
Learning General Event Schemas with Episodic Logic

Lane Lawley and Benjamin Kuehnert and Lenhart Schubert
University of Rochester

Department of Computer Science
{llawley@cs, bkuehner@u, schubert@cs}.rochester.edu

Abstract

We present a system for learning gener-
alized, stereotypical patterns of events—or
“schemas”—from natural language stories,
and applying them to make predictions about
other stories. Our schemas are represented
with Episodic Logic, a logical form that
closely mirrors natural language. By begin-
ning with a “head start” set of protoschemas—
schemas that a 1- or 2-year-old child would
likely know—we can obtain useful, gen-
eral world knowledge with very few story
examples—often only one or two. Learned
schemas can be combined into more complex,
composite schemas, and used to make predic-
tions in other stories where only partial infor-
mation is available.

1 Introduction

We present a novel approach to learning rich, sym-
bolic event schemas from natural language texts.
While most modern approaches to automated script
learning (e.g. (Chambers and Jurafsky, 2011; Pi-
chotta and Mooney, 2016a; Yuan et al., 2018)) learn
linear sequences of simple tuple representations of
events, our schema representation allows for typed
and interrelated participating entities; multiple tem-
porally related subevents; specification of goals,
preconditions, and postconditions; and nesting of
subschemas as steps in another schema.

We mitigate the “brittleness” of past sym-
bolic approaches (e.g., GENESIS (Mooney, 1990)
and IPP (Lebowitz, 1980)) by parsing stories
into Episodic Logical Form (ELF) (Schubert and
Hwang, 2000), a logical representation that closely
resembles natural English, but allows for complex
event representation and powerful inference proce-
dures. As Stratos et al. (2011) argue, Episodic
Logic facilitates “Natural Logic-like inference
while also providing greater generality”. EL, and

its underspecified variant ULF, facilitate NLog-
like inferences using a combination of lexical and
semantic knowledge (Schubert, 2014; Kim et al.,
2019). Because most nouns and verbs are preserved
as predicates in ELFs, we also utilize existing lexi-
cal resources, like WordNet’s hypernym hierarchy
for generalizing schema predicates (e.g. DOG.N
and ELEPHANT.N to PLACENTAL MAMMAL.N),
and semantic word embeddings for retrieving rel-
evant schema candidates for a story from a large
number of known schemas.

We also bypass the need for large amounts
of data by giving the system a “head start” in
the form of a relatively small number of initial
schemas targeting the commonsense knowledge
of a very young child, from which more complex
schemas can be learned and composed. These “pro-
toschemas” describe basic action types—e.g., eat-
ing, searching, moving from place to place, trans-
ferring possession of objects—at a very general
level, along with their underlying motivations and
pre- and postconditions. More complex schemas—
e.g., “a monkey climbs a tree, gets a coconut, and
eats the coconut”—can be composed by “chaining”
these simpler ones together after matching them to
a story.

From a corpus of several hundred short chil-
dren’s stories, we have acquired dozens of schema
matches, generalized them into new schemas, auto-
matically composed some of them into more com-
plex schemas, and used those generalized schemas
to make predictions on unseen stories with only
partial information.

2 Episodic Logic

Our schema representation is based on Episodic
Logic (EL) (Schubert and Hwang, 2000), a formal
knowledge representation with semantic types and
operators common to many natural languages. EL

uses first-order quantification, but has type-shifting
and reification operators to map predicate and sen-
tence intensions to domain individuals, allowing it
to represent higher-order propositions.

EL is a good fit for schemas in part be-
cause of its characterizing operator **, which
relates an EL formula to a situational argu-
ment, an “episode” that it characterizes. For ex-
ample, the EL formula ((I.PRO EAT.V (K
STEAK.N)) ** E1) says that E1 is a (pos-
sibly repetitive, habitual) episode of me eating
steak1. Episodes can have multiple formulas
“true in” them, where these formulas characterize
subepisodes with limited temporal bounds. This
makes them ideal for representing entire schemas,
which are “packages” of formulas all true together
within some span of time.

2.1 Overview

Although an adequate explanation of the features
and syntax of EL would not fit within these
margins—please refer to (Schubert and Hwang,
2000) for more detail—we offer a brief guide to un-
derstanding some of the formulas in, e.g., Figure 2.

2.1.1 Propositions

An atomic EL proposition has a prefix argument
(sentential subject), an infixed predicate, and zero
or more postfix arguments. In exact EL syntax,
if there are postfixed arguments then the monadic
predicate formed by the infix predicate together
with its postfixed arguments is bracketed (e.g., see
Figure 1. Monadic predicates as well as com-
plete formulas may have modifiers applied to them.
In the formula (I.PRO (QUICKLY.ADV-A
(EAT.V (K STEAK.N)))), the prefix argu-
ment is the individual I.PRO, the infix predicate is
the verbal predicate EAT.V, the postfix argument is
the kind-level individual (K STEAK.N), and the
modifier is the adverb QUICKLY.ADV-A. When
there are no predicate modifiers, atomic formulas
with postfix arguments can be “flattened”, as in
the formula (I.PRO EAT.V (K STEAK.N))
above.

Not all EL formulas use verbal predicates: type
constraint formulas, like (?X STEAK.N) or ?D
RED.A, are examples of formulas with nominal
and adjectival predicates.

1Here, the STEAK.N predicate is reified into an abstract
individual—the kind of food, steak—by the K operator so it
can be used as an argument of the EAT.V predicate.

2.1.2 Quantifiers
Although explicit quantifiers are not present in the
schemas we present here—a schema’s variables
are implicitly Skolem functions of the schema’s
head episode—we will note that EL supports the
standard first-order quantifiers ∃ and ∀. It also
has nonstandard quantifiers like Most and Few,
to represent sentences like “Most students who
have studied here have gone on to be successful”.
Nonstandard quantifiers use “restrictors” to filter
the quantified variables with an arbitrary predicate.

3 Schema Representation

In this section, we will describe our schema repre-
sentation. Although sequential and causally con-
nected events play a large role in our schemas,
our schema language is differentiated from causal
representations such as (Luo et al., 2016) and se-
quential script representations such as (Pichotta
and Mooney, 2016b) by the expressiveness and
interconnectedness of its constituent logical for-
mulas. The language is designed to model the
schema’s Steps, the Roles (types) of participating
entities, and the motivating Goals, Preconditions,
and Postconditions of the schema as a whole.

An example schema our system has learned can
be seen in Figure 1. The EL formulas specifying
the semantic contents of a schema organized into
sections; we describe the sections below.

1 (EPI-SCHEMA ((?X_D EAT.379.V ?X_C)
2 ** ?X_E)
3 :ROLES
4 !R1 (?X_D AGENT.N)
5 !R2 (?X_C FOOD.N)
6 !R3 (?X_C GRASS.N)
7 !R4 (?X_D COW.N)
8 :GOALS
9 ?G1 (?X_D (WANT.V (THAT (NOT

10 (?X_D HUNGRY.A)))))
11 :PRECONDS
12 ?I1 (?X_D HAVE.V ?X_C)
13 ?I2 (?X_D HUNGRY.A)
14 :POSTCONDS
15 ?P1 (NOT (?X_D (HAVE.V ?X_C)))
16 ?P2 (NOT (?X_D HUNGRY.A))
17 :EPISODE-RELATIONS
18 !W1 (?P1 AFTER ?X_E)
19 !W2 (?I1 BEFORE ?X_E)
20 :NECESSITIES
21 !N1 (!R1 NECESSARY-TO-DEGREE 1.0)
22)
23)

Figure 1: A schema learned by applying the eating pro-
toschema to the sentence “The cow ate the grass”.

3.1 Overall Structure

A schema is represented by its header, seen in
line 1 of Figure 2. A schema’s header is an EL
proposition and an episode characterized by the
proposition, here ?E. The header episode summa-
rizes the entire schema, and can be used to embed
a schema as a step inside another schema.

The rest of the schema is laid out in two
types of sections: fluent and nonfluent sec-
tions. Nonfluent sections such as Roles and
Episode-relations contain formulas that
hold true regardless of time, such as the types
or physical properties of objects. Fluent sections
such as Steps and Preconds contain formulas
whose truth values are time-dependent, such as an
action taken by someone. We will now examine
these sections, and what they’re used for, in more
detail.

3.2 Roles

The Roles section of a schema is a nonfluent sec-
tion meant for putting “eternal” type constraints
on the participating entities in the schema. In
addition to type constraints, e.g. (?X DOG.N),
nonfluent relational constraints between entities
can also be specified in this section, e.g. (?X
PERTAINS TO.N ?Y).

When individuals from story formulas are bound
to slot variables in the schema, these “type” con-
straints are evaluated to judge how well the in-
dividuals fit those slots. Some constraints may
be broken—this is a key part of the generaliza-
tion process—but the soft scoring metric in Sec-
tion 4.3.1 helps identify good matches.

3.3 Preconditions, Postconditions, and Goals

Schemas specify preconditions, postconditions,
and goals characterize the motivations of the agents
involved. Fluent constraints in the precondition sec-
tion are tacitly assumed to start before the schema’s
header episode (adjoining or overlapping it), and
those in the postcondition section extend beyond
the header episode (post-adjoining or overlapping
it). Schema matches can be “chained together” into
composite, multi-step schemas by unifying their
pre- and postconditions, or their goals and post-
conditions. The schema in Figure 2 examplifies a
learned “chained” schema.

3.4 Temporal Relations

The episodes characterized by fluent formulas
within the body of a schema can all be complexly
interrelated using constraints from the Allen Inter-
val Algebra (Allen, 1983) as well as causal and
quantitative temporal constraints. Pre- and post-
conditions are implicitly constrained to be true at
the start and end of the schema’s header episode,
respectively, and steps, by default, are ordered
sequentially as listed in the schema, but addi-
tional constraints can be specified in the Episode-
relations section of each schema. To evaluate these
interval constraint propositions, we implemented a
time graph specialist module (Gerevini and Schu-
bert, 1993). The time graph models the tempo-
ral projection of each episode as a pair of time
points, corresponding to the beginning and end of
the episode. The time graph has time points as
vertices, and an edge between t1 and t2 if t1 ≤ t2.
Then, querying the graph for propositions can be
done with a graph transversal. The time graph also
keeps track of “chains”, which are long consecu-
tive sequences of time points in the graph. This
allows the module to exploit the often linear struc-
ture of stories, and it achieves high efficiecy on the
subalgebra of Allen’s Interval Algebra that can be
expressed in terms of ≤ point-relations.

4 Schema Learning

In this section, we describe how our system learns
new schemas from natural language stories. We
describe our story parsing process, the process of
matching parsed stories to schemas, how schema
matches can be generalized to create new schemas,
and how partial schema matches can be used to pre-
dict events in similar stories with missing details.

4.1 The Protoschema Approach

As noted, we generate new schemas from stories by
starting with an initial set of protoschemas that we
would expect a 1- or 2-year-old child to have; these
encode very general knowledge about physical and
communicative actions, with their preconditions
and effects. Examples of protoschemas we’ve al-
ready written include movement of an agent from
one location to another, consumption of food, and
possession and transfer of possession. These pro-
toschemas are then invoked by actions in stories—
for example, the “travel” protoschema matched a
“climb” action in a story to yield a “monkey climbs
a tree” schema, which was eventually incorporated

as the first step of the chained schema in Figure 2.
2

4.2 Story Parsing

We first process raw stories with the AllenNLP
coreference analyzer (Gardner et al., 2017), and
then use the first stage of the BLLIP parser (Char-
niak, 2000) for an initial syntactic parse. The syn-
tactic parse is then converted to Unscoped Log-
ical Form (ULF) (Kim and Schubert, 2019), an
underspecified variant of EL, by tree transductions,
and then a second transduction phase processes the
ULF into full EL.

Our current parsing pipeline converts about 50
percent of (very brief, typically 2-5 sentence) sto-
ries to valid Episodic Logic formulas; our rules
cannot transduce some grammatical features into
ULF, including quotations and rhetorical questions.
Kim (2019) is investigating direct English-to-ULF
conversion using a cache transition parser, and we
hope that this approach will boost our parsing ac-
curacy.

4.3 Matching

Matching formulas in semantically parsed stories
to formulas in schemas underlies both learning and
prediction. The formulas comprising a schema
are intended to be relatively simple—with com-
plex conjunctions split into separate formulas—and
unifiable with formulas parsed from real stories.
Unification of a story formula with a schema for-
mula binds individual constants from the former to
variables in the latter. These bindings are then sub-
stituted in the rest of the schema instance, thereby
“filling in” some of the missing information. This
information is likely to be correct if the story events
and participant types matched to the schema can
be assumed to provide good evidence for an oc-
currence of the stereotyped pattern of events the
schema captures. We refer to any schema instance
with one or more bound variables as a match.

Using EL formula unification as a primitive, we
implement schema matching by iterating through
the formulas in an EL parse of a story, matching
each formula to any schema formula retrieved as a
candidate, and applying the bindings to the schema.
When the story has been fully iterated through, or
all schema variables have been bound, the match is
complete.

2“travel” was invoked by “climb” by way of the WordNet
hypernym hierarchy.

We randomly permute story formulas and unify
them, in the randomized order, with schema for-
mulas. We try multiple permutations to explore
the space of possible matches, and cache low-level
unification results to speed up the process.

4.3.1 Partial Matches and Scoring
When a schema is matched to a story, some con-
straints may be broken; this is a natural part of the
learning process. A schema for a cow eating grass
matched to a story about a dog eating grass vio-
lates the cow constraint on a participating entity,
but is a valuable source of knowledge if properly
generalized. On the other hand, too many broken
constraints are indicative of a poor match between
a schema candidate and a story.

Schema matches are heuristically scored by
counting satisfied constraints, weighted by con-
straint type. Confirmed Role constraints are worth
half as many points as confirmed events in the Steps
section. Confirming the schema’s header formula
is worth twice the points of any other event.

For inexact matches—e.g., (?X COW.N) and
(ROVER.NAME DOG.N)—the score of the bind-
ing is further weighted by the approximate seman-
tic similarity of the two words. If one subsumes
the other in a hypernym hierarchy, the strength is
scaled by the distance of the two in that hierarchy.
If neither subsumes the other, but they share a com-
mon ancestor hypernym, the strength is half their
average distance to that ancestor.

The hypernym score accounts for half of the
overall weight of an inexact match; the other half
is provided by their semantic similarity according
to a pre-trained word embedding model. 3

4.4 Generalizing Matches
To generalize a match into a new, “learned” schema,
we need to incorporate incidental information about
the matched value. For example, the variables
of the travel.v protoschema can be bound by
the constants in the formula ((MONKEY27.SK
(CLIMB.V TREE28.SK)) ** E34.SK) in
a story about a monkey climbing a tree, but re-
generalizing the constants MONKEY27.SK and
TREE28.SK into unconstrained variables would
remove all the information we learned. How-
ever, if we incorporate formulas about the types
of those objects into our new schema—such as
the formulas (MONKEY27.SK MONKEY.N) and

3GoogleNews-vectors-negative300.bin, Mikolov et al.
(2013)

(TREE28.SK TREE.N)—we can then general-
ize the constants but maintain knowledge of their
types.

4.4.1 Re-Matching Learned Schemas
Once a protoschema has been matched to a story
and generalized into a learned schema, it may con-
tain extraneous details or overly specific constraints.
To filter out such details or constraints, we search
for at least one more match of the learned schema to
another story, downgrading details and constraints
that were not matched again. To learn (potentially)
more abstract versions of learned schemas, we re-
tain both basic types and generalized types in the
abstract versions, with certainties reflecting their
match frequencies.

4.5 Prediction

Prediction is relatively straightforward: Given a
story, we try to identify a similar schema, such as
the learned schema in Figure 2, and match as many
formulas as we can to it. We find similar schemas
by average pairwise distance between story words
and schema word predicates in the pre-trained word
vector space. After we’ve substituted story entities
for variables, we may fill in other formulas in the
schema. Schema formulas whose variables have
all been filled in, but are not present in the story,
are predictions: in effect, we guess that the schema
underlies the observed events, and infer further
aspects of the situation from its explicitly provided
aspects.

5 Results

Using 511 simple stories taken from a children’s
first reader (McGuffey, 1901) and the ROCstories
corpus (Mostafazadeh et al., 2017), and 13 proto-
schemas4, we obtained 665 schemas, with a mean
score of -0.899, a median score of 0.292, a mini-
mum score of -19.304, and a maximum score of 4.5
according to the scoring metric in Section 4.3.1. Af-
ter filtering out the 314 negative-scoring schemas,
we obtained 314 “specified” schemas, including
six multi-step schemas, examples of which can be
found in Figure 1 and Figure 2.

4These 13 protoschemas, including traveling from place
to place, eating food, taking possession of an object, and
searching for something, were selected to cover a large number
of sentences in a “development set” of 50 held-out stories from
our corpus of 561 stories; 511 were used in the test set. We
intend to eventually construct dozens to hundreds of initial
protoschemas.

1 (EPI-SCHEMA ((?X_B CLIMB_GET_EAT.PR
2 ?X_A ?X_C) ** ?E)
3 :ROLES
4 !R1 (?X_A TREE.N)
5 !R2 (?X_C INANIMATE_OBJECT.N)
6 !R3 (?X_B MONKEY.N)
7 !R4 (?X_C FOOD.N)
8 !R5 (?X_C COCOANUT.N)
9 :STEPS

10 ?E1 (?X_B CLIMB.481.V
11 (FROM.P-ARG ?L1) ?X_A)
12 ?E2 (?X_B GET.511.V ?X_C
13 (AT.P-ARG ?X_A))
14 ?E3 (?X_B EAT.541.V ?X_C)
15 :EPISODE-RELATIONS
16 !W1 (?E1 BEFORE ?E2)
17 !W2 (?E2 BEFORE ?E3)
18 !W3 (?E1 DURING ?E)
19 !W4 (?E2 DURING ?E)
20 !W5 (?E3 DURING ?E)
21)

Figure 2: An example of a multi-step schema learned
by our system from protoschema matches to a story
about a monkey climbing a tree to get and eat a co-
coanut.

The schema in Figure 2 inferred, given the sen-
tences “Simeon can climb the tree” and “He gets
the cocoanuts for his mother”, that Simeon was a
monkey, that he got the cocoanuts in the tree, and
that he later ate the cocoanuts. The schema in Fig-
ure 1 inferred, given the sentences “The bees like
it”, “They find sweet nectar in the clover flowers”,
and “It grows in the fields”, that the bees went to
the fields to find the nectar. These predictions about
unseen stories are reasonable and fill in details ab-
sent in the stories themselves.

6 Future Work

The schemas learned and predictions generated by
the system with only 13 protoschemas are encour-
aging; we’ve obtained many simple schemas, like
“person sits in a chair” or “dogs run around out-
side”, as well as complex, multi-step schemas used
for predictions like the ones in Section 5. Because
complex schemas are made by stringing together
protoschema matches, we plan to develop more
protoschemas—possibly dozens to hundreds—to
more fully cover the general knowledge of a two-
year-old child. With those protoschemas as a base,
we expect to generate many more useful, multi-step
schemas, use them to generate predictions about
stories, and have human judges evaluate those pre-
dictions.

Acknowledgments

This work was supported by NSF EAGER award
IIS-1940981, DARPA CwC subcontract W911NF-
15-1-0542, and NSF NRT award 1449828.

References
James F Allen. 1983. Maintaining knowledge about

temporal intervals. Communications of the ACM,
26(11):832–843.

Nathanael Chambers and Dan Jurafsky. 2011.
Template-based information extraction without
the templates. In Proceedings of the 49th Annual
Meeting of the Association for Computational
Linguistics: Human Language Technologies,
pages 976–986. Association for Computational
Linguistics.

Eugene Charniak. 2000. A maximum-entropy-inspired
parser. In Proceedings of the 1st North American
chapter of the Association for Computational Lin-
guistics conference, pages 132–139. Association for
Computational Linguistics.

Matt Gardner, Joel Grus, Mark Neumann, Oyvind
Tafjord, Pradeep Dasigi, Nelson F. Liu, Matthew
Peters, Michael Schmitz, and Luke S. Zettlemoyer.
2017. Allennlp: A deep semantic natural language
processing platform.

Alfonso Gerevini and Lenhart Schubert. 1993. Effi-
cient temporal reasoning through timegraphs. In IJ-
CAI, pages 648–654.

Gene Kim, Benjamin Kane, Viet Duong, Muskaan
Mendiratta, Graeme McGuire, Sophie Sackstein,
Georgiy Platonov, and Lenhart Schubert. 2019. Gen-
erating discourse inferences from unscoped episodic
logical formulas. In Proceedings of the First Inter-
national Workshop on Designing Meaning Represen-
tations, pages 56–65.

Gene Kim and Lenhart Schubert. 2019. A type-
coherent, expressive representation as an initial step
to language understanding. In Proceedings of the
13th International Conference on Computational Se-
mantics, Gothenburg, Sweden. Association for Com-
putational Linguistics.

Gene Louis Kim. 2019. Towards parsing unscoped
episodic logical forms with a cache transition parser.
In the Poster Abstracts of the Proceedings of the
32nd International Conference of the Florida Arti-
ficial Intelligence Research Society.

Michael Lebowitz. 1980. Generalization and Memory
in an Integrated Understanding System. Ph.D. the-
sis, New Haven, CT, USA. AAI8109800.

Zhiyi Luo, Yuchen Sha, Kenny Q Zhu, Seung-won
Hwang, and Zhongyuan Wang. 2016. Common-
sense causal reasoning between short texts. In Fif-
teenth International Conference on the Principles of
Knowledge Representation and Reasoning.

William Holmes McGuffey. 1901. The New McGuffey
First Reader. American Book Company.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013. Distributed representa-
tions of words and phrases and their composition-
ality. In C. J. C. Burges, L. Bottou, M. Welling,
Z. Ghahramani, and K. Q. Weinberger, editors, Ad-
vances in Neural Information Processing Systems
26, pages 3111–3119. Curran Associates, Inc.

Raymond J Mooney. 1990. A general explanation-
based learning mechanism and its application to
narrative understanding. Morgan Kaufmann.

Nasrin Mostafazadeh, Chris Brockett, Bill Dolan,
Michel Galley, Jianfeng Gao, Georgios Spithourakis,
and Lucy Vanderwende. 2017. Image-grounded
conversations: Multimodal context for natural ques-
tion and response generation. In Proceedings of
the Eighth International Joint Conference on Natu-
ral Language Processing (Volume 1: Long Papers),
pages 462–472, Taipei, Taiwan. Asian Federation of
Natural Language Processing.

Karl Pichotta and Raymond Mooney. 2016a. Statis-
tical script learning with recurrent neural networks.
In Proceedings of the Workshop on Uphill Battles in
Language Processing: Scaling Early Achievements
to Robust Methods, pages 11–16. Association for
Computational Linguistics.

Karl Pichotta and Raymond J. Mooney. 2016b. Using
sentence-level LSTM language models for script in-
ference. In Proceedings of the 54th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 279–289, Berlin,
Germany. Association for Computational Linguis-
tics.

Lenhart Schubert. 2014. Nlog-like inference and com-
monsense reasoning. LiLT (Linguistic Issues in Lan-
guage Technology), 9.

Lenhart K. Schubert and Chung Hee Hwang. 2000.
Episodic Logic meets Little Red Riding Hood: A
comprehensive natural representation for language
understanding. In Lucja M. Iwańska and Stuart C.
Shapiro, editors, Natural Language Processing and
Knowledge Representation, pages 111–174. MIT
Press, Cambridge, MA, USA.

Karl Stratos, Lenhart Schubert, and Jonathan Gordon.
2011. Episodic logic: Natural logic + reasoning.
KEOD 2011 - Proceedings of the International Con-
ference on Knowledge Engineering and Ontology
Development.

Quan Yuan, Xiang Ren, Wenqi He, Chao Zhang, Xinhe
Geng, Lifu Huang, Heng Ji, Chin-Yew Lin, and Ji-
awei Han. 2018. Open-schema event profiling for
massive news corpora. In Proceedings of the 27th
ACM International Conference on Information and
Knowledge Management, CIKM ’18, pages 587–
596, New York, NY, USA. ACM.

http://aclweb.org/anthology/P11-1098
http://aclweb.org/anthology/P11-1098
http://arxiv.org/abs/arXiv:1803.07640
http://arxiv.org/abs/arXiv:1803.07640
http://papers.nips.cc/paper/5021-distributed-representations-of-words-and-phrases-and-their-compositionality.pdf
http://papers.nips.cc/paper/5021-distributed-representations-of-words-and-phrases-and-their-compositionality.pdf
http://papers.nips.cc/paper/5021-distributed-representations-of-words-and-phrases-and-their-compositionality.pdf
https://www.aclweb.org/anthology/I17-1047
https://www.aclweb.org/anthology/I17-1047
https://www.aclweb.org/anthology/I17-1047
https://doi.org/10.18653/v1/W16-6003
https://doi.org/10.18653/v1/W16-6003
https://doi.org/10.18653/v1/P16-1027
https://doi.org/10.18653/v1/P16-1027
https://doi.org/10.18653/v1/P16-1027
https://doi.org/10.1145/3269206.3271674
https://doi.org/10.1145/3269206.3271674

