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Abstract
In this paper we address the problem of turn-taking prediction
in open-ended communication between humans and dialogue
agents. In a non-task-oriented interaction with dialogue agents,
user inputs are apt to be grammatically and lexically diverse,
and at times quite lengthy, with many pauses; all of this makes
it harder for the system to decide when to jump in. As a result
recent turn-taking predictors designed for specific tasks or for
human-human interactions will scarcely be applicable. In this
paper we focus primarily on the predictive potential of linguistic
features, including lexical, syntactic and semantic features, as
well as timing features, whereas past work has typically placed
more emphasis on prosodic features, sometimes supplemented
with non-verbal behaviors such as gaze and head movements.
The basis for our study is a corpus of 15 “friendly” dialogues
between humans and a (Wizard-of-Oz enabled) virtual dialogue
agent, annotated for pause times and types. The model of
turn-taking obtained by supervised learning predicts turn-taking
points with increasing accuracy using only prosodic features,
only timing and speech rate features, only lexical and syntac-
tic features, and achieves state-of-the art performance with a
mixture-of-experts model combining these features along with
a semantic criterion.
Index Terms: turn-taking, human-computer conversation

1. Introduction
Spoken dialogue systems have been getting more common in
everyday life applications ranging from mobile assistants and
customer service to conversational companies designed to chat
with users on a variety of topics. However, smooth turn ex-
change behavior in human-machine interaction is still an issue
for such systems. Using a silence threshold, which is the most
common turn-taking strategy, can easily result in long awkward
silences or frequent overlaps and confusion. The situation can
be worse in open-domain dialogue systems where users might
provide arbitrarily long inputs with many pauses without will-
ing to yield the turn.

Turn-taking behavior has been an area of research since
early 1970 [1] by studying cues people use in their interaction
including lexical, prosodic, and gestural. Later researchers tried
to propose predictive models so that machines could efficiently
decide users end-of-turns. These models showed some suc-
cess in domain-specific tasks such as games [2] and map task
[3]. Other researchers focused on predicting exchange points in
human-human interactions such as Switchboard [4, 5] by track-
ing cues from both sides of interaction. In the past couple years,
some started applying sequential models such as LSTM with fo-
cus on prosodic features to develop predictive models [6, 7, 8].

In this paper, we address the problem of turn-taking in
open-domain conversation between a dialogue agent and users
using a variety of users speech and language features. Instead

of relying on human-human interactions, we collected data from
actual casual dialogue between users and machine. The silences
were annotated and five categories of features were extracted
including prosodic, timing, lexical, syntactic and semantic. We
study the impact of each type on the prediction power and dis-
cussed the results. Then we propose a two-layer context-aware
combination model which can learn to efficiently combine dif-
ferent aspects of users input. The model performance is compa-
rable with the state of the art systems.

2. Literature Review
The ability to handle smooth turn exchanges in human-human
conversation is universal among all language speakers, with
gaps between speaker turns being held to around 200ms on
average [9]. Previous experiments suggest that people listen-
ing to non-faulty speech generally predict end-of-turns about
1200ms before they happen [10]. Speakers provide many types
of prosodic, linguistic, and nonverbal cues that enable such turn
predictions, most notably a higher pitch slope and higher mean
pitch and intensity before a turn-ending [11, 2]; longer average
syllable length [12], gaze direction [13], and certain types of
vocabulary to indicate turn-holding or turn-yielding [14]; and it
is also thought that syntactic and semantic completion can pro-
vide clues for detecting end-of-turns, suggesting features such
as POS tags, size and type of the last phrase in a turn, etc. [2].

Compared with human-human conversation, smoothly au-
tomating human-computer conversation poses some unique
challenges. Some studies have found that people tend to adapt
their behavior when a machine is slower than a person in re-
sponding to end-of-turns [11, 15]. Studies of human-computer
turn-taking have generally sought to develop automated meth-
ods of predicting turns based on conversation cues. In one anal-
ysis of a map-task dialogue system, a combination of prosodic
and contextual features was found to predict turn-taking points
with 66% accuracy, and lexico-syntactic features were found to
predict such points with 84% accuracy [3]. However, this study
concerned a task-oriented system, as opposed to open-ended di-
alogue, so the vocabulary and types of exchanges were much
narrower in scope and turn-taking less variable than in our sys-
tem. Conversation histories have also been found to be an ef-
fective feature, with one study on Switchboard human-human
dialogue predicting turn-taking using a Random Forest with fea-
tures such as previous turn length and floor control, and achiev-
ing an F1 of 74% [5].

More recent studies have attempted to use recurrent neural
networks with combinations of acoustic/prosodic features and
some linguistic features such as word embeddings and POS tags
[6, 16, 17]. A high F1 score of 85.5% was achieved in a study
on corpora of human-human interaction by using a multiscale
LSTM with acoustic and linguistic features, and including gaze
features improved this score to 93.5% [18]. Similar studies us-

Copyright © 2019 ISCA

INTERSPEECH 2019

September 15–19, 2019, Graz, Austria

http://dx.doi.org/10.21437/Interspeech.2019-31524140



ing LSTM classifiers have been done using Japanese corpora
as well [19, 20, 8, 21]. These studies focused primarily on
prosodic features, although word embeddings were also used
in some.

Turn-taking has also been found to depend on the spe-
cific task (e.g., transportation planning vs. topical chatting) and
speech act of a user [22], and one study attempted to extend an
LSTM model to predict a speaker’s intentions along with turn-
taking [4]. However, it’s not clear if these results would hold
in an open-ended human-machine interaction as opposed to
task-oriented dialogue. Another study also attempted to predict
backchannels and fillers as well as turn-taking using prosody
[7]. A general observation about prior studies is that F-scores
for turn prediction depend very much on the scope of the dia-
logues (e.g., map task: 81.7 [17] vs. Switchboard: 65.8 [4]), the
size of the training corpus (e.g., 2.5 hours, job interviews: 77.3
[7] vs. 11 hours, MAHNOB: 93.4 [18]), as well as what is being
measured and predicted (e.g., use of visual as well as linguistic
features, or inclusion/ exclusion of backchannels as turns). Also
as pointed out in [22], in more difficult tasks pauses may be due
to thinking about what to say rather than whether to yield the
turn. We are not aware of any studies of turn taking in topically
broad human-computer dialogues based on the Wizard-of-Oz
(WOZ) technique, other than perhaps the “robotic” job inter-
views [7, 8] just cited.

3. Data preparation
We used a corpus of 15 subjects interacting with the LISSA
conversational agent collected in a previous WOZ study [23].
The users were all native English speakers between the ages of
18 and 25. During the conversation the virtual agent leads ca-
sual conversation on different topics such as “getting to know
each other”, “hobbies”, “movies”, “food”, etc. Each conversa-
tion contains 15-25 turns on each side. There are some interrup-
tions and moments of speech overlap but most turn exchanges in
the data happen smoothly. After collecting the transcripts, we
marked the silences longer than 500 milliseconds using Praat
[24]. Following the convention in the field, we call an utterance
between two pauses an “Inter Pausal Unit” or IPU. We obtained
1099 silence points, and asked three undergraduate RAs to an-
notate these points in the transcripts with the occurrence time
and duration. RAs also labeled the silences with four categories,
based just on the transcripts:

- “Turn-holding” (TH) means that the user is not semanti-
cally or syntactically done with what they are saying so that it
would be inappropriate for the avatar to try to take the turn at
that silence point.

- “Potential end-of-turn” (PET) means the silence point can
be regarded as a turn-taking point by the avatar, although it was
not an actual turn exchange point in the conversation. In other
words, there is no semantic or syntactic incompleteness, and it
would not be particularly inappropriate if the virtual agent tried
to take the turn at such times.

- “End-of-turn” (ET) means that it was an actual end-of-
turn point in the conversation and it was a smooth one, so there
was no interruption or overlapping speech.

- “Interruption” (INT) means that the avatar interrupted the
user without letting the user finish. So, INT points are turn-
exchange points but not smooth ones.

Based on the above labeling we ended up with 537 strong
turn-holding (TH), 267 end-of-turn (ET), and 263 potential end-
of-turn (PET) points. The Fleiss kappa score for the subjective
labels, “TH” and “PET”, was 0.86, indicating substantial inter-

annotator agreement. As the PET points were judged to be ap-
propriate points for machine to take the turn, we count them as
end-of-turn for prediction purposes. Also we remove the inter-
ruption points in order to deal with smooth exchange data. As a
result the problem turns into two class prediction.

Table 1: Data statistics– TH: turn-holding, PET: potential end-
of-turn, ET: end-of-turn, and INT: interruption

General data statistics Number of dialogues 15
Number of users’ turns 301
Number of silence points 1099

Pause types statistics Number of TH silences 537
Number of PET silences 263
Number of ET silences 267
Number of INT points 33

Users’ turns statistics Min length (sec) 0.26
Max length (sec) 75.2
Length average (sec) 13.32

The data shows that the users’ turn lengths varied between
0.26 seconds (one word) to 75.23 seconds (232 words) with an
average of 13.32 seconds (sd = 12.04), where we observed up
to 12 pauses in a user turn. Also, we observed that 31 percent of
the strong turn-holding points last longer than 1 second where
the longest one was 4.95 seconds. These all prove the need for
an effective turn predictor while at the same time demonstrating
the difficulty of obtaining one. Table 1 shows a summary of the
data we collected.

4. Experimental evaluation
The open-domain human-machine data described in the previ-
ous section was used for training a model of turn-taking predic-
tion. In order to come up with a model for a turn-taking pre-
dictor we collected tens of features associated with silence in-
tervals. We group these features into five categories: prosodic,
timing, lexical, syntactic, and semantic features. Some features
from the first four categories have been studied in the literature
concerned with predicting users’ end-of-turn points in human-
machine conversation. However, while we know that semantic
features play a role in human-human turn-taking behavior [25],
they have played no role in end-of-turn predictors, except for
some use of domain-specific semantic word tags [3].

In this section we first test the predictive power of different
feature categories to gain some insight into the most effective
ones. For this we explore Gaussian Nave Bayes (NB) as a gen-
erative model and two discriminative models: CART decision
tree classifier [26] and Support Vector Machine (SVM, with ra-
dial basis kernel function). We compare the performances of
these models against the majority class baseline obtained by the
ZeroR classifier which was 48.5% correct on average. Then
we try two combination models using the most effective fea-
tures of all categories. For all these classifiers we have used the
implementations available in the scikit toolkit [27]. All results
presented here are determined using 10-fold cross-validation.

4.1. Individual feature categories

4.1.1. Prosodic Features

Prosodic features are the most commonly used clues for turn
exchange prediction. Although they don’t show high perfor-
mance on their own when used in machine learning models,
recent efforts to use them in sequence models have led to better
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performance, as we discussed in section 2. In this paper we take
account of intensity and pitch features, based on previous evi-
dence for their effectiveness. We measure both slope and mean
in three different intervals including: last 200ms, last 500ms,
and the entire IPU before the pause points.

We sampled pitch and intensity at 10ms using Praat [24],
then z-normalized the value for each user. The mean and slope
of pitch and intensity over the last 200ms, 500ms and over the
whole IPU preceding each silence point were calculated and
added as features. Table 2 illustrates the individual and collec-
tive performance of various prosodic features.

Table 2: Accuracy of EOT prediction using prosodic features

Features SVM DT NB

Pitch mean 52.51 50.92 50.61
Pitch slope 52.13 50.94 50.15
Pitch mean + pitch slope 53.45 51.51 50.51
Intensity mean 54.96 51.95 54.01
Intensity slope 52.15 51.89 55.11
Intensity mean + intensity slope 54.18 51.61 56.11
Pitch mean + int. mean + int. slope 58.15 51.72 52.71

The results indicate that pitch and intensity mean and in-
tensity slope contribute to predictive power. This is in line
with previous studies in task-oriented interactions [3]; however,
predictive power seems to be diminished by the more diverse
speech patterns people use in open-domain dialogues.

4.1.2. Timing and speaking rate

For each silence point, turn and IPU length features were ex-
tracted along with their mean values over the dialogue history
for the individual user. Moreover, the average speaking rate
in the preceding IPU and its average value for the user were
measured in syllables per second. The accuracy values of the
prediction model are reported in table 3.

Table 3: Accuracy of EOT prediction using timing and speaking
rate features

Features SVM DT NB

Turn length 54.79 49.51 51.79
Turn length ratio 56.11 55.23 55.41
IPU length 55.51 51.93 50.59
IPU length ratio 53.01 51.22 50.43
Speaking rate 62.9 58.47 60.95
Speaking rate ratio 62.01 59.43 62.26
Turn len. ratio, IPU len., speaking rate 63.67 58.52 60.49

The results suggest that turn length ratio has a bigger impact
than the absolute turn-length value. This means that turn length
should be seen as a user-specific feature rather than a global
feature. In other words we should take into account the previous
user’s behavior in terms of verbosity, for meaningful use of turn
length for EOT prediction. Moreover, speaking rate is another
impactful feature based on the results. [2] previously showed
that speaking rate tends to increase towards turn boundaries in
a game task dialogue.

4.1.3. Lexical features

Because of the diverse vocabulary used in open-domain con-
versations, using content words as features was not feasible.

Instead, we relied on some relevant word categories. Here we
show the result of using two classes including filler words (filled
pauses) and discourse markers. We checked for their appear-
ance right before the pause point.

Table 4: Accuracy of EOT prediction using lexical features

Features SVM DT NB

Filler words 57.73 57.73 57.73
Filled pauses 61.69 61.69 61.69
Filler words, filled pauses 69.73 69.73 69.73

It can be seen that both filler words and filled pauses offer
significant contributions to a predictor. A closer look into the
data shows that people use filled pauses as a very clear signal
indicating their desire to hold the turn. Some filler words such
as “well”, “so”, “but”, “or”, etc., serve the same function.

4.1.4. Syntactic features

Syntactic features have shown strong predictive power for turn-
taking in specific-task domains [3]. Here we collect the part-of-
speech (POS) tags of two words before the pause point. For this
we used the NLTK toolkit, where we mapped the 36 Treebank
tags to the reduced set of 17 universal POS tags [28].

Table 5: Accuracy of EOT prediction using syntactic features

Features SVM DT NB

Last word POS tag 68.26 68.24 63.1
Last two words POS tags 67.22 67.78 62.97

A closer look into the data shows that the most frequent
part-of-speech of the words preceding an end-of-turn are Noun,
Adjective, Verb, Adverb, Personal pronoun, while the most fre-
quent ones preceding a turn-holding point are Noun, Verb, Co-
ordinating conjunction, Adverb, Preposition.

4.1.5. Semantic Features

According to some studies (e.g., [25]) semantic features can
contribute to turn-taking prediction, especially as they might
be more robust to poor acoustic conditions. However, there is
no simple way to formalize a semantic analysis of conversation
[29]. In this paper we study the role of semantic completion.
In the type of casual dialogue exemplified by our data, this can
be seen as observing some anticipated response to the question
asked by the virtual agent. However, automatically recognizing
completion of such a response is challenging since it depends
on understanding users’ inputs in the context of the ongoing
dialogue. Here, we capture the semantic content of users’ in-
puts using the dialogue manager designed to automatically lead
meaningful conversation with users [30]. At each pause, the di-
alogue manager extracts one or more “gist-clauses” which are
simple explicit English version of users’ inputs. These are ex-
tracted using context dependent pattern transduction trees. As
features, we collect the number of extracted gist-clauses at each
silence, the time since last gist-clause was extracted, and a bi-
nary feature showing if the last extracted gist was a question.

The results of using these semantic features in a prediction
model can be seen in Table 6. It is worth noting that the feature
was not available for almost a third of the data points due to the
limitation of dialogue manager at the time of data collection.
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Table 6: Accuracy of EOT prediction using semantic features

Features SVM DT NB

Num. of extracted gist-clauses 58.12 58.15 55.01
Time since last gist-clause 53.71 54.93 49.59
Num. of extracted gist-clauses, 58.35 57.46 56.32
Time since last gist-clause

Yet, we observe a significant contribution only by leveraging
the semantic features. Moreover, a closer look into the predictor
output indicates the existence of meaningful pattern extracted
by the model, for instance that the system did not consider tak-
ing the turn before seeing extraction of any gist-clause.

4.2. Combined model

The results reported above provided initial insight into the var-
ious aspects of speech and language that are influential in pre-
dicting end-of-turn points. We then worked on designing a two-
layer combined model to improve the prediction accuracy.

4.2.1. Simple combined model

The simple combined model consists of the 12 most powerful
features of all categories –listed in table 7, based on the results
of section 4.1 implemented using three algorithms: SVM, De-
cision tree, and Gaussian Naive Bayes. The best classifier was
SVM with 73.2% accuracy while the Decision tree and Gaus-
sian Naive Bayes achieved 68.71% and 69.54% respectively.

Table 7: Features used in the combined models

Feature category Features

Prosodic pitch mean, intensity mean, intensity slope
Timing turn length ratio, IPU length, speaking rate
Lexical & syntactic filler words, filled pauses, last POS
Semantic no. of gists, time since last gist, question gist

4.2.2. Two-layer classifier model

We designed a combined model of k classifiers, each trained on
a subset of the feature space. The idea is inspired by the Mix-
ture of Experts algorithm [31], but instead of different subsets
of data, each classifier sees a subset of features. A high-level ar-
chitecture of the model is shown in Figures 1 with k classifiers,
each intended as an expert on a subset of features and a gate re-
sponsible for deciding which classifier should be trusted more
for any input feature. The gate unit is trained to learn the best
way to combine the expert’s decisions having the input features.
In general, for a mixture of experts model, we have:

P (y | x,Θ) =

k∑
i=1

P (i|x,Θg)P (y|i, x,Θe) (1)

where x is the input, y is the output, k is the number of experts,
and Θ denotes the parameters of the model, consisting of Θg ,
the parameters of the gate unit, and Θe, the parameters of clas-
sifiers. In our case, we train each classifier di( #»x i) on a reduced
dimensional version of input, #»x i. The final decision is made
by combining classifier decisions based on the weights coming
from the gate:

P (y = ŷ) =

k∑
i=1

gi(
#»x )di(

#»x i) = #»g ( #»x ).
#»

d ( #»x ) (2)

Figure 1: High-level schema for a mixture-of-experts classifier

where for input #»xm×1, the gate outputs #»g k×1( #»x ) =
(g1( #»x ), g2( #»x ), ..., gk( #»x ))T , while the augmented output of
classifiers is

#»

d k×1( #»x ) = (d1( #»x 1), d2( #»x 2), ..., dk( #»x k))T .
This is interpretable as a weighted vote of all decisions. For the
gate module, various structures have been proposed in the litera-
ture; here we pick linear structure: #»g k×1( #»x ) = Λk×m. #»xm×1.

For turn-taking prediction, we use the five experts men-
tioned in section 4.1; by merging lexical and syntactic classi-
fiers, we end up with four base classifiers presented in table 7.
The experts were trained on the corresponding reduced dimen-
sions of half of the training data. The second half of the training
data were used for learning the combination layer parameters,
Λ, using linear regression. The accuracy and F-score of the
two-layer combined model is compared with the simple global
classifier in table 8.

Table 8: Accuracy of EOT prediction using combined models

Features Accuracy F1 score

Simple combined model 73.2 72.92
Mixture of experts 76.47 75.72

5. Discussion and Conclusion
We introduced a data-driven approach for end-of-turn detection
using data from open-domain human-machine conversations.
We evaluated the respective contributions of prosodic, timing,
lexical, syntactic, and semantic features to a predictive model,
and found lexical and syntactic features to be the most powerful
turn-taking predictors. We also introduced semantic completion
as a strong predictor of turn-holding points. We suggested a
two-layer context-aware model inspired by mixture-of-experts
method to combine the predictors trained on different feature
categories of the data. The two-layer structure enhanced the
performance compared to simply combining all impactful fea-
tures. The accuracy and F1-score of the combined model is
comparable with some recent attempts on similar tasks such as
the “ERICA” WOZ job interviews [7], which also used a rel-
atively small corpus, and a little better than some recent large-
corpora studies using Switchboard data [5, 4]. Although such
comparisons are of limited significance because of the many
factors (discussed in 2) that affect turn-taking behavior and pre-
diction, these results are encouraging given the open-endedness
and complexity of our dialogue setting.
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