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Abstract

Understanding spatial expressions and using
them appropriately is necessary for seamless
and natural human-machine interaction. How-
ever, capturing the semantics and appropri-
ate usage of spatial prepositions is notori-
ously difficult, because of their vagueness and
polysemy. Although modern data-driven ap-
proaches are good at capturing statistical reg-
ularities in the usage, they usually require sub-
stantial sample sizes, often do not generalize
well to unseen instances and, most importantly,
their structure is essentially opaque to analysis,
which makes diagnosing problems and under-
standing their reasoning process difficult. In
this work, we discuss our attempt at model-
ing spatial senses of prepositions in English
using a combination of rule-based and statis-
tical learning approaches. Each preposition
model is implemented as a tree where each
node computes certain intuitive relations asso-
ciated with the preposition, with the root com-
puting the final value of the prepositional rela-
tion itself. The models operate on a set of artifi-
cial 3D “room world” environments, designed
in Blender, taking the scene itself as an in-
put. We also discuss our annotation framework
used to collect human judgments employed in
the model training. Both our factored models
and black-box baseline models perform quite
well, but the factored models will enable rea-
soned explanations of spatial relation judge-
ments.

1 Introduction

Prepositions in general and spatial prepositions in
particular form a notoriously difficult lexical class
because of their inherent vagueness and polysemy.
Pragmatics plays crucial role in determining both
which prepositions are licensed for usage in a given
situation and the range of configurations (i.e., lo-
cations of the arguments) of which the licensed

preposition holds true. Spatial senses of preposi-
tions are sensitive to miscellaneous factors such as
shapes and salience of the argument objects, pres-
ence of meronymy (part-of) relations, typicality,
etc. On provides a good example of such a semanti-
cally rich preposition. When we say that one object
is on another one, we strongly imply the relation
of physical support between them. But support re-
lation comes in many forms and occurs in diverse
physical configurations:

a) an apple on the table
b) a book on the shelf
c) a picture on the wall
d) a fly on the ceiling
e) a shirt on the person
f) a lamp on the post
g) a fish on a hook
h) a sail on a ship

Such variety makes capturing the meaning in
a computational model difficult. Yet, locative ex-
pressions involving prepositions are pervasive in
natural languages and, therefore, interpretation and
understanding of their meaning is important for
AI, especially in use cases involving grounded
human-machine interactions. Another important
requirement for modern AI systems is interpretabil-
ity and explainability. While neural networks can
efficiently learn complex statistical distributions
from large datasets, they are predominantly opaque
from the common-sense analysis perspective.

Our approach to computational models for spa-
tial prepositions is based on the following consid-
erations. To begin with, even though the range of
senses of spatial relations together with the heavy
dependence on pragmatic considerations make cap-
turing their meaning with simple mathematical cri-
teria difficult, it is still possible to account for many
of the above aspects in a principled way. People’s
judgments about whether a particular relation holds



in a given case can be quite variable; therefore it
should suffice to provide models that estimate the
probability that arbitrary judges would consider the
relation to hold. This approach is aligned with a
view of predicate vagueness as variability in ap-
plicability judgments (Kyburg, 2000; Lassiter and
Goodman, 2017), enabling Bayesian interpretation.
Next, since the usage of locative expressions is
pragmatic, the ultimate success criterion in assess-
ing models of prepositional predicates should also
be pragmatic; i.e, in physical settings we often use
such predicates to identify a referent (the blue book
in front of the laptop) or to specify a goal (put the
laptop on the table), so our models should allow a
natural language system to interpret such usages as
a human would.

Last, but not least, our approach facilitates ex-
plainability. Each relation is built from a combi-
nation of simpler relations, whose value can be
retrieved and used to provide a justification for a
particular judgement. For example, in order for
one object to be next to another, they need to be
close to each other and at about the same elevation.
Thus, the latter criteria are included as factors in
determining the value of the next-to relation, and
their values could be used to generate meaningful
explanations for any particular judgement made by
the model.

In the following sections, we discuss related
work, and then outline our modeling framework by
examining the primitive concepts that are used as
building blocks, and showing how these concepts
come together in modeling a specific preposition.
We then evaluate our approach in a “room world”
domain, making use of Blender graphics software.
We discuss two different sets of models, one purely
neural network-based, implemented as a collec-
tion of multi-layer perceptrons, and another where
models are implemented as trees, where each node
computes a probabilistic rule. We describe our an-
notation framework for collecting human spatial
judgments and evaluate our models. We summarize
our contributions, and directions for future work,
in the concluding section.

2 Related Work

In what follows, the first and second arguments of
a preposition are referred to as figure and ground,
respectively, when used in locative settings (Talmy,
1975).

The 3D approach to modeling spatial relations,

as opposed to modeling based on 2D images, is
informed by the cognitive science perspective. It
is likely that people conceptualize their immediate
surroundings as a 3D space defined by the three
principal orientation axes of the body (Tversky
et al., 1999). Moreover, 2D map-like space rep-
resentations employed in navigation can be easily
computed from a 3D “mental image” of the en-
vironment. It seems reasonable to assume that a
potential embodied agent, such as robot, would
also benefit from constructing such 3D “mental
images” of its surroundings. Indoor scenarios for
spatial modeling are particularly conducive to such
approach (Bower and Morrow, 1990).

Developing computational models for spatial
prepositions is a long-standing problem in the field
of computational linguistics and NLP, and the at-
tempts date back to the late 1960s. Early work fol-
lowed mainly geometric intuitions, relying on the
concepts of contiguity, surface, etc. (Cooper, 1968).
A very good review of the semantic and pragmatic
issues involved in spatial expressions is contained
in Herskovits (1985). Herskovits’ analysis iden-
tified a variety of important factors that influence
correctness judgments in the application of spatial
prepositions, illustrating these factors with many
striking examples (e.g., the role of object types and
typicality in contrasts such as the house on the lake
vs. *the truck on the lake, or the role of the fig-
ure/ground distinction and object size and type in
contrasts like The bicycle is near Mary’s house vs.
?Mary’s house is near the bicycle). Herskovits also
proposed various abstract principles constraining
the meaning and use of spatial prepositions. Our
work borrows many of the elements of Herskovits’
analysis, but is more narrowly focused on applica-
tion to a particular setting (the room world), and is
distinguished by our emphasis on developing com-
putational models capable of actually evaluating
the truth of prepositional relations in the chosen
domain.

A number of methodologies rooted in applica-
tion of topological notions to defining semantics
of spatial prepositions arose aiming at spatial rea-
soning using abstract qualitative primitives to en-
code relations between objects (Cohn and Renz,
2008; Cohn, 1997). One example of such an ap-
proach is the Region Connection Calculus (RCC)
and its modifications (Chen et al., 2015; Li and
Ying, 2004). At the heart of RCC lies the notion
of connectedness. Two nonempty regions are con-



nected if and only if their topological closures have
a nonempty intersection. Starting with this primi-
tive, one may proceed to define more useful spatial
relations such as part-of (x is a part of y if every
object that is connected to x is also connected to
y) and overlapping (x and y overlap if there is a z
that is a part of both x and y). Continuing in the
same fashion one can define several other topolog-
ical notions and then use them to describe spatial
configurations of objects. While mathematically
appealing and facilitating rigorous inference, these
qualitative methods are too strict and unable to
capture the semantic richness of natural language
descriptions of spatial configurations of objects,
since they neglect aspects such as orientation, size,
shape, and argument types.

Conceptually, the way we define the spatial rela-
tions in our model is similar to the spatial template
approach, discussed in Logan and Sadler (1996).
This approach is based on the idea of defining a
region of acceptability around the reference object
that captures the typical locations of the relatum for
this relation and determining how well the actual
relatum fits this region. Our work is also similar
in spirit and goals to the work by Bigelow et al.
(2015), which combined the imagistic space rep-
resentations with spatial templates and applied it
to a story understanding task. In their approach,
the authors used explicit Blender graphics model-
ing of a scene to represent the objects in question
and their relative configurations. In their model,
each region of acceptability is a three dimensional
rectangular region (more precisely, a prism with a
rectangular base) representing the set of points for
which the given spatial relation holds. For exam-
ple if one has a pair of two objects, A and B, and
wants to determine whether A is on top of B, A is
checked to determine whether it is in the region of
acceptability located directly above B. Probabilis-
tic reasoning is supported by using values from 0
to 1 to represent the portion of the relatum that falls
into a particular region of acceptability.

In recent years, attempts have been made to use
statistical learning models, especially deep neu-
ral networks, to learn spatial relations. The work
by Bisk et al. (2018) is concerned with learning
to transduce verbal instructions, e.g., “Move the
McDonald’s block so it’s just to the right (not touch-
ing) the Twitter block” into block displacements in
a simulated environment. This system, unlike ours,
relies on deep learning and does not use high-level

cognitively-motivated spatial relation models. The
CLEVR dataset (Johnson et al., 2017) and its modi-
fied versions, such as (Liu et al., 2019), lays out an
explicit spatial question answering challenge that
has inspired a flurry of visual reasoning works, e.g.,
(Kottur et al., 2019) and (Mao et al., 2019), which
achieves near-perfect scores on the CLEVR ques-
tions. Common shortcomings of these approaches
are reliance on synthetic data of limited variety
(only a few simple geometric shapes are present),
two-dimensional image-based model of the world,
very limited ground-truth models of spatial rela-
tions (e.g., left means any amount laterally to the
left, regardless of depth or intervening objects, etc.),
and use of domain-specific procedural formalisms
for linguistic semantics.

Other noteworthy recent examples of dataset-
driven work are (Chang et al., 2014) and (Yu and
Siskind, 2017). The former inverts the learning
problem, in a sense; the task was not to learn how
to describe object relationships, but rather to au-
tomatically generate a scene based on a textual
description. The latter employed models of spatial
relations to locate and identify similar objects in
several video streams.

We should separately mention the spatial mod-
elling studies by Malinowski and Fritz (2014) and,
especially, Collell et al. (2017), which apply deep
neural networks to learning spatial templates for
triplets of form (relatum, relation, referent). The
latter work does this in an implicit setting, that is, it
uses relations that indirectly suggest certain spatial
configurations, e.g., (person, rides, horse). Their
model is capable not only of learning a spatial tem-
plate for specific arguments but also of generalizing
that template to previously unseen objects; e.g., it
can infer the template for (person, rides, elephant).
These approaches, however, rely on the analysis
of 2D images rather than attempting to model rela-
tions in an explicitly represented 3D world.

Our approach can be seen as an attempt at quan-
titative implementations inspired by the criteria
that have been discussed in psychologically and
linguistically oriented studies (Garrod et al., 1999;
Herskovits, 1985; Tyler and Evans, 2003). Stud-
ies of human judgements of spatial relations show
that overly formal qualitative models with sharp
boundaries generally cannot do justice to the usage
of locative expressions in natural settings. We pre-
viously mentioned a study (Bigelow et al., 2015)
that applied 3D graphics scene modeling to a story



understanding task, allowing reasoning about the
relative configuration and visibility of objects in
the scene. Another example of an imagistic reason-
ing system was implemented as part of the plan-
ning system for the robot Ripley (Roy et al., 2004).
Ripley used three-dimensional representation of
its body, operator and workspace, reconstructed
from two-dimensional view coming from Ripley’s
cameras.

Our work is very similar in spirit and execution
to (Platonov and Schubert, 2018) and (Richard-
Bollans et al., 2020b,a). All these studies model
prepositions using specially designed 3D environ-
ments in Blender or Unity and employ similar sets
of metrics to define the meaning of the prepositions.
The studies by Platonov & Schubert differ from
the present work in that the rules were less flexi-
ble (fewer parameters) and parameter values were
hand-adjusted, while in our work we use gradient
descent-based optimization to learn optimal val-
ues. The studies by Richard-Bollans ete al. relied
on the prototype and exemplar approaches, using
learning from data to estimate the prototype param-
eters or the exemplar configuration. Our work is,
by contrast, rule-based (although one might argue
that the parameters in our rules implicitly encode
prototype properties). None of the prior studies
explore generation of justifications for the spatial
judgements.

3 Task Description

We explore spatial prepositions as applied to the so-
called “room worlds” - 3D scenes depicting room
interiors filled with common everyday items such
as furniture, appliances, food items, etc.

The objects in the scene are designed in a partic-
ular way, so that their meronomy corresponds to
that of the real objects. That is, the mesh consists
of parts that are usually distinguished by people
(e.g., for a chair, its seat, legs, back, ets., are sep-
arate objects that can be accessed by our system).
This is useful for part-based inferences, e.g., a book
is on a bookshelf when it is on one of the shelves.
The objects are also annotated with other additional
tags such as frontal vectors that indicate where the
“front” of an object is, object type, etc. We have
designed 52 scenes containing about 10-30 objects
admissible for annotation as figure objects. Since
our annotation task involves describing the loca-
tion of a figure object in relation to other objects
(grounds), objects that form the environment (walls,

ceiling, floor) are not admissible as figures (how-
ever, they can be used as grounds as in the poster
is on the north wall).

This serves as a realistic domain for evaluating
spatial relations. We designed the annotation task
so as to achieve a balance between obtaining a
significant number of annotations and collecting
some information about human preferences. In
each annotation instance the annotator is presented
with a screenshot of a room world scene and is
asked to describe the location of a highlighted fig-
ure object. First, the annotator is to pick a single
best-fitting preposition and a corresponding ground
object. After that, they are to indicate all other re-
lations that they believe to hold between the figure
and the ground (if the most appropriate relation
chosen was between, they are to indicate which re-
lations hold between the figure and the first ground
object). They are then asked to repeat the same
procedure for up to two more times. The reason for
such an approach is that while the second part of
the annotation (choosing all the relations holding
between the given and the selected objects) pro-
duces coverage of pairwise relations, many such
judgements feel forced and unnatural to human an-
notators (during earlier explorations it was noted
that vagueness of locative expressions leads to an-
notators overthinking when making judgements).
The laws of conversational implicature predict that,
in everyday usage, various locatives will not occur
with uniform frequencies. When several possible
prepositions are applicable, people tend to choose
those prepositions that disambiguate better or imply
stronger relations, e.g., on is preferable to touching
or near even though these relations often co-occur.
Hence, the first part of the annotation process al-
lows annotators to freely choose the most natural
or “obvious” options.

At the moment, because of the scarcity of data
(see Table 2 for the number of collected annota-
tions), we don’t distinguish between the two anno-
tation types when training and testing our models.
In principle, one can assign different weights to
different annotations to skew the model towards
relying on the best-choice annotations more.

4 Model Details

We have developed two kinds of models. The first
one is a series of simple multi-layer perceptrons
(one per each relation), and the second is our main
rule-based model, which is implemented as a net-



Figure 1: An example of a room world scene and the accompanying annotation controls. Best viewed in color.

work (more precisely, an arborescence) of nodes
that compute meaningful hand-crafted relations
used for determining the values of the prepositions.
Each node realizes one or more differentiable op-
erations which allows us to train the model using
standard gradient descent-based optimization. The
main reasons for developing the pure NN-based
solution are to provide the baseline performance
metric against which we compare our main models.
Each model is essentially a binary classifier used
to predict the likelihood that a particular relation
holds between given objects.

4.1 Neural Baseline

Our baseline model consists of a number of in-
dependent binary classifiers (one for each spatial
relation) and employs a 2-hidden layer architecture
for each network. The baseline models take figure
and ground objects’ centroids, bounding boxes, and
frontal vectors as input features. For each relation
we iteratively tested different hidden layer struc-
tures in the 15-36 units range and selected one that
performs the best (on average, across 5 randomized
re-runs). We chose SELU activations (Klambauer
et al., 2017) in the hidden layers and the logistic
sigmoid function as an output non-linearity, which
was the best combination based on our empirical
exploration. We used binary cross-entropy as the
standard binary classification loss. The model was
trained using the PyTorch stochastic gradient de-
scent optimizer with learning rate η = 0.003 and
momentum α = 0.9. We experimented with dif-
ferent regularization terms, but didn’t notice any

consistent performance gains (probably due to the
small size of our networks and dataset). Main rea-
son for the simplicity of the neural baseline is the
small size of the dataset of annotations (under 7000
in total).

4.2 Rule-Based Model

We rely on a soft rule-based approach and imagis-
tic scene representation for computing spatial rela-
tions. Each spatial preposition is implemented as a
binary or ternary probabilistic predicate computed
hierarchically as a combination of more primitive
relations that we call factors. These factors encode
typical more basic relations that affect whether a
particular spatial preposition holds. They are usu-
ally either different senses of the same preposition
or they co-occur with the preposition in most/all
configurations that license the usage of that prepo-
sition. The set of factors ranges from those com-
puting geometric properties (e.g., locations, sizes,
and distances) to ones computing non-geometric,
or functional ones (e.g., physical properties of the
relata, such as part structure, or the location of the
“front” of an object). There are several combinatory
rules that determine how the factors are combined
to produce a composite value. Typically, the factor
values are linearly combined, multiplied together,
or the maximum among them is taken, depending
on the relation. For example, when one object
is “on” another, it is often higher than the second
object, and typically supported by it. The factors
that we compute represent such primitive relations
that often accompany higher-level relations of “on-



ness”, “above-ness”, etc. A list of example factors
is presented in the Table. 1 below.

Figure 2: Structure of the factor network for near.

The factor tree for each relation is different, how-
ever, the general underlying principles can be un-
derstood by considering an example. One such ex-
ample factor network is presented in Fig. 2. When
computing Near(A, B), we start by computing the
absolute distance, d(A,B), between A and B. How
this distance is computed depends on the geometry
of the arguments. In the default case, assuming that
both objects are roughly compact, d(A,B) is sim-
ply the Euclidean distance between the centroids
of A and B since, in this case, the centroid is a
good approximation of the “general location” of
an object. On the other hand, if, say, A or B is
planar (extended in any two dimensions compared
to the third, e.g., a wall, a book, a TV, etc.), lin-
ear (extended in one dimension, e.g., a pen), or
generally concave (e.g., a table), then d(A,B) is
the minimum between the centroid distance and
the distance between two closest points of A and
B. We then compute scaled distance dsc(A,B) by
dividing the absolute distance by the sum of the
argument sizes, which are approximated by the ra-
dius of the circumscribed sphere. Intuitively, scaled
distance provides a “size invariant” measure of the
closeness of the two objects. Its value should be
close to 1 when the objects are adjacent to each
other, regardless of the their sizes. Next, we com-
pute the distance decay factor, Fdd, as

Fdd(A,B) = σ(θdddsc(A,B)),

where σ is logistic sigmoid and θdd is a learned
parameter. The value of this factor gives a context-
independent measure of nearness, which is then se-

quentially modified by a rescaling that takes into ac-
count context information. We compute the scene-
adjusted nearness, Fsan, as a linear combination

Fsan(A,B) = θ1Fdd(A,B) + θ2Ffsr(A,B),

where θ1, θ2 ≥ 0, θ1 + θ2 = 1, and

Ffsr = 1− d(A,B)

frame size

is the frame-size rescale factor. The latter gives an
estimate of nearness by considering the absolute
distance between the objects relative to the size of
the frame, i.e., psychologically salient part of the
world. Currently, frame size is taken to be the size
of the entire scene. However, in principle this can
be extended to be chosen depending on argument
locations, e.g., if two small objects are on top of
a table, we can make the frame be the area of the
table top. The final nearness score is computed as

Near(A,B) = Fsan(A,B)Fasr(A,B)Farr(A,B).

Here, Fasr is the argument size-rescaling factor,

Fasr(A,B) = 0.9+0.1·σ(θasr(B.size−A.size)),

if A.size > B.size, and Fasr(A,B) = 1 other-
wise. This factor encodes the intuition that, when
using near to locate objects, the ground object is
typically chosen to be bigger and fixed. Com-
pare ?the house is near the car vs. the car is
near the house. Thus, when the figure is bigger
than the ground we reduce the nearness score a
bit, so that Near(Bookshelf,Banana) returns
a lower value than Near(Banana,Bookshelf)
(other things being equal). However, as should be
clear from the formula for Fasr, we only allow the
size difference adjustment to vary in the interval
[0.9, 1.0]. In this way, the system would prefer to
use the correct order of the arguments when making
a nearness judgement on its own, while still recog-
nizing that the relation might hold for the reverse
order of the arguments.

The Farr is the argument ranking rescaling fac-
tor. This factor lowers the nearness score if there
are other objects that have a higher value of Fsan.
That is, it lowers the score in proportion to how
far the current figure object is from being the best
candidate figure object for a given selection of the
ground and the relation. It is computed as

Farr = e−θarr(rank−1),



Factor Description

to the right of deictic(a, b, o) Represents the deictic (here - viewer-specific) sense of the to the right of with respect to the observer o
in front of intrinsic(a, b) Represents the intrinsic (object-centered) sense of in front of
frame size rescale(a, b) Relative distance between a and b based on the size of the current perceptual frame
supporting(a, b) Direct support relation, i.e., whether a supports b
indirectly supporting(a, b) Indirect support relation, i.e., whether a supports some c which, in turn, supports b
touching(a, b) Whether a and b are in contact with each other
in direction(a, b, v) Computes whether b is in the general direction defined by a vector v with respect to a
higher than centroidwise(a, b) Determines whether a is higher than b in terms of their centroid locations
at same height(a, b) Computes whether a and b are roughly at the same elevation (in terms of centroids or their base level)

Table 1: Some of the factors used in computing spatial relations. In our system, we use the term observer to refer
to the properties of the viewer, i.e., viewer location and gaze direction.

where rank is the number of other objects C such
that Fsan(C,B) > Fsan(A,B).

Regarding sense ambiguity, different relations
can be evaluated with respect to different coordi-
nate frames. For example, for several projective re-
lations, e.g., to the right of, we consider three cases,
deictic, extrinsic and intrinsic. The so-called deic-
tic to the right of is computed based on viewer’s
perspective. Here, one object is considered to be
to the right of another, if its projection onto the
viewer’s visual plane is to the right of that of the
latter. The extrinsic to the right of is based on the
global coordinate system imposed by the world, i.e.,
front-right sides of the room. Finally, the intrinsic
to the right of is determined based on the intrinsic
coordinate system of the ground object, i.e., A is
intrinsically to the right ofB if it is on the right side
of B. Note that not all objects have intrinsic orien-
tations, and in these cases this sense of the relation
is assigned 0. These different senses are evaluated
based on the known observer properties (location
and gaze direction), global orientation vectors of
the world (fixed and always known), and frontal
vector of an object (when applicable, i.e., the ob-
ject has inherent orientation), respectively. When
dealing with multiple senses, the model selects the
one with the maximal value as an output.

The rule-based models are implemented as cus-
tom computational graphs using the PyTorch frame-
work. We use binary cross-entropy loss and Adam
as an optimizer, with the learning rate η = 0.01
and L2 regularization coefficient 0.1. The models
are trained using back-propagation of error. Each
object (3D mesh) in the scene is encapsulated in
a separate Python object. It should be noted that
we use these Python objects as input features, and
not the numerical vectors as is common in the ML
work.

5 Evaluation and Discussion

Evaluation data for both types of models are pre-
sented in Table. 2. Overall, both models performed
reasonably well, apart from the cases such as in
front of, behind and touching where the rule-based
model performed better thanks to additional avail-
able information. The results clearly show that it
is possible to produce reasonable judgments for
most spatial relations even with purely geomet-
ric information. However, our main goal was to
demonstrate that even when they fall short, our
rule-based models still compare reasonably well
with pure neural network-based approaches, with
the added benefit of being interpretable thanks to
their formulation in terms of meaningful decision
criteria that correspond to human intuitions about
spatial relations. Another important aim of our ex-
ploration was to evaluate whether the factors we
selected are appropriate and sufficient for modeling
the semantics of the locative senses of prepositions.
While it is difficult to extrapolate our performance
results to novel settings, we believe that our room
worlds are representative of a significant subset of
everyday settings where locative expressions are
apt to be used. The annotation process is still on-
going and we are working on an additional set of
scenes depicting outdoor environments. As such,
the numbers in the table are subject to change, as
the breadth of configurations covered and annota-
tion data is increased. Scale differences between
the two domains might affect the boundaries of
applicability of the prepositions as well as their rel-
ative psychological preference ordering. Whenever
possible we rely on approximations to the real 3D
meshes of objects, using centroids and bounding
boxes. This allows us to focus on the most salient
features of objects’ shapes and maintain relatively
high performance. The system generates responses
in real time which is relevant to the responsive-



Pure NN model Rule-based model

relation total instances accuracy precision recall F1 accuracy precision recall F1

to the right of 214 0.94 1.00 0.89 0.94 0.94 0.97 0.92 0.94
to the left of 152 0.89 0.85 1.00 0.92 0.95 1.00 0.90 0.95
in front of 127 0.73 0.66 0.90 0.76 0.85 0.81 0.93 0.87

behind 97 0.76 0.68 0.91 0.78 0.86 0.80 0.91 0.85
above 74 1.00 1.00 1.00 1.00 0.90 1.00 0.85 0.92
below 86 0.82 0.92 0.80 0.85 0.87 0.97 0.78 0.87

between 220 0.96 1.00 0.93 0.96 0.95 1.00 0.87 0.93
next to 331 0.97 0.97 1.00 0.98 0.95 0.94 1.00 0.97

touching 82 0.76 0.74 0.83 0.78 0.99 1.00 0.97 0.98
near 296 0.90 0.91 0.95 0.93 0.93 0.95 0.93 0.94
on 346 0.8 0.81 0.89 0.85 0.89 0.94 0.88 0.91

Table 2: Performance statistics for the rule-based (RB) and pure MLP (NN) models. We excluded the data for
under, over and in, as the number of collected annotations was insufficient. The total instances column refers to the
test set instances, which constitute between 20% and 30% of all collected annotations, depending on the relation.

ness during a dialogue with the user (see the next
subsection).

5.1 On Explainability

The main reason for using the rule-based approach
is its interpretability. Specifically, our tree-of-
factors implementation of spatial models allows
backwards-generated justification of the final judg-
ment. Each factor represents some higher-level
semantic concept which can be readily translated
into natural language. The tree of factors computed
during the forward computation phase is preserved
and is traversed in the backward direction starting
from the root (representing the final output, i.e., the
result of the evaluation of the preposition model).
The mechanism for selecting the relevant factors
for each node of the tree is as follows. If the combi-
nation rule for the current node (the way the factors
of its immediate children are combined) is a prod-
uct, then if the node value ≥ 0.5, return all the
child nodes; otherwise, return the child node with
the smallest value. If the combination rule for the
children is a weighted linear combination of factor
values, then if the current node value is ≥ 0.5, re-
turn the highest contributing factor node or nodes
(total contribution includes their value and weight);
otherwise, return the value of the node with the
largest weight. Finally, if the combination rule is
the max operation, then if the current node value
is ≥ 0.5, return the child node with maximum
value; otherwise return all the child nodes. One
exception is the touching relation, for which the
explanation procedure returns a particular part of

the ground object as a justification (if the relation
holds, that is). For example, the relation Touch-
ing(Green Book, Bookshelf) holds because the re-
lation Touching(Green Book, shelf 2) holds, where
shelf 2 is part of the Bookshelf. In this case, rela-
tion between parts is considered a primitive, i.e.,
non-decomposable into more primitive relations,
and so the justification process ends there. We are
currently working on incorporating our models into
an existing dialogue system that, given the returned
factor(s), will generate an output in English. The
interpretability of our models is to be evaluated in
a dialogue-based setting.

As an example of the operation of the explana-
tion procedure, consider simplified factor network
for to the right of in Fig. 3.

Figure 3: An example of an explanation procedure.



The numbers in the nodes are the respective val-
ues of the factors that the node computes. Assume
that the system is being asked whether A is to the
right of B. Assume further that the final output
value is right of = 0.72, which corresponds to “yes”.
Now, if the user inquires why the system arrived at
that conclusion, the following process unfolds. The
node for the final score for to the right of takes the
maximum over three values: deictic right of deic, in-
trinsic right of intr and extrinsic right of extr. Since
the maximum is taken, one of those nodes must be
equal to the final value. Hence, the explanatory rou-
tine returns the corresponding node and its value
(right of intr, 0.72). The corresponding interpre-
tation will be (when bridging with the dialogue
system is completed) something like “A is to the
right of B because A is located on the right side of
B”. If asked further as to why the intrinsic relation
holds, the system will analyze the intrinsic score’s
contributing factors, namely Fdir (directional fac-
tor that defines the “right-side” region for an ob-
ject) and Fdd (distance decay, measuring how far
apart the objects are). Since the combination rule
used is multiplication and the value of the current
node (intrinsic right) is 0.72 (i.e., relation holds),
it follows that both factors must hold as well. The
system will return the list of the nodes and their
values, i.e., [(Fdir, 0.9), (Fdd, 0.8)] as a result. The
straightforward interpretation of the latter would
be “A is on the right side of B, because it is located
in the general rightward direction w.r.t. to B and it
is close enough”. This process can continue until
leaf nodes are reached, which do not admit further
decomposition and are treated as primitives. Alter-
natively, assume that the value Fdd is only 0.4 (A
is too far from B). This low value will propagate
downstream and affect the intrinsic right of intr and
the final right of score. In this case, the system will
supply a negative answer to the original question.
When asked why A is not to the right of B, it will
return the list of all senses [(right ofdeic, 0.48), ...]
which has a straightforward interpretation of “A is
not to the right of B because none of the senses
apply”. If queried why, say, the intrinsic sense
does not apply, the system returns the lowest-value
node contributing to the intrinsic sense node, i.e.,
[(Fdd, 0.4)], which translates into “A is too far from
B to be on its right side”.

Note the contrast with standard approaches to
explainability in deep neural networks (e.g., modu-
lar neural networks), where the model can usually

only answer “what” questions about its decisions
(i.e., we know what kind of thing a module com-
putes), but not the “why” or “how” questions about
the reasons a given module arrived at a particular
output.

6 Conclusion

We considered the problem of designing intuitive
computational models of spatial prepositions that
combine geometrical information as well as some
pieces of commonsense knowledge and contextual
information about the arguments. Our main aim
was to develop spatial semantic models that rely
on psychologically plausible criteria and facilitate
justification of spatial judgements produced by the
models, and to compare such an approach against
a more mainstream black box statistical learning
architecture acting as a baseline. We believe that
combining the power of data-driven methods and
interpretable, algorithmic models is the way for-
ward in AI in general and, in particular, is neces-
sary in order to incorporate context and background
knowledge information needed to model spatial ex-
pressions properly. This work is one step in that
direction.
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