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Abstract

Unscoped episodic logical form (ULF) is a se-
mantic representation capturing the predicate-
argument structure of English within the
episodic logic formalism in relation to the
syntactic structure, while leaving scope, word
sense, and anaphora unresolved. We describe
how ULF can be used to generate natural lan-
guage inferences that are grounded in the se-
mantic and syntactic structure through a small
set of rules defined over interpretable pred-
icates and transformations on ULFs. The
semantic restrictions placed by ULF seman-
tic types enables us to ensure that the in-
ferred structures are semantically coherent
while the nearness to syntax enables accurate
mapping to English. We demonstrate these in-
ferences on four classes of conversationally-
oriented inferences in a mixed genre dataset
with 68.5% precision from human judgments.

1 Introduction

ULF was recently introduced as a semantic rep-
resentation that captures the core semantic struc-
ture within an expressive logical formalism while
staying close enough to the surface language to
annotate a dataset that can be used to train a
parser (Kim and Schubert, 2019; Kim, 2019). Kim
and Schubert (2019) focused on the descriptive
power of ULF and its relation to its fully resolved
counterpart, Episodic Logic (EL), but the combi-
nation of semantic and syntactic information en-
coded in ULFs should position it to enable certain
structurally-driven inferences. In fact, Kim and
Schubert (2019) mention some of these inferen-
tial classes that they expect ULF will support, but
give no description of how to achieve this, nor a
demonstration of it in practice.

ULF, being a pre-canonicalized semantic form,
makes available many possible structures for simi-
lar semantic meanings, which leads to a challenge

Figure 1: Examples of the sorts of discourse inferences
that we generate via ULFs.

in formulating generalizable inferences. This pre-
canonicalized nature of ULF, though structurally
relatively intricate, has some advantages over fully
canonicalized representations for use in natural
language tasks. One is that it allows direct trans-
lation of intuitions about warranted textual infer-
ences into inference rules (much as in Natural
Logic). As well, the ability to accurately gener-
ate the English sentences corresponding to a ULF
formula and choose how and when to modify the
surface form allows a more natural interface with
the end task. This feature allows us to evaluate in-
ferences generated by ULF directly over English
text rather than using an artificially structured in-
terface, such as classification.

We present a method of generating inferences
from ULFs from a small set of interpretable infer-
ence rules by first defining general semantic pred-
icates over ULF clauses and tree transformations
that correspond to natural semantic operations in
ULF. We then evaluate these on four of the five
inferential classes presented by Kim and Schu-
bert (2019) over a multi-genre dataset. The ULF
structure allows us to incorporate a paraphrase-
like rewrite module and then perform direct string
comparisons of English generated from ULFs to
human generated inferences. Human evaluations
show that 68.5% of these generated inferences are
acceptable and an error analysis of the system
shows that many of the errors can be corrected



with some refinement to the inference rules and
the ULF-to-English generation system.

2 Unscoped Episodic Logical Form

ULF is an underspecified variant of EL which
captures the predicate-argument structure within
the EL type-system while leaving operator scope,
anaphora, and word sense unresolved (Kim and
Schubert, 2019). All atoms in ULF, with the
exception of certain logical functions, syntactic
macros, and names are marked with an atomic
type, which are written with suffixed tags: .v, .n,
.a, .p, .pro, .d, etc. echoing the part-of-speech,
such as verb, noun, adjective, preposition, pro-
noun, determiner, etc., respectively. Some of them
contain further specifications as relevant to their
entailments, e.g., .adv-e for locative or temporal
adverbs (implying properties of events). These
correspond to particular possible semantic deno-
tations. For example, .pro is always an entity,
.p is always a binary predicate, and .v is an n-
ary predicate, where n can vary. ULF (and EL)
uses type-shifting operators to retain type coher-
ence while staying faithful to the semantic types.
This is demonstrated in the following example.

(1) Would you take Tom to Boston with you?

(((pres would.aux-s) you.pro
(take.v |Tom| (to.p-arg |Boston|)
(adv-a (with.p you.pro)))) ?)

The type shifting operator adv-a is necessary
in (adv-a (with.p you.pro)) since this preposi-
tional phrase is acting as a predicate modifier in
(1), rather than as a predicate (e.g. “My daughter
is with you”). Constituents in ULF are combined
according to their bracketing and semantic types
as ULF does not restrict operator ordering in most
constructions.

In order to maintain word order and simplify the
explicitly modeled structure, ULF includes syn-
tactic macros and relaxations. ULF macros are
marked explicitly and reorganize their arguments
in a regular manner. For example, sub is a macro
for moving topicalized constituents to their se-
mantic positions—see the ULF in Figure 4 for
an example. ULF relaxations are parts of ULFs
that are not required to follow the strict operator-
operand syntax because their exact position can be
deduced otherwise. The subject-auxiliary inver-
sion in (1) is an example of this.

2.1 Expected Inferences from ULF

Here we briefly describe the classes of inferences
that Kim and Schubert (2019) propose could be
generated with ULF. 1

Inferences based on clause-taking verbs – For ex-
ample, “She managed to quit smoking" entails that
“She quit smoking" and “John suspects that I am
lying” entails “John believes that I am probably
lying”. Stratos et al. (2011) have demonstrated
such inferences using fully resolved EL formulas.

Inferences based on counterfactuals – For exam-
ple, “I wish I hadn’t forgotten to turn off the stove"
implicates that the speaker had forgotten to turn
off the stove.

Inferences from questions – For example, “How
soon can you get that done?" enables the inference
that the addressee is able to get that done (in the
foreseeable future), and that the questioner wants
to know the expected time of completion, and ex-
pects that the addressee probably knows the an-
swer, and will supply it.

Inferences from requests – For example, “Could
you put your seat back up a little?" implies that
the speaker wants the addressee to put their seat
back up, and expects he or she will do so.

NLog (Natural Logic) inferences based on gener-
alizations and specializations – For example,
“Every dog in the park chased after the squirrel",
together with the knowledge that Spot was a dog
at the park and that a squirrel is an animal entails
that Spot chased after an animal.

A common feature among all of these infer-
ences is that they are highly dependent on a com-
bination of the predicate-argument and syntactic
structures. Also, these are inferences that come
naturally and spontaneously to speakers during
conversation and are important for generating nat-
ural dialogues by setting up the appropriate con-
versational context.

1As ULFs do not resolve operator scope, anaphora, and
word sense ambiguity, inferences generated with ULFs will
retain these ambiguities. Therefore, the use of these infer-
ences will either need to tolerate such ambiguities, or resolve
them in a later step. Later resolution requires keeping track of
context of formulas from which conclusions are drawn. For
example, say we conclude from “We know he lied" that “He
lied". Resolving the referent of “He” requires the context of
the original sentence, which likely disambiguates the person.



“Can somebody help me?"
(((pres can.aux-v) somebody.pro

(help.v me.pro)) ?)

⇒
“I want somebody to help me.”

(i.pro ((pres want.v) somebody.pro
(to (help.v me.pro))))

Inference Rule
(∀a,t,v [[[a aux-indicating-request?] ∧ [t request-personal-pronoun?] ∧ [v verb?] ∧

(((pres a) t v) ?)]

→ (i.pro ((pres want.v) t (to v)))])

Figure 2: An example of an inference rule for inferring an underlying desire from a request. Infixed notation in the
inference rule is marked with square brackets for readability. Generalizations and variants of the rule for handling
extraneous sentence modifiers, such as please, are omitted for clarity.

3 ULF Inference Rules

The inference rules that we define are tree trans-
ductions that respect the EL type system in both
the antecedent and consequent clauses, ensuring
semantic coherence in the concluded formulas. By
using high-level predicates and transformations
over ULF expressions, these are simple and inter-
pretable at the top level. We use TTT (Purtee and
Schubert, 2012) to define our tree-transductions
rules as it provides a powerful and flexible way
to declare tree transductions and supports custom
predicate and mapping functions.

3.1 Named ULF Expression Predicates
The foundation of the interpretable predicates cor-
respond to the ULF semantic types with syntac-
tic features, e.g. lex-pronoun? which is true for
any atom with a .pro suffix—a ULF pronoun. In
line with TTT notation, we indicate predicates by
ending the name with a question mark, ?. These
are defined over the possible compositions of ULF
expressions which includes, for example, verb?

and tensed-verb? that match arbitrary untensed
and tensed verb phrases in ULF. This extends to
all distinct ULF constituent types: noun?, adv?,
term?, plural-term?, sent?, etc. We supplement
these with predicates that correspond to patterns
or enumerations of ULFs that correspond specifi-
cally to the inference task in question. For exam-
ple, aux-indicating-request? is a predicate that
is true for eight ULF auxiliary forms that corre-
spond to a request.2

3.2 Named ULF Expression Transformations
High-level tree transformation rules which cor-
respond to natural semantic modifications are
also defined and named. These are defined for
transformations where the indexical nature and

2can.aux-v, can.aux-s, will.aux-v, will.aux-s,
would.aux-v, would.aux-s, could.aux-v, and could.aux-s.

looser syntactic constraints of ULF lead to non-
trivial interactions with the syntactic structure. In
other words, these rules are indexical and syntax-
sensitive variants of simple EL inference rules.
This includes rules such as non-cf-vp! which
transforms a counterfactual verb phrase (VP) to
the corresponding factual VP, negate-vp! which
negates a VP, and uninvert-sent! which trans-
forms an subject-auxiliary inverted sentence, e.g.
a question, to the uninverted form. We indicate
transformation rules by ending the name with an
exclamantion mark, !. Here are a couple of exam-
ples of negate-vp! transformations for clarity.

(2) left the house → did not leave the house
((past leave.v) (the.d house.n))

→((past do.aux-s) not
(leave.v (the.d house.n)))

(3) had met before → had not met before
((past perf) meet.v before.adv-e)

→((past perf) not (meet.v before.adv-e))

Examples (2) and (3) show that the way nega-
tion modifies a ULF verb phrase is dependent on
the presence or absence of auxiliaries and aspec-
tual operators (i.e. perfect and progressive aspect).
And if this process results in a new head verb, the
tense operator would need to be moved accord-
ingly. In order to avoid directly managing these
idiosyncratic syntactic phenomena in the inference
rules, the VP negation is encapsulated into a single
transformation rule.

3.3 Defining Inference Rules

The inferences rules are simple if-then relations
defined over a structure where the predicates can
appear in the antecedent and the named transfor-
mations can appear in the consequent. Figure 2
shows an inference rule for simple requests, writ-
ten as a universal quantifier over ULF expressions.
In practice, this rule is implemented using a TTT



tree transduction rule. These rules can be formu-
lated as EL meta-axioms (Morbini and Schubert,
2008) generalized with the named ULF expression
predications and transformations to interface with
the looser syntax of ULF and its representational
idiosyncrasies inherited from English. Since the
inferential categories we are exploring are a mix-
ture of entailments, presuppositions, and implica-
tures their use in a general inference framework
warrants additional management of projecting pre-
suppositions and defusing implicatures.

4 Dataset Construction

We chose a variety of text sources for construct-
ing this dataset to reduce genre-effects and pro-
vide good coverage of all the phenomena we are
investigating. Some of these datasets include an-
notations, which we use only to identify sentence
and token boundaries.

4.1 Data Sources
• Tatoeba

The Tatoeba dataset3 consists of crowd-sourced
translations from a community-based educa-
tional platform. People can request the trans-
lation of a sentence from one language to an-
other on the website and other members will
provide the translation. Due to this pedagogical
structure, the sentences are fluent, simple, and
highly-varied. The English portion downloaded
on May 18, 2017 contains 687,274 sentences.

• Discourse Graphbank

The Discourse Graphbank (Wolf, 2005) is a
discourse annotation corpus created from 135
newswire and WSJ texts. We use the dis-
course annotations to perform sentence delimit-
ing. This dataset is on the order of several thou-
sand sentences.

• Project Gutenberg

Project Gutenberg4 is an online repository of
texts with expired copyright. We downloaded
the top 100 most popular books from the 30 days
prior to February 26, 2018. We then ignored
books that have non-standard writing styles: po-
ems, plays, archaic texts, instructional books,
textbooks, and dictionaries. This collection to-
tals to 578,650 sentences.

3https://tatoeba.org/eng/
4https://www.gutenberg.org

• UIUC Question Classification

The UIUC Question Classification dataset (Li
and Roth, 2002) consists of questions from the
TREC question answering competition. It cov-
ers a wide range of question structures on a wide
variety of topics, but focuses on factoid ques-
tions. This dataset consists of 15,452 questions.

4.2 Pattern-based Filtering

As the phenomena that we want to focus on are
relatively infrequent, we wrote filtering patterns to
reduce the number of human annotations needed
to get a sufficient dataset for evaluation. Requests,
for example, occur once in roughly every 100 to
1000 sentences, depending on the genre. The fil-
tering is performed by first sentence-delimiting
and tokenizing the source texts then matching
these tokenized sentences over linguistically aug-
mented regular expression patterns. The filtering
patterns are designed for near-full recall of the tar-
geted sentence types by retaining sentences that
superficially look like they could be of those types.

The sentence-delimiters and tokenizers are
hand-built for each dataset for a couple of rea-
sons. First, general purpose models are likely to
fail systematically on our multi-genre dataset and
relatively infrequent phenomena, leading to unin-
tended changes in the dataset distribution. Second,
the datasets have common patterns and existing
annotations which can be exploited in a hand-built
system. For example, the Discourse Graphbank
follows the ends of sentences with a newline and
in the Tatoeba and UIUC datasets each line is a
sentence. The transparency of the rules also have
the benefit that we can interpretably fix errors in
their performance in the future.

These filtering patterns are written in aug-
mented regex patterns. Figure 3 shows two such
augmented regex patterns for plain and inverted
if-then counterfactual constructions. The regexes
are augmented with tags written in angle brack-
ets, e.g. <begin?>. These tags refer to regex frag-
ments that are reusable and conceptually coherent
to people. <begin?> matches either the beginning
of the string or space separated from previous text.
<mid> matches words that are padded with spaces
on the sides (i.e. separate tokens from what’s de-
fined next to it) and <mid?> is a variant that allows
just a space as well. <past> and <ppart> are al-
ternative lists of past tense and past participle verb
forms. <futr> is an alternatives list of different

https://tatoeba.org/eng/
https://www.gutenberg.org


Basic if-then "<begin?>(if|If)<mid>(was|were|had|<past>|<ppart>)<mid?>(<futr>) .+"

If I thought this would make it difficult for the family , I would n’t do it , ” he said . – Discourse Graphbank

Inverted if-then "<begin?>(<futr>)<mid>if<mid>(was|were|had|<past>|<ppart>) .+"

Tom would n’t have married Mary if he ’d known she had spent time in prison . – Tatoeba

Figure 3: Example shorthand regex patterns (Section 4.2) for filtering candidate sentences with matching sentences.

conjugations of “will”. Tags for closed classes of
words and shorthands for common non-word pat-
terns were hand-curated. Tags for open classes
such as <past> and <ppart> are generated from
the XTAG morphological database (Doran et al.,
1994) with minor edits during the development
process.

4.3 Sentence selection

After performing filtering, we still have far too
many sentences to feasibly annotate, so we build a
balanced set of 800 sentences split evenly among
the four sentence types we filtered for, clause-
taking verbs, counterfactuals, requests, and ques-
tions. For each sentence type, we select the sen-
tence round-robin between the four datasets to bal-
ance out the genres. Some types of sentences ap-
pear more that 200 times in this sampling because
some sentences pass multiple filters. For example,
“Could you open the door?” passes both the re-
quest and question filters.

4.4 Inference Annotation

As we discuss in Section 7, evaluating automated
inferences effectively is a major challenge. Every
sentence leads to many inferences at various levels
of discourse, certainty, and context-dependence.
This is exacerbated by the ability to paraphrase the
inferred statements. By limiting ourselves to infer-
ences of particular general structures, we are able
to elicit natural responses from people that are re-
stricted to the particular phenomena that we are
interested in investigating.

The annotations are separated into the same four
categories as the filtering: clause-taking verbs,
counterfactuals, questions, and requests. The an-
notator is first asked to select the structural in-
ference pattern that holds for the given sentence
and write down the corresponding inferred sen-
tence. For example, say there is the sentence “If
I were rich, I would own a boat”. The annota-
tor would select an inference template along the
lines of (if <x> were <pred>, <x> would <q>)

→ (<x> is not <pred>) and write down the in-
ference “I am not rich”. This way we can get a

fluent inference, but push the annotator to think
about the inferences structurally. The annotators
are additionally instructed to keep the inference as
fluent as possible, preserve the original sentence
as much as possible, and keep the perspective of
the speaker of the sentence. We also included an
option for annotators to add new rules, to extend
the dataset into categories we did not anticipate.
This category will be referred to as Other.

The annotations were performed by members of
our research group, including some of the authors.
These were completed before starting the develop-
ment of the inference system. There is the possi-
bility of development being skewed by knowledge
of the annotated data, but we expect this factor to
be quite small since the core inference system was
built by only a couple of the annotators and the
bulk of this development was done several months
after completion of the annotations. The annota-
tions totaled 698 inferences from 406 sentences.5

5 Evaluation

We developed the inference rules based on a set
of 40 sentences randomly sampled from the an-
notated dataset. The correctness of these infer-
ences is evaluated both through an automatic eval-
uation over the whole dataset and a human eval-
uation of a sample of the inferences. Both eval-
uations are done directly over English sentences
by automatically translating the ULF inferences to
English sentences. The automatic evaluation also
involves a ULF rewriting module to handle seman-
tically equivalent inference variants. All of these
components are fine-tuned on the 40 sentence de-
vset. In all of the experiments we start with human
ULF annotations as a reliable ULF parser is not yet
available.6

5This is half of the original 800 sampled sentence after fil-
tering sentences that had duplicates due to dataset artifacts we
failed to notice at the sentence selections stage and sentences
that could not be annotated given the current ULF guidelines.

6Kim (2019) reports some promising preliminary results
on parsing ULFs.



Figure 4: A diagram of the automatic ULF inference evaluation pipeline.

5.1 ULF to English

The ULF-to-English translation is done in a simple
multi-stage process of

1. Analyzing the ULF type of each clause,
2. Incorporating morphological inflections based

on the type analysis,
3. Filtering out purely logical operators, and
4. Mapping logical symbols to surface form coun-

terparts.

The closeness of ULF to syntax and its preserva-
tion of most word-ordering makes hand-building
a robust function for this reasonably simple. The
verb conjugations and noun pluralizations are per-
formed using the pattern-en python package. The
code for mapping ULFs to English is available at
https://github.com/genelkim/ulf2english.

5.2 Rewriting Rules

The rewriting rules capture alternative ways to
represent the same sentence without changing the
meaning. This includes clausal restructuring (e.g.
“I expect that you come here” to “I expect you to
come here” or “I expect you come here”), merging
inferences (e.g. “I want you to get that done” and
“I expect you to get that done” to “I want and ex-
pect you to get that done”) and others of this sort
that are extremely unlikely to change the meaning
of the sentence.

5.3 Automatic Inference Evaluation

A diagram of the automatic evaluation pipeline is
presented in Figure 4. The pipeline for a given
source sentence and ULF proceeds as follows:

1. Use the inference rules (Section 3) to generate
a set of raw inferences from the source ULF.

2. Generate a complete set of possible realizations
of the inferred ULFs by rewriting the raw infer-
ences into possible structural variations (Sec-
tion 5.2).

3. Translate inferred ULFs into English to get a
set of inferred sentences (Section 5.1).

4. For each human inference elicited from the cur-
rent source sentence, find the system-inferred
sentence that has the smallest edit distance.

5. Report recall over human inferences with a max
edit distance threshold.7

We use an edit distance threshold of 3. This al-
lows minor English generation errors such as verb
conjugations and pluralizations, but does not allow
simple negation insertion/deletion (a difference of
a space-separated “not” token). Table 1 lists the
results of this evaluation. The numerical values are
fairly low, but this may be expected given the eval-
uation procedure. A trivial baseline such as most
frequent devset inference or copying the source
sentence would lead to a score of 0 or very close
to 0 as these are very unlikely to be within a 3-
character edit from the inferences in the dataset.

5.4 Human Inference Evaluation

The human inference evaluation was performed
over 127 raw ULF inferences. This was built out
of 100 randomly sampled inferences with the addi-
tion of every counterfactual and clause-taking in-
ference as they are not as common. Each infer-
ence was then translated to English, then presented
alongside the source sentence to 3 to 4 indepen-
dent human judges. The judges evaluated correct-
ness of the discourse inference and the grammat-
icality of the output sentence. Table 2 presents
the results of this. 87 of the 127 inferences were
marked as correct by a majority of judges and
only 21 were marked as incorrect by a majority
of judges, for the remaining 19 inferences judges
either disagreed completely or a majority judged
it as context-dependent. 99 of the 127 inferences
were judged grammatical by a majority of judges,
which demonstrates the efficacy of the ULF-to-

7We do not report precision over automatic inferences be-
cause missing inferences are common in our dataset. This
could be alleviated in the future by explicitly splitting the in-
ference elicitation task into smaller subtasks and/or incorpo-
rating a reviewing stage where initial inferences are reviewed,
corrected, and possibly added to by a second person.

https://github.com/genelkim/ulf2english


cf cls req q oth all

Recall 1/13 1/33 33/97 69/316 7/130 112/662
(8%) (3%) (34%) (22%) (5%) (18%)

Table 1: Results of automatic inference evaluation de-
scribed in Section 5.3. cf stands for counterfactual in-
ferences, cls for clause-taking, req for request, q for
question, oth for other.

cf cls req q-pre q-act oth all
Correct* 11/27 2/5 17/19 13/21 31/39 13/16 68.5%
Incorrect* 9/27 3/5 0/19 3/21 3/39 3/16 16.5%
Context* 7/27 0/5 2/19 5/21 5/39 0/16 15.0%
Grammar 20/27 1/5 19/19 12/21 33/39 14/16 78.0%

Table 2: Results of majority human evaluation of sys-
tem generated inferences. Evaluation on 127 inferences
with from the test set by 3 or 4 people per inference.
*Correctness is evaluated on whether the sentence is
a reasonable inference in conversation, allowing for
some awkwardness in phrasing. Context, means the
correctness is highly context-dependent. The inference
type labels in the header row are the same as in Table 1
except for the addition of breaking down questions to
q-pre for question presuppositions and q-act for ques-
tion act inferences.

English translation system.8 The system seems
to struggle most with counterfactual and clause-
taking inferences.

5.5 Evaluation of Rewriting Rules

In order to verify that the rewriting rules in fact
preserve the semantic meanings, we gathered a
sample of 100 system-inferred sentences that were
closest to a gold inference (step 4 in Section 5.3).
Each inferred sentence is judged as whether it is
a valid rewrite of one or more of the raw infer-
ences. A valid rewrite does not introduce new se-
mantic information. 91 out of the 100 were judged
as valid by a majority of three human judges. As
such, the rewriting system is not abusively over-
generating sentences that are semantically differ-
ent and match to gold inferences, increasing the
recall score.

6 Analysis and Discussion

The human inference evaluation (Section 5.4)
showed that the system struggles most with coun-
terfactual and clause-taking verb constructions.
This is largely because the sampling procedures

8Some inferences marked as ungrammatical were also
marked as correct, indicating that the ULF-to-English fail-
ures can be minor enough to be easily understood.

for these constructions are not as effective, lead-
ing to fewer positive examples in our dataset. In
turn, our development set of 40 sentences only in-
cluded a handful of examples of each inference, so
the rules remained brittle after adjusting to the de-
velopment set. In fact, two of the three incorrect
clause-taking verb inferences are a result of a sim-
ple mistake of allowing arbitrary terms rather than
only reified sentences and verbs in the antecedent.

Some of the automatic inferences were impos-
sible to handle using our inference rules because
of disagreements among human elicited inferences
on what circumstances warrant particular infer-
ences and how precisely an inference should be
expressed. For example, the distinction between
the presence or absence of the word “probably”
is best handled with a separate confidence metric.
In conversations, the distinction between highly
probable statements and simply true statements
is blurred. One could choose to include or omit
“probably" for statements where the possibility of
the plain sentence being false is small. Still, we
would not want to add this as a rewriting rule
since strictly speaking, such hedges do affect the
meaning. Similarly, human elicited inferences dis-
agreed on whether requests warrant a question act
inference (e.g. “Could you open the door?” →
“You know whether you could open the door”).
We opted to avoid generating these inferences in
building our rules, which significantly affected the
recall score in the automatic evaluation.

The ULF-to-English generation system is re-
markably accurate given its fairly simple pipeline
approach and given that this is the first real use
of this system. 78% grammaticality shows room
for improvement and a cursory review of the er-
rors show that there are some ULF macros that still
need handling and that verb conjugations need to
be made more robust.

Given these results, improvements to the filter-
ing system for counterfactual and clause-taking
verb constructions, gathering a larger dataset with
a more robust collection procedure, and another
set of experiments with the larger dataset would
be valuable next steps in more precisely measuring
the use of ULF in generating discourse inferences.

7 Related Work

Inference demonstrations have been performed
in the past for various semantic representations,
showing their respective strengths. Discourse



Representation Structures and Minimal Recursion
Semantics (MRS) can both be mapped to FOL and
run on FOL theorem provers (Kamp and Reyle,
1993; Copestake et al., 2005). MRS has been suc-
cessfully used for the task of recognizing textual
entailment (RTE) (Lien and Kouylekov, 2015).
Similarly, EL has been shown successful in gen-
erating FOL inferences (Morbini and Schubert,
2009) and self-aware metareasoning (Morbini and
Schubert, 2011). Abstract Meaning Representa-
tion (Banarescu et al., 2013) focuses on event
structure, resolution of anaphora, and word senses
rather than logical inference and has been demon-
strated to support event extraction and summariza-
tion (Rao et al., 2017; Wang et al., 2017; Dohare
et al., 2017). TRIPS LF (Allen, 1994; Manshadi
et al., 2008) is an unscoped modal logic directly
integrated with a lexical ontology and has been
used for dialogue and biomedical event extrac-
tion (Perera et al., 2018; Allen et al., 2015). Dis-
tributional representations have been shown to be
very effective for RTE, such as in the SNLI and
MultiNLI datasets (Bowman et al., 2015; Williams
et al., 2018). These datasets are much larger than
previous RTE datasets and both provide classifi-
cation tasks supporting the use of an implicit dis-
tributional representation in a neural network sys-
tem. The discourse inferences we demonstrated
with ULFs, which require access to some syntac-
tic information, as well our evaluations based on
reliable English generation, are a challenge to all
of the semantic representations discussed, because
of their relative remoteness from syntax.

In the realm of evaluation methods, our work
has similarities with the TAC KBP slot-filling task,
which defines specific types of information that
the system is meant to extract from the text with-
out knowledge of the possible correct answers (El-
lis et al., 2015). But TAC KBP focuses on re-
stricted types of factoids, whereas our evaluation
focuses on structure-based sentential inferences.
In recent years inference evaluations have typi-
cally been posed as either a classification tasks
similar to RTE (Bowman et al., 2015; Williams
et al., 2018) or multiple-choice question answer-
ing (Clark et al., 2018). This knowledge of pos-
sible alternatives allows systems to avoid mod-
eling inferences explicitly and to exploit statis-
tical artifacts. The inference model trained on
the ATOMIC commonsense dataset was evaluated
without providing a set of possible choices by

using BLEU (Sap et al., 2019). Though BLEU
scores tend to correlate with correct inferences
in practice, using it as a metric of evaluation is
fraught with danger. Small changes that dramat-
ically alter the meaning of a sentence (e.g., nega-
tion) are not reflected in the BLEU scores, and for
structurally oriented inferences, incorrect infer-
ences are likely to have misleadingly high scores.

8 Conclusions

We presented the first known method of gener-
ating inferences from ULF and an evaluation of
inferences, focusing on discourse inferences. We
also presented a method of collecting human elic-
itations of restricted categories of structural infer-
ences, allowing a novel forward inference evalu-
ation. We used these elicited inferences to auto-
matically evaluate the generated inferences with
promising results. Human judgments on a sam-
ple of generated inferences showed that 68.5% of
the inferences are reasonable discourse inferences,
16.5% were unreasonable, and 15% were context-
dependent or had disagreements between judges.
Our experiments also demonstrate some of the ad-
vantages of using a semantic representation closer
to the syntactic form such as ULF—reliable trans-
lation to English and access to syntactic signals—
though this comes at the cost of a more compli-
cated interface with the semantic patterns. There
are clear areas of future work on improving the hu-
man elicitation collection and the implementation
of the inference system. A larger and more refined
dataset of inference elicitations will likely allow
the development of a robust inference system on
the discourse inference categories in question.
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