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Abstract

We describe the foundations and the systematization of natural logic-like mono-
tonic inference using Unscoped Episodic Logical Forms (ULFs) that Kim et al.
[1, 2] introduced and first evaluated. In addition to providing a more detailed
explanation of the theory and system, we present results from extending the
inference manager to address a few of the limitations that Kim et al.’s [2] naive
system has. Namely, we add mechanisms to incorporate lexical information from
the hypothesis (or goal) sentence, enable the inference manager to consider mul-
tiple possible scopings for a single sentence, and match against the goal using
English rather than the ULF.*
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1 Introduction

Unscoped Logical Form (ULF) is an underspecified form of Episodic Logic (EL), an
extended first-order logic designed to closely match the form and expressivity of natural
language [3, 4]. ULFs fully capture the semantic type structure of corresponding EL
formulas while leaving scope, anaphora, and word sense ambiguities unresolved. While
presenting ULF, Kim and Schubert [3] proposed that ULF is suitable for five classes
of inferences, namely monotonic inferences, inferences based on clause-taking verbs,
inferences based on counterfactuals, inferences from questions, and inferences from
requests. The suitability of ULF for each of these classes of inferences has since been
experimentally demonstrated by Kim et al. [2], who demonstrated the monotonic
inferences on the FraCasS dataset [5], and Kim et al. [6], who demonstrated the remaining
categories of inferences in a dataset discourse-oriented sentences that regularly give
rise to these phenomena.

Kim et al.’s [2] monotonic inference system for ULFs was based on a proof-based
formalism described by Kim et al. [1]. This approach was formalized via correspondence
to Sanchez Valencia’s [7] treatment of natural logic which uses Lambek cum Permutation
Calculus [8], ensuring that the ULF-based inference method can handle the same
set of natural logic inferences as this system from past literature. The full picture
of the ULF monotonic inference system is fragmented across two workshop papers,
one describing the theoretical inference framework with many details tucked away in
the appendix [1], and another focusing on how a feasible inference system was built
based on the theoretical framework [2]. Many details of the relationship between the
theoretical rules and the implemented system are left implied by citations and the
accompanying codebase due to limitations of the publication format.

In this paper, we present a unified description of the theoretical framework and
the implementation of Kim et al.’s [1] monotonic inference system making clear the
correspondence between the theoretical rules and how they are realized in practice. In
addition, we present methods to overcome a few limitations in this proof-of-concept
inference system—steps that are necessary (but not sufficient) to turn this inference
system into a more mature, competitive inference engine. We measure the effect of
these changes on the performance of the same dataset as Kim et al. [2] and discuss
what these results suggest about the next steps in developing a robust ULF monotonic
inference system.

2 Background

Natural logic is an approach to logical inference based on directly accessing natural
language—more specifically, using the syntactic structure and knowledge of the semantic
properties of the lexical items and local constructions [9, 10]. Monotonicity calculus
is an important fragment of natural logic that uses that systematically applies the
knowledge of language elements that act as monotone functions over the syntactic
structure of a sentence to identify global polarity contexts. These polarity contexts
then mediate specific entailment conditions based on the properties of the monotone
functions. Figure 1 shows the three basic cases of monotonicity inference, upward,
downward, and non-monotone contexts leading to different entailment conditions. A



The train (departed the station according to schedule)®
= The train departed the station

Upward

I have never (cycled)Y before

D d
ownwar = [ have never cycled in the Tour de France before

Ezactly 5 friends went on a (cruise)™

Non- t ) . .
on-monotone < Exactly 5 friends went on a (transpacific cruise)®

Fig. 1: Examples of sentence pairs with upward entailment (...)*, downward
entailment (...)Y, and non-monotone (... )™ relationships.

monotone function operates over partially ordered sets and either preserves or inverts
the ordering of argument values. More precisely, for an upward monotone function
f, © <y implies f(x) < f(y). Similarly, for a downward monotone function g, <y
implies g(z) > g(y). If neither of these implications hold for a function h, h is said to
be non-monotone. When the ordering of the arguments and function results describe
subset relations and entailments of expressions in language, monotonicity can be a
tool for making natural language inferences. For instance, consider the second example
in Figure 1. Never is downward monotone in entailment since it flips the entailment
ordering of (1) I have cycled in the Tour de France before entails (2) I have cycled
before to (2) I have mever cycled before entails (1') I have never cycled in the Tour
de France before.

Kim et al.’s [6] discourse-related inferences using ULFs are made from manually
annotated ULFs using symbolic meta-axioms generalized to handle syntactic idiosyn-
crasies and achieved reasonable precision on a multi-genre dataset. Kim et al. [2] then
complemented this by demonstrating Natural Logic-like inferences using ULFs on the
general quantifiers section of the FraCaS dataset, also incorporating an automatic
ULF parser. Unlike most other work in these domains, both of these systems perform
forward inferences, rather than goal-directed inference. This distinction is important
because of the authors’ interest in generating inferences spontaneously in discourse
where the desired inferences are not known beforehand. Furthermore, they focus on
demonstrating that such inferences are possible using ULFs, not on building competi-
tive systems for specific benchmarks, so their inference systems have some significant
limitations. We investigate methods for overcoming the following two limitations of
Kim et al.’s [2] system.

Limitation 1. The inference manager only considers the premises when determin-

ing the relevant lexical relationships to introduce into the search process.

Limitation 2. The inference manager only considers a single possible scoping of

the unscoped logical form.
Limitation 1 is a consequence of the authors’ commitment to a forward inference
strategy, which cannot possibly anticipate all ways in which new vocabulary might
appear in the entailments of the premises. For example, given the appearance of few
committee members in the premises, the forward inference process cannot be expected
to enumerate various modified versions of this phrase, such as few female committee



members from Scandinavia, etc. Therefore we make use of modifier information from
the goal hypothesis in the updated experiments (see Section 5.1).

Limitation 2 is a more substantive limitation. This assumes that the polarity
management mechanisms, both the initial labeling and the propagation method, are
free of mistakes. Conceptually, supporting multiple polarity annotations in the inference
process can be as simple as running the inference process over ULF—scoping pairs
rather than only the ULFs. However in practice, the engineering optimizations in the
implementation of the inference system (which are incompatible with this change)
requires the development of similar optimizations to have a computationally feasible
system (see Section 5.2).

2.1 Automated Monotonicity Inference

Automated natural logic inference systems development—distinct from general natural
language inference—is an active area of research [11-18]. In order to evaluate our
monotonicity-specific inference system with minimal external resources fairly, we focus
on the FraCaS dataset [5]. FraCaS was carefully curated to include specific, technical,
inference relationships, including monotonicity-based entailments. In Section 7, we
summarize Kim et al.’s [2] results against a few notable systems that were previously
evaluated on the same parts of the FraCaS dataset: Mineshima et al. [13]|, Abzianidze
[14], Hu et al. [15], and Haruta et al. [16] to contextualize the system performance in
the wider literature, despite this not being a state-of-the-art (SOTA) system. This sets
the stage to investigate the scale of improvements that we get from overcoming specific
limitations in the naive ULF inference system.

Mineshima et al. [13] and Abzianidze [14] extend first-order lambda logical forms
with higher-order terms (e.g., most, many, half of, etc.) and augment first-order
inference with rules geared towards those terms. Haruta et al. [16] achieve SOTA
performance by employing degree and event semantics to approximate key higher-order
logic features presented in different linguistic phenomena. Hu et al. [15] differs from the
others by running directly on the natural language text, with a combinatory categorical
grammar (CCG)-based monotonicity labeling system. Apart from our reliance on
forward inference, our approach most resembles Hu et al. [15] based on our shared use
of relatively compact sets of monotonic inference rules that operate over logical forms
that resemble the form and expressiveness of natural language.

Monotonicity inference is also being investigated in the context of large neural
models—whether large neural models effectively encode monotonicity relations. This
includes both those trained on natural language inference tasks [19] and those pretrained
on large corpora of unstructured text [20]. They find that despite their statistically
strong performance, neural models of both types fail to reliably capture polarity
information and monotonicity inferences.

3 Theoretical Inference Method

Kim et al.’s [2] system is based on a proof-based inference method described by
Kim et al. [1] that uses ULF as the base semantic representation. This proof-based
method uses inference rules for ULFs that correspond directly to inference rules in



Sanchez-Valencia’s [10] formulation of Natural Logic. Here we list the inference rules
formulated by Kim et al. [1].! Please note that where polarity contexts are necessitated
by operators present in the formulas, the polarity markings are omitted for clarity, e.g.,
every.d imposes a negative polarity on its restrictor and a positive polarity on its body.

Theory Rule 1 (Monotonicity, umi).

(11) #[P1*], ((every.d P1) (be.v (= (a.d P2))))

. o[ P2]

@[ P2Y], ((every.d P1) (be.v (= (a.d P2))))
o[ P1]

This is the main rule for making monotonicity-based inferences.

(1.2)

Theory Rule 2 (Conversion, UCI).
((61 P) (be.v (= (62 Q)))) where §; € {some.d, a.d, no.d}
((61 Q) (be.v (= (62 P)))) and d9 € {some.d, a.d}.

Theory Rule 3 (Polarity Marking, PMm).

o] where ‘#’ € {A, w, m} based on the polarity marking from
¢[v*]  the corresponding SLF, &' [Y'*].

Polarities are computed respective to specific scopings of ULFs—in the form of scoped
logical forms (SLFs)—then propagated back to the ULFs to enable inferences that are
contingent on the polarity context. When converting a ULF to an SLF, each scoping
operator must be lifted to a valid position for a scope operator. These positions are
any that are operating on well-formed formulas, embedded or not, and which are not
within the original operand of the scoping operator position in the ULF (that is it
must be “lifted”). For most scoping operators, this process simply places the operator
in a new position. Determiners, however, have a more complicated scoping process.
For a ULF, 1, which contains a quantified expression ¢ of form the (6 7) where ¢ is
a determiner and 7 is a predicate, the corresponding formula with (§ 7) at the top-
level scope is (6 z: (z 7) ¥[?/x]). That is, the restrictor must be lifted alongside the
determiner, and the original position of ¢ is replaced by a newly introduced, unique
variable. Each possible permutation of scope operator placements results in a unique
SLF corresponding to a ULF.

From the SLF, the global polarity contexts are computed. Using lexical knowledge
regarding monotonicity properties, SLFs are marked with local entailment contexts
(the local entailment direction is based only on each expression’s parent). From this,
the global polarity marking is computed using a simple recursive algorithm.

1. Node a has non-monotone polarity (m) if any node in the path from the root to a
is marked with “o” (the local analog of m).

2. Else, node a has negative polarity (w) if there are an odd number of nodes between
the root and a (inclusive) marked with “~” (the local analog of w).

3. Otherwise, node a has positive polarity (A).

'For the correspondence of these rules to Sanchez-Valencia’s [10] natural logic, please see Kim et al.’s [1]
explanation.



Notice that two different SLFs may (but not necessarily) result in differing polarity
annotations for the same ULF depending on how the monotonicity operators scope in
the two SLFs.

Theory Rule 4 (Negation Introduction/Elimination, NI/NE).

(4.2) (not (not ¢))

(4.1) 7

)
(not (not ¢))
Theory Rule 5 (Negation-Quantifier Identities, NQ).
o[ (not ((some.d P1) P2))] ¢[((no.d P1) P2)]
o[((no.d P1) P2)] o[ (not ((some.d P1) P2))]

o[ (not ((a.d P1) P2))] o[ ((no.d P1) P2)]
¢[((no.d P1) P2)] é[(not ((a.d P1) P2))]

In addition to basic negation introduction and elimination rules, Kim et al. [1] provide
useful rules regarding the interactions between negation and some common quantifiers.
The exact rules that the implemented inference system uses and a discussion of their
relationship to the theory rules presented in this section is given in Section 4.4.

Below is a basic inference example from Kim et al. [1], which demonstrates the use
of SLF for polarity computation and a simple use of the UMI inference rule as described
in this section.?

(5.1) (5.2)

(5.3)

(5.4)

Basic Monotonicity Example with ULF

1. (JAbelard| (see.v (a.d carp.n))) Assumption
2. ((every.d carp.n) (be.v (= (a.d fish.n)))) Assumption
3. (a.d z: (z carp.n)® (|Abelard| (see.v z)*)*) SLF of 1. w/ polarity
4. (|Abelard| (see.v (a.d carp.n®))) Polarity marking 1.,3.
5. (JAbelard| (see.v (a.d fish.n))) UMI 2.,4.

See Kim and Schubert [3] or Kim et al. [1] for explanations of the syntactic conventions
of ULF, such as the type-designating suffixes (e.g., .d, .v, .n, etc.).

4 Baseline System Description

We start our discussion of Kim et al.’s [2] system with an inference example that
demonstrates some of the ways in which the system differs from the underlying
theoretical framework presented by Kim et al. [1]. This example is problem 24 from the
FraCaS dataset. The formulas and annotations are based on the actual output of the
automatic system. The UMI rules (Theory Rule 1) generalize every A is a B to equivalent
universal quantification forms (in this case all As are Bs), our polarity marking method
circumvents the need for SLFs (Sections 4.3 and 4.4.1), and we have rules to generate
monotonicity relations from intersective predicate modification (Section 4.4).

2The computation of global polarity via local entailment context propagation and irrelevant polarity
marking symbols are omitted for brevity and clarity.
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Fig. 2: A diagram of the inference system component dependencies. The notable
differences when compared to Kim et al.’s [2] system are (1) the introduction of goal-
filtered lexical knowledge to the knowledge base (Section 5.1) and (2) the production of
multiple possible polarity markings for each ULF formula in polarity marker component
(Section 5.2).

Inference Example (FraCaS Problem 24)

1. Many delegates obtained interesting results from the survey Premise (English)
2. Many delegates obtained results from the survey Hypothesis (English)
3. ((many.d (plur delegate.n)) Premise (ULF), 1.

((past obtain.v) (k (interesting.a (plur result.n)))
(adv-a (from.p (the.d survey.n)))))

4. ((many.d (plur delegate.n)) ((past obtain.v) Hypothesis (ULF), 2.
(k (plur result.n)) (adv-a (from.p (the.d survey.n)))))
5. ((all.d (interesting.a (plur result.n))) Extract intersective
((pres be.v) (= (k (plur result.n))))) modifier relation, 3.
6. ((many.d (plur delegate.n)™) Polarity marking 3.

((past obtain.v) (k (interesting.a (plur result.n))*)
(adv-a (from.p (the.d survey.n)))))

7. ((many.d (plur delegate.n)) ((past obtain.v) UMI 5.,6.
(k (plur result.n)) (adv-a (from.p (the.d survey.n)))))
8. Entailment Exact Match, 4.,7.

As demonstrated by this example, the inference system starts with a set of premise
sentences and a hypothesis sentence in English which are first automatically converted
to ULF before starting the proof-based inference process to determine whether there is
an entailment, contradiction, or unknown relationship between the premises and the
hypothesis. This inference process uses a forward search from the premises.

This system simplifies the theoretical framework in two ways to reduce the search
space and to make for a sufficiently fast inference process. For one, only one SLF and



polarity annotation is computed for each ULF which is assumed to be the correct
scoping. In addition, variations of the monotonicity and conversion inference rules are
introduced to support specific ULF macros and common syntactic constructions. Such
variations lead to a more direct inference process by using a single inference step to
handle a two-step inference in the theoretical framework.

The generalization of Theory
Rule 1 (uMI) to other forms of univer-
sal quantification is a simple example
of this second simplification. A more
interesting example is the simplifi-
cation of the monotonicity relation
extraction rules, which themselves are
optimizations to the search process as
explained in Section 4.4. The intersec-
tive prenominal modification extrac-
tion rule (System Rule 9) identifies
an intersective prenominal modifica-
tion, such as the phrase a sneaky
panther, and extracts the monotonic-
ity relations every sneaky panther is
a panther and every sneaky panther
is sneaky. The most basic theoreti-
cal form of this would first require
an expansion of a sneaky panther to
something that is sneaky and that
18 a panther, from which the mono-
tonicity relations can be extracted
based on properties of logical con-
junction. The system instead directly
extracts the entailments upon recog-
nition of the intersective nature of the
modification.

Component 1. Heuristic-based
inference search (Section 4.1)
Component 2. A ULF transducer

(Section 4.2)
Component 3. A global polarity
marking function (Section 4.3)
Component 4. Inference rules
with  polarity = propagators
(Section 4.4)

Algorithm 1 Heuristic search. Inference rules
map a set ULF premises to a set of ULF inferences.

Inputs: @, a set of premises; ¥, a goal ULF; h,
a heuristic function; M, a search depth limit.
Outputs: The entailment classification.
Global Constants: U, a list of unary rules; B,
a list of binary rules; €, a small positive number;
¢, a step count for search method change.
Procedure:
Initialize n < 0, KB « &.
Initialize @}, < empty priority queue.
Initialize Qpgs < empty basic queue.
Initialize Q <« Qy,.
Initialize Qother < Qbfs-
loop
If n> M or Q = @, return UNKNOWN.
If ¢ €e KB, return ENTAILMENT.
If -1 € KB, return CONTRADICTION.
v < Qpop().
tunary ~Uxuv.
thinary < Bx (v xv)u(vxKB)u(KBxv)).
Push all results x of computing the tuples in
tunary and tpipary that are not contained
in KB to @y, with key h(z) +ne and Q-
KB « KBuv.
n<n+l.
if n mod ¢=0 then
tmp < Q.
Q < Qother-

Qother + tmp.
end if

end loop

Figure 2 shows a diagram of the component dependencies. While most of the inference
system is symbolic, the initial constituency parses and initial polarity marking—used
for ULF transduction and scope selection, respectively—are computed using NN and



ML methods. Furthermore, the ML-based polarity marking is used when the symbolic
polarity propagation methods fail or take too long.

4.1 Search Process

The inference process is guided by a heuristic-based forward search. Algorithm 1 shows
this process in detail. The heuristic-guided search uses a heuristic of the distance between
an arbitrary formula and the goal formula. While this heuristic search typically runs
quickly, it does not guarantee completeness of the search process and its performance
is highly dependent on the quality of the heuristic function. Rather than investing time
into finding the optimal heuristic function, Kim et al. [2] chose to interleave heuristic
search steps with breadth-first search steps (BFS). The heuristic function estimates
the distance from an arbitrary formula, u, to the goal formula. The search process
additionally gives preference to formulas reached earlier in the search process in cases
of heuristic ties by adding a small positive number, €, to the heuristic value at each
step. A hyperparameter, ¢, sets the frequency at which the search process alternates
between heuristic search and BFS. The specific values used in the experiments are
detailed in Section 6.

4.2 ULF Transducer

The English-to-ULF parsing is done by using a constituency parser then transducing
the constituency tree into a ULF. Specifically, Kim et al. [2] use the Berkeley neural
parser [21] to obtain constituency trees.® The following transduction into ULF follows
a series of simple correspondences from the phrase structure and POS tags to ULF
expressions. This process resembles the parsing processing in the initial stages of past
transduction-based EL parsers [22-25].% The existing neural network ULF parser [27]
was not used here because sentences in monotonicity datasets tend to be fairly short
and follow written English syntax. This plays into the strengths of the transduction
parser which can reliably handle simple cases and have more predictable errors that
the inference system may recover from.

4.3 Polarity Marking

Kim et al. [2] rely on the Natlog and NaturalLI systems [11, 28] for the initial polarity
marking problem as well as a recovery tool in cases of polarity propagation failure.’
ULFs first are converted to English because Natlog and NaturalLI operate on English,
not ULFs or general tree structures. This is done using the ULF2English system [6]
and an alignment between ULF expressions and the English words are computed using
subroutines of the ULF2English system.

The polarity markings on the English words are mapped to the ULFs using the
alignment. This however only provides polarity markings at the word level. In order to
extrapolate the polarity marking for every ULF subexpression, all SLF possibilities of

3The version 0.2.0 release and the benepar_en3 model available at https://github.com/nikitakit/
self-attentive-parser/.

4The transduction rules are written in a combination of the tree-to-tree transduction language [26] and a
simplified variant.

5This is available through the Natural Logic component of Stanford CoreNLP.
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the ULF are generated, the corresponding polarity markings are inferred for each SLF
using the process described in Section 3 and a manually curated set of negative polarity
operators. The SLF which leads to the fewest polarity annotation discrepancies when
compared to the NatLog polarity labels is selected. The inference rules propagate the
polarities so this is typically only performed on the input sentences (Section 4.4.1).

Computing possible SLFs requires an account of island constraints. These constraints
are imperfectly modeled with the following rule: Scoping operators cannot scope outside
of ancestors that are ULF type-shifters. This rule handles complex modifiers (which
are shifted from predicates to modifiers) and reified clausal complements (e.g., I believe
that everyone thinks.) and is simple to implement within the ULF type system. This
rule leads to a loss in expressive capacity as it ignores known exceptions [29] and the
de dicto / de re distinction for clausally-embedded indefinite quantifiers [30, 31].

4.4 System Inference Rules

The inference rules in the system fall under five broad categories. There are 9 total
inference rules when accounting for specializations for macros—though some of these
inference rules themselves include several distinct transduction patterns to account for
less substantial syntactic variations. Here we list the broad categories and the specific
inference rules in our system for each category.

A. Monotonicity Substitution. This is the core monotonicity inference. Given
the premise Fvery A is a B, B is substituted for A in positive polarity contexts
and A is substituted for B in negative polarity contexts. In order to reduce the
proof lengths, we suppress ULF macro expansion rules and extract monotonicity
relations directly from macro instances.

System Rule 1 (Positive Monotonicity Substitution, umIA). Direct
implementation of Theory Subrule 1.1. uMI where the replaced expression is in a
positive polarity context.

System Rule 2 (Negative monotonicity substitution, UMIiv). Direct
implementation of Theory Subrule 1.2. uMI where the replaced expression is in a
negative polarity context.

System Rule 3 (Monotonicity-based quantifier substitution). Some
quantifiers also have relationships that can lead to polarity-dependent substitutions.
For example, the and both can be replaced with a in positive polarity contexts
and the reverse is true in negative polarity contexts. In our system, we generalize
this to all, every, each < a under the assumption that the domain of individuals
is not empty.

B. Conversion. Inferences that swap the restrictor and body predicates in existential
quantification.

System Rule 4 (Conversion). Direct implementation of Theory Rule 2. For
example, Some artwork is a painting < Some painting is an artwork.

10



C. Conservativity. This category of inferences is based on the widespread con-
servativity feature in natural language quantifiers. The FraCaS dataset includes
examples targeting this inference and this inference rule is also commonly used
for introducing and eliminating relative clauses in simple quantified expressions.

System Rule 5 (Conservativity Transductions). We implement this rule
using two different transduction patterns. One based on relative clauses, § As are
Bs < 0 As are As that/who are Bs, where § is a determiner. And another based
on existential “there” constructions, 6 As are Bs = there is an A that is a B.

D. Equivalences. Substituting equivalent words or constructions for each other.

System Rule 6 (“No” to Negated Indefinite). Replacing ¢[no.d] with (not
¢[d1]) where d1 € {some.d, a.d,an.d}.

System Rule 7 (Equivalent Quantifier Substitution). This inference
rule substitutes between the equivalent forms of existential (some, a), universal
(all, every, each, simple generics), and numerical (one.d == a.d) quantifiers. For
example, Every genre has merit < All genres have merit)

E. Search Optimizations. A couple of inference rules were introduced as search
optimizations. They allow us to avoid producing possible intersective relationships
for the entire known lexicon. Instead focusing in on only intersective relationships
that appear in our problem. We also avoid expanding out intersective modifiers
as lambda functions of conjunctions and using separate inference rules to process
logical conjuncts. Intersective modifications are identified in formulas in the
knowledge base (premises + inferred formulas) and formulas describing these
intersective relationships are directly constructed. These formulas are then used
with UMI to generate equivalent inferences to a generic conjunction-based system
without the need to introduce rules for managing explicit predicate conjunctions.

System Rule 8 (Intersective Postnominal Modifier Rule Extraction).
This rule identifies post-nominal modifiers that are intersective in a formula
and extracts a formula that can be used in conjunction with UMI to generate
appropriate inferences. For example, from the postmodified noun phrase a mouse
in the walls this rule directly extracts the entailments every mouse in the walls is
a mouse and every mouse in the walls is in the walls.

System Rule 9 (Intersective Prenominal Modifier Rule Extraction).
This rule is the prenominal modification analog of System Rule 8. For example,
from the phrase a sneaky panther, this rule extracts the entailments every sneaky
panther is a panther and every sneaky panther is sneaky.

The intersective modifiers are identified using a non-subsective adjective list [32]
expanded to all members of WordNet [33] synsets that match a word in the list.
4.4.1 Polarity Propagation

Polarity propagation functions, and even more so polarity marking (Section 4.3) are
costlier than running the inference rules themselves. The polarity marking process

11



of converting ULF to English, running the Natlog system, generating possible SLFs,
inferring polarity markings, and finally identifying the best match becomes a huge
bottleneck on the inference engine. To avoid this cost, Kim et al. [2] added polarity
propagation functions corresponding to each inference rule. These functions consider a
single inference step, taking the premise ULF formulas, their polarity markings, and
the conclusion as arguments, and compute the polarity marking of the conclusion.

Consider the UMI inference rule from FraCaS problem 24 described in Section 3.
The premises are many delegates obtained interesting results from the survey and all
interesting results are results and the conclusion is many delegates obtained results
from the survey. The polarity markings for our premises are

(all.d (interesting.a (plur result.n))Y ((pres be.v) (= (k (plur result.n)*)))).
and

((many.d (plur delegate.n)®) ((past obtain.v) (k (interesting.a (plur result.n))*)

(adv-a (from.p (the.d survey.n))))).
The propagation function uses a simple structural replay of the original inference
rule to find that (plur result.n)* is the polarized subexpression that we substituted
for (interesting.a (plur result.n)). Thus, most polarity markings are maintained from
many delegates obtained interesting results from the survey except the marking for
(plur result.n) in the new subexpression. This leads to the following relevant polarity
marking of the conclusion.

((many.d (plur delegate.n)®) ((past obtain.v) (k (plur result.n)*)

(adv-a (from.p (the.d survey.n)))))
Most of these propagation functions never consider SLFs because the inference context
and scope island constraints [34-37] eliminate the possibility of the scoping affecting
the expressions participating in the substitution. This leads to a considerable speed
advantage over the polarity marking functions.

The monotonicity substitution of determiners is an important exception where the
new determiner may induce different entailment contexts than the replaced determiner
in its restrictor and body. Thus the SLF is needed to properly propagate these relations
to global polarities.®

5 System Extensions

In accord with the earlier discussion, we extend the baseline system by Kim et al. [2]
in two ways. We introduce lexical relationships that may be necessary for inference
based on the hypothesis sentence and enable the inference system to consider multiple
scoping choices for each formula in the inference process.

5.1 Hypothesis-based Lexical Relationships

In their qualitative analysis, Kim et al. [2] showed a minimal pair of examples that
demonstrates a key limitation in the system. By chaining System Rule 9 and System
Rule 1 the system succeeds on a key part of example 59 from the FraCaS dataset.

For example, in positive contexts, the may be replaced with a, as in, I saw the dog = I saw a dog. The
imposes a flat entailment context on its restrictor whereas a imposes a positive entailment context which
warrants a fresh computation of the global polarity markings.
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(A few)* (female committee members)® are from Scandinavia

= At least a few committee members are from Scandinavia
System Rule 9 extracts Fuvery female committee member is a committee member
after identifying that female is an intersective modifier and adds it to the knowledge
base. This is then used to replace female committee members in positive context with
committee members. Surprisingly, the same system fails on FraCaS example 76.

Few (committee members)Y are from southern Europe

= Few female committee members are from southern FEurope
On its surface, this is the same inference process but in reverse and in the opposite
polarity context. However, the system is unable to solve this problem because it is
completely limited to forward inference. That is, none of the inference rules, notably
here System Rule 9, can be run on the ULF for the hypothesis sentence. Thus, the
intersective relationship between female and committee member cannot be established.

We have a few options to overcome this limitation. One possibility is to introduce
backward inference from the hypothesis. This has the added benefit of typically reducing
the number of inference rules needed to find a solution. However, due to the way the
inference rules are currently implemented, this would require a significant overhaul of
the inference system. Instead, we could use a lexicon of words that act as intersective
modifiers to generate all possible combinations of these words with all possible ULF
expressions that can be modified in the knowledge base. This would be computationally
infeasible as due to an explosion of unnecessary inferences in the search process—though,
it would preserve the forward inference framework and its merits.

We opt for a method that is a combination of the two. We filter the lexicon of
intersective modifiers by the ULF expressions present in the hypothesis formula. In
practice, this is a simple extension of the existing inference system. Before starting the
inference process, we run the intersective modifier extraction rules (System Rule 8 and
System Rule 9) on the hypothesis ULF and add the results to the knowledge base.

5.2 Multiple Scope Choices

Another key limitation in Kim et al.’s [2]| system is that the system determines a single
compatible scoping and polarity annotation pair for each ULF and fully commits to
such a scoping. This means that we cannot recover from any failures in the polarity
annotation and scoping computation, problems that are far from fully solved.

We modify the inference system to generate all possible SLFs corresponding to
each ULF, compute the resulting polarity annotations, and score the quality of the
SLF is based on the disagreement between the resulting polarity annotations and the
externally computed polarity annotation (a la Section 4.3). The disagreement score
between two polarity annotated ULFs is the sum of mismatched polarities at the ULF
leaves. This score is undefined if the underlying ULFs are different. We then incorporate
this value into the search heuristic cost with the following equation (where lower values
are preferred).

H'(u,s,h) = H(u,h) + A\, * Disagreement( Ppase (), Psr(u, s))
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where u is the current ULF, s is a specific scoping, h is the hypothesis ULF, H()
is the original heuristic function, Py.sc is the base polarity annotation, and Pspp is
the scoping based polarity annotation. A, is the hyperparameter for determining the
relative weight of the original heuristic value and the polarity disagreement. As A, — oo
we effectively ignore all but the best scoping and end up with the same system we had
before. If A\, = 0, we treat every scoping equally and completely ignore how they relate
to the baseline polarity annotation system.

While this is conceptually quite simple, Kim et al.’s [2] system optimizations make
this change tricky. They used the fact that each ULF had only a single possible polarity
annotation to keep track of a global hash table from ULFs to polarity annotations,
thus deferring polarity annotation or propagation until the polarity is needed for an
inference rule. This optimization avoids polarity marking for the large frontier of
inferences that are used to guide the search process, most of which will never be used
to make an additional inference.

When each ULF can have multiple polarity annotations, a global hash table is no
longer sufficient. We instead separate out the polarity resolution step separately in the
inference search process, effectively reintroducing Theory Rule 3 to the system inferences.
Upon applying an inference rule, we now construct a closure of the corresponding
polarity resolution function for the premise ULFs, premise polarity markings, and the
resulting ULF. This closure is then lazily evaluated if and when the inference search
process opts to expand the frontier to this formula and needs the polarity.

5.3 English-based Goal Matching

By strictly matching the goals using ULFs, we lose some of the flexibility of performing
inference directly over natural language. To bring us closer to natural language-based
inference, when checking for an entailment or conclusion, we translate the ULFs into
English and make the comparison using those strings. This makes the system more
robust to minor parsing errors but risks making conclusions that are unwarranted due
to meaningfully different semantic structures.

6 Experimental Setup

The FraCaS dataset is a
small hand-curated set of
346 entailment questions
related to specific semantic
phenomena [5]. Kim et al.
[2] focus on section 1 of the ~Table 1: FraCaS performance of our system (Ours)
dataset set, regarding gen- compared against a majority class (ENT) baseline (MC),
eralized quantifiers (GQ) as  Kim et al.’s [2] (KM), and several notable RTE systems:
this is the most relevant MN [13], LP [14], HU [15], and HR [16]. +H: hypothesis
section. It is also the largest ~ based lexical relationships, +S: multiple scope choices,
section, making up almost +E: English-based goal checking, and +HSE for all three.
a quarter of the dataset.

FraCaS is a small, focused

Accuracy %
Baselines Ours Other RTE
MC KM || +H +§ +E\+HSE‘ MN LP HU HR
50 70 |[[76 72 73] 73 [[ 78 93 88 99
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set of challenging problems, making it a useful testbed for specific capacities—such as
monotonic inference—without also solving the generalization problem of larger datasets
which takes away from the task focus. As such Kim et al. [2]| use it to demonstrate
the capacity to use ULFs as the basis for monotonic inferences, rather than present a
system to compete with the state-of-the-art on entailment tasks.

Kim et al. [2] use a leaf label F1 heuristic (LL-F1) which alternates with

BFS every 5 inference steps. LL-F1 computes the F1
score between the leaf labels of the formula in question
and the goal, ignoring order but preserving repetitions.
This is turned into a cost ranging from 0 to 1 by sub-
tracting it from 1. They set a maximum of 50 inference
steps, after which the system produces an “unknown”
output.

We focus on the same set of problems from the
FraCaS dataset when evaluating of our system exten-
sions so that we can compare against the baseline
model. When only introducing hypothesis-based lexical
relationships (Section 5.1) or English-based goal match-
ing (Section 5.3) we use the exact same hyperparameters
as the baseline model. When allowing multiple scope
choices, we increase the maximum inference steps to
2,000. We found that the additional scoping alternatives
caused the search process to branch out for many more
inference steps before finding the solution. A, = 0.3.

7 Results

Table 1 shows the accuracy of the extensions compared
to the baseline system and other systems that were eval-
uated on this dataset. We find the hypothesis-based
lexical relationship provides the largest boost in perfor-
mance of 6 points. Matching based on English rather
than ULFs gives us a 3-point improvement. Considering
multiple scope choices provides a small boost in perfor-
mance (2 points). When we combine the methods, we
do not get the best of all methods, rather we get close
to the average of each improvement.

Table 2 shows the confusion matrix for each exten-
sion which gives us a better picture of where the
performance gains are coming from. None of the changes,
even adding all three, seem to make major changes to
the overall inference patterns. All of them generally have
high precision, but as we might expect, matching based

G\P H ENT N | UNK
ENT O 15
CON 0 5
UNK 0 32
) Baseline [2]
G\P H N | unk
ENT O 13
CON 0 5
UNK 0 32

(b) Rel. from hypothesis

G\P || ENT | cON | UNK

ENT 22 0 15
CON 0 5
UNK 0 21

(c) Scoping choices

G\P || BNT | coN | UNK
ENT 22 0 15
CON 1 0 4
0 32

(d) English goal match

G\P || ENT | cON | UNK

ENT 23 0 14
CON 1 0 4
UNK 1 0 31

(e) All extensions

Table 2: Confusion matri-
ces for the baseline and
extended models. G\P is
short for “Gold\Prediction”.

on English and supporting multiple scoping choices both cause imprecise entailment
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predictions. As noted by Kim et al. [2], the failure to correctly identify any contradic-
tions is not an inherent limitation of the system. Parser errors led to the inability to
generate the necessary inferences in the 5 problems with contradiction labels.

Table 3 shows the number of inferences by each of these systems. We see that
extracting rules from the

hypothesis and matching | KM | +H | +S | +E | +HSE
goals with English makes Av. Steps 379 || 373 | - | 37.3 | 1,412.6
almost no difference in the Av. Steps (conv.) || 7.0 8.7 - 6.9 108.0

number of inference steps.
Introducing scoping pos-
sibilities, however, greatly
increase the number of infer-
ence steps necessary to find

the same entailment rela-
tionS. Considering multlple JFS numbers were lOSt due to a software bug

Table 3: Average numbers of inference steps for each of
our extensions against the baseline. Avg. Steps (conv.)
is the number of steps when we only consider problems
where the inference method converged to an answer
other than “unknown”.

scope possibilities leads to about 10x the number of steps to find entailment relations.

The three table results suggest that introducing scoping possibilities will tend to
do more harm than good. Of course, the size and nature of this dataset limit how
certainly we can make such a claim. It may simply be that the polarity annotations
and scoping procedures are uncharacteristically performant in this small dataset.

8 Conclusion

We presented a comprehensive description of the monotonic inference system using
ULFs, making clear the relationship between Kim et al.’s [1] theoretical framework
and the realized system by Kim et al. [2]. In addition, we presented three mechanisms
to manage notable limitations in the inference system. Our evaluation on the FraCaS
dataset shows that these improvements make small improvements to the system, though
sometimes at the cost of precision and inference speed.
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