and the costs of G1 and
G2, but also on subsequent revisions of
the initial choice prompted by re-
consideration; i.e., it depends on the
very strategy we are trying to
formulate.

Our
involves
the first
subgoals
processes
effort if
different
of each

solution is
two stages

approximate, and
of refinement. In
stage, we assume that the
G1 and G2 are one-step
requiring fixed investments of
tried at all. {(We could assume
costs for success and failure.
goal, but the result turns out
to be the same.) Under that assumption,
the behaviour of an optimal strategy
subsequent to the initial choice 1is
indeed predictable: if the chosen
subgoal, say G1, succeeds, then G wit1l
have been achieved at cost ti1 l(on the
average); if it fails, then G2 will be
tried and 4{ts cost t2 will add te that
of G1, with success or failure of G at
that point, Therefore the expected cost
of G when starting with G1 is E1 = t1 +
(1-p1}t2. Similarly, the expected cost
of G when starting with G2 is EZ2 = t2 +
{1-p2)t1. Hence, we should initially
choose G1 iff E1 < E2, or eguivalently,

iff
t2/p2.

t1/p1 <

The ratio t/p seems like a rather
natural measure of the "unworthiness" of
a goal, since it is high to the extent
that the goal's expected cost is high
and its success probability low (cf.
Simon & Kadane, 1975). HNevertheless,
choices based on this ratio can be
sericusly in error. This is evident from
the two-box monkey~and-bananas problem
described above. Assuming that the
probability of success with either box
is 1, then a monkey choosing on the
basis of t1/p1 and t2/p2 (with p1 = p2 =

1} would opt for the more remote box
{which has lower expected cost), even
though a small investment 1in the
seemingly more expensive box (e.g., a
trial push) might reveal it to be
cheaper by far. Df course, the error
stems from the assumption thet pursuit

of a subgoal cannot be interrupted until,




it succeeds or fails.

Examples such as this one motivate

the second stage of refinement in the
anticipation of the strategy’s behaviour
and hence in the expected cost
calculation and the resultant choice
criterion. The {t, pl] characterization
of a goal is inadequate for the

refinement: we need a characterization
which reflects not only t and p but also
the anticipated changes in t and p after
investment of a certain initial effort s
in the expansion of the goal, The
anticipated changes are given by a
probability distribution f(t',p’ ) over

the possible cost and probability
estimates {t', p’} that may result after
investment of s. The mean of the
. distribution is (t-s, p). After careful
consideration of computational
implications, we have chosen to
approximate any such bivariate
distribution by a set of at most five
piecewise linear conditional densities
at fixed p', le.g., at p' = .1, .3, .
.7, 9}, mixed with at most five
probability mass points. The earlier
simplistic assumption that the choice
between G1 and G2 1is not reconsidered
until the chosen goal succeeds or fails
is now replaced by the following ‘one
level look-ahead’ view of the selection

to the
If the initial cholice is

strategy's behaviour subseguent
initial choice.

G1, then effort s! is invested in its
expansion, whereupon (t1, p1) are
revised to {t1', pt}, Then the
simplistic criterion t1'/p1’ < t2/p2 is

used to decide whether to continue with
G1 or switch to G2, and the resulting
choice is not reconsidered unless and
until the chosen goal fails. With this
refinement, the expected cost of G when
starting with G1 is found to be

Et = st + PIUI{E[E1 [UI+(1-Elp1* |U)) L2}

+ (1-P{Uli{t2+{1-p21E[t1" |not U]},
where U is the event that t1'/pi’ s
t2/p2, i.e., U is the region in t', p'-

space which lies to the left and above a
radial line from the origin with
constlant slope t2/p2. The formula for £2
is analogous. E1 and E2 are readily
estimated from the approximations to the

distributions fiitr ,p1') and
f2it2' ,p2'), and so the revised choice
criterion E1 = E2 is readily
implenented.

The required generalization to n-ary
OR  nodes can be accomp lished by
computing the cost Ei of starting with
goal Gi and after effort si either

completing Gi or switching to try the
alternatives in order of non-decreasing
unworthiness ti/pi.

The formula for Ei

turns out to be exactly

ana 1OQOUS fo

that for Ei:
Ei = st + PIIJ{E[ti' [2]+{1-E[pi*|L]1)Ci}
+ (1-P{I}){Ci+qi . E[ti’' |not 1]},

where [ is the event that ti'/pi’ =
Ci/{1-g1}, Ci is the cost of trying the
remaining goals in order of non-
decreasing t/p, and gi is the
probability of all remaining geals
failing. (e.g., if Gi = G2 and the goal

ordering is G1, G2, G3, G4, then €2 = tt
+ (1-p1)t3 + (1-p1}(1-p3)t4, and g2 =
(1-p1}(1-p3){1-p4),) Because of shared
terms among the Ei, the decision cost
increases only linearly with the number
of subgoals.

AND nodes, in a planning context, are
somewhat less troublesome than OR nodes.
If the subgoals constitute the steps of
@ plan to achieve the parent goal, then
it 1s often reasonable to expand the
subgoals in a Jeft-to-right depth-first
manner (as STRIPS does -- see Fikes &
Nilsson, 18971), since elaboration of
early parts of a plan helps to define
the initial conditions for later
subgoals, However , in a pgenuinely
hierarchicatl plamning system (i.e., one

_which is capable of representing plans
at wvarious levels of abstraction or
conversely, levels of detail), such a

strategy would tend to overdevelop early
parts of a plan, oblivious to manifest

inadequacies in its later parts. Dne
heuristic remedy, implemented by
Sacerdoti {1974 in ABSTRIPS and
Siklossy & Dreussi{1973) in LAWALY, is

to arrange for complete elaboration of a

plan at one level of abstraction before
allowing its elaboration at the next
level. This strategy has the converse
flaw of trying to anticipate in detail
the remote future conseguences of
present actions; the more uncertain the
planning environment, the more serious

this flaw is apt to be,

We bhave no general
such heuristic methods for controlling
the elaboration of strongly
interdependent subgoal sequences. (Dur
STRIPS-world simulations rely on left-
to-right expansion of AND nodes.) For
conjunctions of more or less independent
subgoals, however, the dual of our
method for disjunctions is available.

improvement on

Again, we begin by considering the
case in which two goals G1 and G2 are
uninterruptabte, single-step processes.
If G1 is tried first, then the expected
cost of the superordinate AND node G is
t1 + p1.t2, since G2 will be tried only
if G1 succeeds. Similarly the expected
cost of starting with G2 s t2 + p2.t1.




‘The criterion for choosing G1 is then
easily seen to be

ti/{1-p1) < t2/(3-p2}.
8y an argument completely analogous to
that for OR nodes, we then move to the
second stage of refinement, obtaining

the expected cost of beginning with G1
{and allowing for reconsideration)

E1 = g1 + PI[VI{E[t1"|V] + Elpt' |V]t2}
+ {1 - PIV]i{t2 + p2.E[t1" |not VI},
where V is the event that ti'/{1-p1'} <
12 /{1-p2 ).
4, Backing up
The remaining problem s the
specification of backed-up
characterizations at 8 goal as a

function of the characterizations of its

subgoals. Under the assumption of goal
independence, the backed-up probability
is

p=1- {1-p1){1-p2)...(1-pn)

at an OR node and

p = pl.p2...pn
at an AND node. The backed-up expected
cost is just the expected cost Efi
corresponding to the chosen subgoal, as

specified above. (The generalization to
n subgoals can be obtained in the
conjunctive case just as in the

disjunctive case, } The backed-up initial

step size, likewise, is that of chosen
subgoal. #AL
However, we also need to back up
f(t'.p') distributions and this poses
serious problems. The problems come as
something of a surprise, since the

assumed behaviour of the goal selection
strategy subsequent to the initial
choice of a subgoal quite unambiguouslty
determines the distribution of the
parent goal. In particular, suppose that
the subgoal G is initially chosen in
favour of alternative GZ. Consider t',
the expected remaining cost of the OR
given that the initial step of Gi bhas
been taKen f{at cost s1}, and we have
values for ti1 and pi1. If t1'/p1‘ < t2/p2
{event U), we continue with Gt and t' =

t1'+{1-p1" )12, If not, we switch to G2
and t'= t2+{1-p2)t2'. Similarly the
probabilitye the OR is p' = 1-(1-p1’)(1-
p2) These equations determine two
linear transformations of the jointly
distributed random variables {ti’ pi'),

where the first transformation applies
in the region U above and to the left of

F|q

the radial line with slope t2/p2, and
the other applies below and to the right
of that line. The distribution of
it’ ,p’ ) can be computed accordingly.

The trouble with
distributions is
example shown in

T {1

such
evident
Fig. 1.

backed-up
from the
Here the

fe =
1
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especled cost calculations that do not ssparsle the cost

23
corrasponding to success ard failure of t chomen a el G1. Tha
salid prlem on tha right 14 the transform of that on the left, and
similarly for thm prisms drawn 1n proken 1ines.

initial step for G1 is free {s1=0), the

distribution f1{t1' ,p1') is
the square,

uniform on
and the characteristics of
the alternative are {t2,p2) = (.5,.5).
Since both linear transformations
involve a rightward shift, the resulting
distribution assigns a significantly
smaller probability to the event that
the OR will be solved quickly than did
the distribution for G1 alone {e.g., the
probability of successful termination at

cost = .1 drops from .05 to less than
.01}, Yet we Know that making available
an alternative to a goal cannot have a

deleterious effect.

Dne diagnosis of the trouble is that
by lumping together the costs of success
and failure, we have ended up adding
costs associated with failure to t1’
(namely the cost of proceeding with
alternative G2), regardless of whether
expenditure of t1° Ted to success or
failure. A possible remedy is the
replacement of the distributions over
(cost, probability) pairs by
distributions over I(cost of success,
cost of failure, probability) triples,
so that the two Kinds of cost can be
separately bacKed up. However, we are
hesitant to go from an already complex
two-dimensional parameterization fo a
three-dimensional one. :

A less drastic, albeit somewhat ad
hoc, remedy is to treat the expected
costs of suCCcess and failure as
identical, and thus to wview the two-
dimensional distribution as implicitly
supplying both. We can then avoid
degradation of the preferred goal Gt by

alternative G2 as follows. For the case
t1' /p1' £ t2/p2? (where we continue with
Gi1} we apply separate transformations

ting the backed-up distribution for an DR on the basis of



corresponding  to success and failure of”
Gl. We have t' = t1' if G1 succeeds and
t'= t1°+412 if G1 fails. We recombina the
two resulting densities additively,
weighting them by the suUCCess and
failure probabilities pt’ and {1-pl1')

raspectively. The probability
transformation 1is the same as before,
and so is the cost transformation in the

region t1'/pt1’ > t2/p2. The effect of

the transformations is illustrated in

Fig. 2, for the previously considered
fig. 2. Backed-up n‘islrihul.inn l;aued on srﬂ.ittmg the =114

beginning with Gl {nlc B success part
corresponding ragiont and & fallure part
COFFELRONTT NG ragiont. Only the part of
disiribution corresponding 1o continuation wilth G1
initisl slap &1 s shown,

[uww dolbted

nfter

of

\see  broken lirms for
Tnes for
the  transformed

the

example. Note that ‘the probability mass

tying in the vicinity of t1* = 0

been preserved by the new
transformation.
The method we suggest for n-ary 0OR

nodes is to treat them as nested sets of

has-

[n-1} binary ORs. We find the bachked-up
distribution for the chosen subgoal
combined with the first-ranked remaining
goal (with rank according to ti/pi),
then combine the result with the
distribution of the second-ranked

remaining goal, and so on.

Analogous methods can be formulated
for AND nodes, where the subgoals are
independent. However, we have been more
interested in the case where the
subgoals constitute the (usually
strongly interdependent) steps of a
plan. Here a satisfactory way to back up
characterizations seems hard to

determine. A workable, but gquite ad hoc
method is as follows., If the planning
schedule is (G1 THEN G2 THEN THEN
Gnl, then the backed-up f(t',p') is
flit’ ,p' i transiated by
(p1it2+(p2(t3+.. . +pn.tni... )} in  the
p’' -direction and with scale factor
p2.p3...pn applied to p'.

For both AND and OR nodes, the

backed-up initial step size s is that of
the chosen subgoal. Multi-step processes
can be broken down hierarchically into

two-step  processes; a theoretical
analysis indicates that the dividing
point should be chosen in such a way

"that the standard deviation of remaining’

cost is greater than 2.5 times first
stage cost.
A final generalization we have

studied concerns goals which may not
terminate, i.e., whose failure may never
become apparent. We find that such goals
can be treated as if they terminated
after expenditure of total effort T at
the latest, where T is chosen to equal
twice the expected cost when the maximal
investment is T. This cut-off minimizes
the effective “"unworthiness" t/p.

5. Evaluation of the strategy

How useful is the overall strategy?
The manipulation of approximate
probahility distributions may seem a

little forbidding, but it should be kept
in mind that in actual wuse these
distributions can be very simple; e.g.,
they may be two-point or even one-point
distributions. More complicated
distributions are justified only in very
complex planning domains.

We have several indications that the
strategy is well-hehaved in its
decision-making. Naturally, it overcomes
the sort of difficulty illustrated with
the two-box monkey-and-bananas problem,
as the reader can verify. (The box next
to the monkey has a2 low initial-step
cost and is characterized by a
distribution with two probabitity mass

points (tt',p1’} and (ti1",p1"]), where
11" is low, t1" is high, and pi‘=s p1"=

the more remote box has cost
intermediate between t1' and t1* and

probability 1, The proximate box will be
tried first in most cases, even if its
expected cost exceeds that of the more
remote one. )

In a version of the multi-box monkey-
and-bananas problem, recast as already
explained as the problem of locating and
buying a low-cost ftem such as a
snowshovel, the strategy has actually
been proved optimal cf., Feldman andg
Sproull’s ‘wheel-less student’ probiem),
The problem assumes that the purchaser
lives at the centre of a large circular
city and POSSesses a newspaper
containing nUmerous ads offering
snowshovels for sale, He has set aside’
sufficient cash, and valuing his time,
wishes to obtain a shovel as quickly as
possible. To locate a shovel, he must
find the next shovel-ad and phone the
vendor, an operation reguiring unit time
(cost). At any time, he may stop
locating shovels and go buy the nearest
oneg so far at cost az, where z is the
distance to the vendor divided by the.
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radius of the city. Assuming a uniform In the future, it would be useful to
distribution of snowshovels for sale implement the strategy and test it on
over the city, it can be shown that the more  complex examples, particularly
minimal expected total cost is assured examples with non-unit oal
by locating shovels until one is found probabilities. Also, the problems
within distance T times the radius of encountered in backing up distributions
the c¢ity, with T? = 3/a. Precisely the call for further research, perhaps in
same stopping criterion is obtained with the direction of separate
the one level look-ahead strategy, with characterizations for success and
alternative subgoals "buy the nearest failure. Another difficult issue calling
shovel sc far" and “locate additicnal for further research is that of goal
shovels before buying one", where the “interdependence; two types of
initial step size for the latter goal is interdependence are of particular
52 = 1 and f2{t2',1) is based on the interest, namely the dependence of later
assumption of uniformly distributed subgoals inm a plan on earlier subgoals,
snowshovels. Thus, the one level Ilook- and the possible dependence of many
ahead strategy can yield optimal subgoals in many competing plans on a
planning decisions. common  information-gathering act}on.
uch as visu r r fedsibilit
The strategy has also been tested by ?est s(e.g.?l Sgﬁeﬁﬂiﬁg aa ebox fof
hand-simulation 1in a STRIPS-type world, pushability).
consisting of a set of 5 connected
rooms, a mobile robot, 4 pushable boxes
in various rooms, and a lightswitch
requiring a box to reach. The robot has S MR e
B operators, with pre- and References.
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