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Abstract

Generating “commonsense” knowledge for intelligent understanding and reasoning is a difficult,
long-standing problem, whose scale challenges the capacity of any approach driven primarily by hu-
man input. Furthermore, approaches based on mining statistically repetitive patterns fail to produce
the rich representations humans acquire, and fall far short of human efficiency in inducing knowl-
edge from text. The idea of our approach to this problem is to provide a learning system with a “head
start” consisting of a semantic parser, some basic ontological knowledge, and most importantly, a
small set of very general schemas about the kinds of patterns of events (often purposive, causal, or
socially conventional) that even a one- or two-year-old could reasonably be presumed to possess.
We match these initial schemas to simple children’s stories, obtaining concrete instances, and com-
bining and abstracting these into new candidate schemas. Both the initial and generated schemas
are specified using a rich, expressive logical form. Unlike the slot-and-filler structures often used in
knowledge harvesting, this logical form allows us to specify complex relations and constraints over
the slots. Though formal, the representations are language-like, and as such readily relatable to NL
text. The agents, objects, and other roles in the schemas are represented by typed variables, and the
event variables can be related through partial temporal ordering and causal relations. To match nat-
ural language stories with existing schemas, we first parse the stories into an underspecified variant
of the logical form used by the schemas, which is suitable for most concrete stories. We include a
walkthrough of matching a children’s story to these schemas and generating inferences from these
matches.

1 Introduction

Artificial general intelligence research tends to fall into one of two broad categories: connectionism,
which emphasizes the importance of neural architectures in the human brain, and computationalism,
which models human intelligence at a more abstract level, making use of knowledge representations and
reasoning procedures. One common assumption in connectionist approaches is that an AI system can be
trained from scratch, as a tabula rasa, once a suitable architecture has been specified. No representational
or inferential mechanisms are presupposed—perhaps inevitably, because of the “black box" character of
neural net functioning.

We believe that the need for exposure to massive amounts of sensory data can be averted with a
suitable “head start”. The basic knowledge representations, reasoning procedures, language abilities,
and world knowledge of a 1- to 2-year-old human child must be attained in any general intelligence
architecture, and we believe that learning from text, implemented atop a suitably powerful symbolic
framework, will be easier than doing so using data-fitting methods alone.

Our approach is to generate knowledge in the form of abstract logical “schemas”. Our system’s
“head start” includes a semantic parser, a general inference system over a highly expressive logical form,
and an initial set of simple schemas that a very young child could plausibly possess. Our system parses
natural language stories into a logical form, matches the story to existing schemas, draws inferences,
and, upon recognition of patterns, generalizes new schemas, whose variable roles take the place of the
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individuals that vary from story to story.1

Schematic knowledge representations have a long history in artificial intelligence research; to un-
derscore their usefulness, we will briefly outline that history and discuss some modern schema-oriented
systems. We’ll then describe our schema model in detail, differentiating it from past approaches, and de-
scribe its basic inference and generalization procedures, along with some examples of those procedures
at work.

2 A Brief History of Schemas

The theoretical foundation of schemas has a history within cognitive science from even before AI existed
as a field in order to explain the interactions of abstracted prior experience with language comprehen-
sion (Piaget, 1923; Bartlett, 1932; van Dijk and Kintsch, 1983). Cognitive science used schema-based
theories to explain cognitive dissonance that occurs when faced with new information that cannot be
accommodated by existing abstractions (Piaget and Inhelder, 1969), mistakes in memory surrounding
schematic situations (Brewer and Treyens, 1981), and how we understand stories through an underly-
ing grammar (Rumelhart, 1975). AI researchers with an eye for cognition computationalized these ideas
into scripts and plans (Schank and Abelson, 1977) and frames (Minsky, 1975; Fillmore and Baker, 2010).
Schank and Abelson’s scripts successfully answered questions in the restaurant domain (among others)
and Minsky’s frames formed the basis for a number of AI systems for the remainder of the 20th cen-
tury (Bobrow and Winograd, 1976; Fikes and Kehler, 1985; MacGregor and Burstein, 1991). However,
these systems were limited to generating inferences from manually constructed frames.

Recent progress in learning schema-like knowledge has primarily been driven by applying statistical
or neural network-based methods to large text corpora (Chambers and Jurafsky, 2011; Chambers, 2013;
Pichotta and Mooney, 2016; Yuan et al., 2018). The learned schemas are quite limited in their capacity
to enable inferences since they only describe high-level roles or temporal sequences. Perhaps this is all
that can be expected from methods that are given minimal guidance and rely on many similar examples
to find patterns. Wanzare et al. (2017) use crowdsourcing to help improve their clustering results and
their scripts are made up of graph-ordered event clusters, but the clusters are groups of unstructured text
segments. The goal of the schema framework we describe is to generate rich inferences which can be
used to learn further schemas from a relatively limited number of examples.

3 Episodic Logic and Its Underspecified Form

Before diving into the details of our schemas, we first must describe the logical formalism in which the
schemas are encoded, called Episodic Logic (EL) (Hwang, 1992; Hwang and Schubert, 1993; Schubert
and Hwang, 2000). EL is a logical semantic representation that closely matches the form and expressive
capacity of natural languages by extending FOL with semantic types and operators common in all lan-
guages. EL uses a small number type-shifting operators to map between specifically designated types to
support the expressive power of natural language while keeping the underlying theoretical mechanisms
simple. For example, EL uses reification operators to map predicate and sentence intensions to individ-
uals. This allows predicate arguments in EL to denote both concrete and abstract entities (Avicenna, the
activity of writing poems, the idea that the universe revolves around the Earth). Quantification remains
first-order, with noun phrases treated as place-holders for constrained, quantified variables, in contrast
with semantic theories that treat noun phrases as higher-order types. Another distinctive feature of EL,
accounting for its name, is the characterizing operator. This operator, written **, relates an arbitrary EL
formula to an episode it characterizes. If we restrict ourselves to positive, atomic predicates, ** closely
resembles the Davidsonian use of event variables in predicates (Davidson, 1967). However, ** also al-
lows complex characterizations of episodes, such as Dana going hiking every weekend, or No nuclear
nation being willing to eliminate its arsenal (Schubert, 2000). An ontology of types is defined over the

1The code for our system is available at https://github.com/bitbanger/schemas.
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Sentence “Spot ran in the park”

Episodic Logic
(some.d e: [e before.p |Now1|]

[[e in-loc.p |Park1|] ^ [[|Spot| run1.v] ** e]]))

Unscoped Logical Form
(|Spot| ((past run.v)

(adv-e (in.p (the.d park.n)))))

Figure 1: EL and ULF formulas for an example sentence.

domain of individuals and includes categories such as basic individuals (e.g., John, the Blarney Stone,
or the Earth’s magnetic field), episodes (events, situations, processes), sets, numbers, propositions, and
kinds. Schubert and Hwang (2000) provide a complete description of the ontology. EL has been shown
to be suitable for deductive inference, uncertain inference, and Natural-Logic-like inference and has been
used successfully to represent inference-enabling verb axioms (Morbini and Schubert, 2009; Schubert
and Hwang, 2000; Schubert, 2014; Purtee and Schubert, 2017; Kim and Schubert, 2016). Inferences can
be generated using the EPILOG inference engine (Morbini and Schubert, 2009; Schaeffer et al., 1993).

Most lexical items in EL are represented in the form [word][sense num].[lexical type], e.g.,
run1.v.2 Lexical types in EL are closely related to POS tags (e.g. .v, .p, and .d for verbs, prepositions,
and determiners, respectively) but are constrained in their use by the EL semantic type system; e.g.,
modal can becomes can.aux-s or can.aux-v depending on its function as a sentence-level possibility
operator or a VP-level ability operator. Names (denoting basic individuals) are represented by |[name]|,
e.g. |John|. Predefined EL operators lack dot-extensions, e.g., **, k, adv-a. EL uses prefixed operators
at the subsentential level (e.g., (touch_down.v (on.p-arg |Mars|))), and infix form at the sentence level
(e.g., [|InSight| (touch_down.v (on.p-arg |Mars|))]). The distinction is emphasized in written EL
by reserving square brackets for sentential formulas. Connectives allow for multiple arguments, i.e., [w1
conn w2 ... wn], where the wi are sentential formulas and conn is and (^) or or (_). Quantification
has a distinct syntax: ([determiner] [variable]: [restrictor] [nuclear scope]). If omitted, the
restrictor is implicitly True, thus allowing for FOL quantifiers @ and D.

Figure 1 shows an example of a complete EL formula and demonstrates how episode variables are
used. The ** operator characterizes an episode e (constrained by [e before.p |Now1|]) with the formula
[|Spot| run1.v], and the conjunct adds locative information about e derived from the adv-e modifier
in the ULF version. Using the ** operator, EL can characterize episodes with arbitrarily complex well-
formed EL formulas.

Finally, here we introduce a few type shifting operators that appear in the schema examples. The
kind forming operator, k, is a function from monadic nominal predicate intensions to kinds. The kind of
action forming operator, ka, is a function from monadic verbal predicate intensions to kinds of actions.3

The proposition forming operator, that, is a function from sentence intensions to propositions. Some
examples (with tense suppressed):

“Gold is yellow" – [(k gold.n) yellow.a] “Peter likes to run" – [|Peter| like.v (ka run.v)]

"My dog believes that it is a wolf" – (my.d x: [x dog.n] [x believe.v (that [x wolf.n])])

3.1 Unscoped Logical Form

Unscoped (Episodic) Logical Form (ULF) is an underspecified variant of EL which models the formal
types and predicate argument structure of EL while leaving anaphora, word sense, and operator scopes
unresolved. It is the first step in the EL parsing process and captures the semantic and pragmatic signals
that can be accessed from natural language syntax. Its proximity to syntax makes semantic parsing
into ULF relatively simple while its commitment to EL types enables inferences that preserve semantic
coherence within the logical formalism. It turns out that ULF provides enough semantic resolution for
enabling schema inferences in most of the first-reader stories we have considered. For a small number of
cases, the ambiguous components in ULFs are resolved on an as-needed basis. Here we describe ULF to
the extent necessary to understand its application within the presented schema description and examples.

2We use WordNet senses in this document (Miller, 1995), but EL is not strictly tied to WordNet.
3ka can be expressed in terms of k, forming a kind whose instances are agent-event pairs.
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Kim and Schubert (2019) provides a more complete description of ULF and its uses outside of schemas.
Figure 1 shows the ULF for a sentence alongside the EL interpretation and demonstrates a few key

differences between EL and ULF.

1. ULF does not have episode variables. ULF preserves type coherence in the face of implicit episodes
and actions by introducing operators to form episode- and action-modifying adverbials from predicate
intensions (adv-e, adv-a). Tense and aspectual operators are also implicitly episode-modifiers.

2. Scope, anaphora, and word sense are unresolved. Without scope or anaphora resolution, “the
park” is simply (the.d park.n) in ULF compared to the referentially resolved |Park1| (or a
Skolem constant if unresolvable) in EL. Without word senses, the lexical items are represented as
[word].[lexical tag].

3. ULF only uses parentheses for bracketing. The operator position is inferred from the semantic
types of the bracketed elements.

4 Schema Form and Meaning
1 (epi-schema

2 ((?x give_obj_for_poss.v ?y ?o) ** ?e)

3 (: Nonfluent-conds

4 !r1 (?x agent.n)

5 !r2 (?y agent.n)

6 !r3 (?o object.n)

7 !r4 (?l location.n) )

8

9 (: Init-conds

10 ?i1 (?x (can.aux-v (give_to.v ?y ?o)))

11 ?i2 (?x (be.v (adv-e (at.p ?l))))

12 ?i3 (?y (be.v (adv-e (at.p ?l)))) )

13

14 (:Goals

15 ?g1 (?x want.v

16 (that (?y (have.v ?o)))) )

17

18 (:Steps

19 ?e1 (?x (give_to.v ?y ?o)) )

20

21 (: Post-conds

22 ?p1 (?y (possess.v ?o)) )

23

24 (: Episode-relations

25 !w1 (?e1 same-time ?e)

26 !w2 (?e1 consec ?p1)

27 !w3 (?e1 cause-of.n ?p1) ) )

Figure 2: An example schema.

We will refer to the example schema in Figure 2—
the generic schema for one agent giving an object
to another agent for possession—as we explain the
form and meaning of our schemas. This is one
of our system’s initial schemas. It is particularly
simple, even in terms of the initial schemas we are
assuming, in that it contains just a single “step".
Such single-step schemas can specialize the type
of action represented by the single step, or even
just supply type information, preconditions, and
effects, without specializing the step-concept.

4.1 Overall Structure

A schema comprises a schema type and header,
shown here in the first line of the schema, followed
by a list of sections. Sections are lists of logical
formulas, indexed by a unique (across all sections)
identifier, and fall into one of two types: episode
sections, in which all identifiers begin with a ques-
tion mark (?), and nonfluent sections, in which
all identifiers begin with an exclamation mark (!).
Each ?-identifier in an episode section introduces an episode characterized by the formula that follows.

4.2 Episode vs. Nonfluent Sections

Fluent conditions, or episodic conditions, are “susceptible to change” over time. Nonfluent con-
ditions hold true regardless of time. Within nonfluent sections, such as :Nonfluent-conds or
:Episode-relations, we interpret any nonfluent condition identifier !nfN as an alias (metavariable) that
can be freely substituted for its associated formula ΦN . Within episode sections, such as :Steps or
:Init-conds, we interpret any episode condition identifier ?eN as an episode variable that is character-
ized by its associated formula ΨN .

4.3 Initial and Post Conditions

Initial conditions are a form of fluent predication—they must be true at the outset of the schema, but
might not be true for the entire schema episode. They might be true before the start of the schema, or
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they might become true at the exact start time of the schema. This temporal relationship is encoded, for
each initial condition episode ?iN , by the tacit assumption of the nonfluent episode-relational predication
((start-of.f ?e) during ?iN). Postconditions may be true at any time, but must be true at least at
the end point of the schema, or immediately afterward, so for each postcondition episode ?pN , we tacitly
assume the nonfluent predication ((end-of.f ?e) during ?pN).

4.4 Header

The schema in Figure 2 is an epi-schema, that is, an episodic schema. It describes an episode in the
episodic logic sense. The episode it describes, here ?e, is called the “head episode” of the schema. The
header provides a characterizing formula of the head episode. Derivation of the header characterization
from a story sentence, here give_obj_for_poss.v, certainly implies the rest of the schema, but that is not
necessarily true in the reverse direction (see Section 5.1 for a note on “confirming” schemas). An epi-
schema can be viewed as defining an episode type (at least partially), where all ?-variables in the header
and body of a schema, except the head episode, are Skolem functions (equivalently, role functions) of
that episode. As such, they can be equated to externally supplied constants. For example, the location
variable ?l in Figure 2 is interpreted as a Skolem function of ?e, so that if ?e receives a particular value,
say |EP1|, then (?l |EP1|) in effect denotes the location of the participants; this might become equated
to an external constant such as |Home23|.

4.5 Steps and Goals

The steps section enumerates the episodes that occur in, and constitute, the head episode, and their order
of enumeration here sets the default event ordering. Goals are also episodes within the schema, but
underlining their teleological contribution is necessary for action understanding, planning, and meta-
reasoning—people do things for reasons.

4.6 Episode Relations

The episode relations section specifies temporal and causal constraints on the subepisodes belonging to
the schema episode, including overriding the default relations for :Init-conds and :Steps. In Figure 2,
episode ?e1 is characterized by some agent ?x giving some object ?o to some agent ?y. A postcondi-
tion episode, ?p1, is characterized by ?y having that object. The episode relation section says that ?e1
and ?p1 are consecutive, and further that ?e1 is the direct cause of ?p1. Temporal constraints in this
section—which can relate the start times and end times of episodes, or provide uncertainty about start or
end times—can induce a directed acyclic graph (DAG) of start and end times, a full interval graph, or a
causality graph for action planning. Even the simplest induced graph, the DAG of start times, helps us
to rule out schemas whose events are temporally inconsistent with a story. In the example schema, the
constraint !w1 says that step episode ?e1 shares a start and end time (a.k.a. same-time) with the schema’s
head episode ?e. We intend give_to.v to generalize give_obj_for_poss.v. Under certain assumptions
about event individuation (Schubert, 2000), this generalization relation together with the same-time pred-
ication actually implies that (?e1 = ?e); so finding a story assertion matching (?x give_to.v ?y ?o)

would suggest that the instantiation attempt for the schema is “on the right track”.

5 Schema Matching and Inferences

Using schemas to make sense of a story requires casting the story in terms of schemas: We must find
“matches” between sentences and individuals in the story, and formulas and roles in the schema. We have
designed, implemented, and experimented with a basic algorithm which takes a ULF parse of a story,
performs some preprocessing to get a basic EL form, matches the formulas in the story to new schemas
as well as schema instances stored in “working memory”, generates inferences from those schemas after
filling in their variables, and uses those inferences to fill in yet more schemas. In this section, we detail
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the algorithm, and walk through an example from one of our experiments on a children’s first reader
story from The New McGuffey First Reader (McGuffey, 1901).

5.1 Matching Algorithm

Algorithm 1 Algorithm for matching story formulas to schemas
INPUT: set of story episodes ST
MODIFIES: knowledge base of facts KB
KBÐH

for story episode E in ST do
for conjunctive sub-formula F in E do

KBÐ KBYtFu
while D unprocessed formula FST P KB do

for episode ESCH in SCH episodes (linearized timeline) do
for formula FSCH P ESCH do

MGU Ð most general unifier of FSCH and FST

if MGU does not exist then
continue

for variable binding B“VSCH Ñ TST do
if VSCH is not already bound to something else then

substitute TST for all occurrences of VSCH in the schema instance
if schema instance is confirmed then

for fully-bound formula FB in the instance do
KBÐ KBYtFBu

mark FST as processed

The matching algorithm takes a (potentially partially-filled) schema instance SCH, which is a schema
and a map of its bound variable names to their values, and a story ST , which is a list of episodes, with
their characterizing formulas, along with type predications, etc. Each step to match a story WFF is based
on a global “knowledge base” of episodes and formulas we know to be true. The knowledge base is
initialized with the story WFF, and the schema instantiation process then begins. We can create a new
schema instance, or update an existing one, when a WFF in the knowledge base “matches” a WFF in the
schema, i.e., is successfully unified. We obtain the “most general unifier” (MGU) using the algorithm by
Robinson (1965). The MGU acts as a variable-to-term mapping, which we then use to replace variables
throughout the schema instance. If a schema instance is “confirmed”, we “infer” formulas within the
schema whose variables have all been made concrete, and we add them to the knowledge base. As
our initial schemas are quite simple, our current confirmation heuristic is simply whether all episodes
in the :Steps section have been matched. As we continue to develop with more complex stories, and
as schemas grow more complex, a more nuanced approach—perhaps involving certainties and numbers
of variables mapped—is called for. Once the knowledge base has been updated, we return back to the
schema matching step; we stop when we can no longer instantiate new schemas, or update existing
instances, and move on to the next story WFF.

5.2 Planning and Meta-Reasoning

As the reasoning procedures and initial schemas are hypothesized to be quite general, we can make
inferences about the beliefs and desires of agents within the story by “simulating” their reasoning with
our own algorithms. A simple example of such an inference is that, if a mother wants her daughter to
have a cat, and we know, via our general schemas, that owning a cat is pleasurable, we infer that the
mother knew that her daughter having a cat would cause her daughter to experience pleasure, and we
infer that the mother wanted her daughter to experience pleasure. We can draw many parallels to the
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: "GIVE_OBJ_FOR_POSS.V"

?E1    
 (MOTHER5.SK

 (GIVE-TO.V SHE.PRO KITTEN6.SK))

  (SHE.PRO
 (HAVE.V KITTEN6.SK))

generated inference

  (MOTHER5.SK AGENT6.N)

generated inference

  (SHE.PRO AGENT6.N)

generated inference

  (KITTEN6.SK
 (KIND1-OF.N OBJECT.N))

generated inference

  (MOTHER5.SK
 (CAN.AUX-V

 (GIVE-TO.V SHE.PRO KITTEN6.SK)))

generated inference

  (MOTHER5.SK
 (BE.V

 (ADV-E
 (NEAR.P SHE.PRO))))

generated inference

(MOTHER5.SK WANT1.V
 (THAT

 (SHE.PRO
 (HAVE.V KITTEN6.SK))))

generated inference

: "GIVE_OBJ_FOR_POSS.V"

?E2    
 (SHE.PRO

 (HAVE.V KITTEN6.SK))

matched to

: "POSSESS"

?E1    
 (SHE.PRO

 (HAVE.V KITTEN6.SK))

matched to

generated inference

  (SHE.PRO WANT1.V
 (KA

 (HAVE.V KITTEN6.SK)))

generated inference

  (MOTHER5.SK
 (GIVE-TO.V SHE.PRO KITTEN6.SK))

matched to

Figure 3: A graph of inferences made while processing a single story sentence. White vertices are inferred and story
WFFs, green bubbles are “confirmed” schemas (see Section 5.1 for definition), and red bubbles are unconfirmed
schemas.

planning domain: As agents have desires and beliefs, and schemas have goals, preconditions, and side
effects, one could use existing schemas to solve planning problems, and, in turn, use planning algorithms
to hypothesize new schemas for accomplishing certain goals.

5.3 Matching Example

Starting with the story sentence “Her mother gave the kitten to her” parsed into its EL form (MOTHER5.SK

(GIVE_TO.V SHE.PRO KITTEN6.SK)), we’ll walk through the matching algorithm, whose generated in-
ferences are shown in Figure 3.

5.3.1 ULF Processing

We first process the ULF verb predication ((past give.v) (the.d kitten.n) (to.p-arg her.pro))

in Figure 4 to attach the argument marking preposition to the verb and float its argument to the front of
the list. We then Skolemize the the.d determiners, demoting the relational noun predicate (mother-of.n

she.pro) to the bare noun predicate mother.n to derive the Skolem name MOTHER5.SK (the 5 is a cumula-
tive counter for Skolem constants; it is arbitrary, and an artifact of our Skolemization process), and using
the noun predicate kitten.n to derive the Skolem name KITTEN6.SK. We finally obtain the EL sentence
(MOTHER5.SK (GIVE_TO.V SHE.PRO KITTEN6.SK)), which is ready for matching.

5.3.2 The Initial Match

GIVE_TO.V immediately matches to the schema shown in Figure 2, as that schema has the same name.
We unify the story formula (MOTHER5.SK (GIVE_TO.V SHE.PRO KITTEN6.SK)) with the schema header,
producing the unifier (?x Ð MOTHER5.SK, ?y Ð SHE.PRO, ?o Ð KITTEN6.SK), and we then make that
substitution throughout the entire schema. Notably, every role in the schema is now bound except for the
location ?l. Note that, although the question of whether a schema is “confirmed” to have happened at
any point in the matching process is difficult to answer in general, it is easy here: The actual verb in the
schema’s single step has been observed, so in the absence of type conflicts it is quite likely that the rest of
the schema happened. All of the filled-in WFFs in the Events, Goals, Init-conds, and Nonfluent-conds

sections, except those including the still-unbound variable ?l, are added to our knowledge base as infer-
ences from a confirmed schema.
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; Here is May with her kitten.

(|May| ((pres be.v) here.a

(adv-a (with.p (the.d (λx ((x kitten.n) and.cc (x (poss-by her.pro )))))))))

; Her mother gave the kitten to her.

((the.d (mother-of.n her.pro)) ((past give.v) (the.d kitten.n) (to.p-arg she.pro)))

; She is kind to the pretty kitten.

(she.pro ((pres be.v) kind.a

(adv-a (to.p (the.d (pretty.a kitten.n))))))

; She likes to see it jump and play.

(she.pro ((pres like.v) (ka (see it.v (jump.v and.cc play.v)))))

; See it run with May ’s ball!

(({you}.pro ((pres see.v) it.pro

(run.v (adv-a (with.d (the.d (λ x ((x ball.n) and.cc (x (poss-by |May |)))))))))) !)

; It does not run far with it.

(it.pro ((pres do.aux-s) not

(run.v far.adv-a (adv-a (with.p it.pro )))))

; If May can get the ball she will not take it.

((if.ps (|May| ((pres can.aux-v) (get.v (the.d ball.n)))))

(she.pro ((pres will.aux-s) not (take.v it.pro ))))

; She will give it to the kitten to play with.

(she.pro ((pres will.aux-s)

(give.v (to.p-arg (the.d kitten.n)) it.pro

(adv-a ({for}.p (ka (play-with.v {it}.pro )))))))

Figure 4: A children’s story, in partially post-processed ULF form. These were manually annotated but there are
promising preliminary results on parsing ULF (Kim, 2019)

5.3.3 Further Matching

While the story sentence has now been matched, it has generated inferences, and those inferences might
match other schemas. So, we are not done; we must attempt to match each of those before moving on
to the next story sentence. Indeed, in this case, the inference (SHE.PRO (HAVE.V KITTEN6.SK)) matches
to two schemas: GIVE_TO.v and POSSESS.V; the former is unconfirmed (but, upon close inspection,
would appear to be an incomplete copy of the instance that generated its matched WFF), and the latter
was triggered (and confirmed) by the HAVE.V verb predicate in the inference. The POSSESS.V schema
generates two more inferences, one of which was also generated by the original GIVE_TO.V schema, and
the matching process concludes for this sentence, as all generated inferences have been matched to all
possible schemas.

6 Conclusion & Future Work

Our approach to schemas comprises a rich logical language, initial schemas providing “low-level” in-
ferences about the effects and motivations behind simple, general actions, and a way of doing “fuzzy
matching” of inexact, but similar, formulas (see Section 6.2). All of these components work together to
provide inferences that enable a comprehensive, structured, and human-oriented “fleshing out” of events
in stories. The inferences we generate can then be combined, generalized, and reasoned about, thus cre-
ating new schemas from relatively few examples. There is much work remaining to further develop our
parsing, matching, and especially our generalization processes. We proceed here to outline some of that
future work—our initial results from matching a small handful of initial schemas to a short children’s
story are promising.

6.1 Immediate Future: Generalization

Currently, we are focusing our efforts on the task of schema generalization: Given two (or more) se-
quences of predications, which may themselves instantiate nested schemas, can we create a schema that
describes both stories with a more general pattern? We are currently experimenting on four short chil-
dren’s stories about fishing, and each story includes similar words used in similar contexts: “These men
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fish in the sea”, “We will take the long rod, and the hook and line”, “Here is Tom with his rod and
line”, “Sometimes they sit on the bank of the river”, and many more thematically parallel sentences in
the stories strongly suggest a schema where people are near water, have a rod, and catch fish with a rod
or a net. After extracting a set of recurring events from the stories—like going to water, having a rod,
catching fish, and putting fish in a basket—we plan to experiment with using narrative models like tense
trees (Hwang and Schubert, 1992) to find subsequences of the events that could be interpreted as steps in
a schema.

After extracting subsequences of similar events that occur in two or more stories, we can use knowl-
edge of basic motivations—e.g., people often want to possess things—to infer a teleology of those events.
If some unknown action “catch ?x” always occurs before “possess ?x”, we might hypothesize that the
catching something has an effect of possessing that thing. If that sequence is only ever seen with fish
and crabs as ?x, our confidence in the “catch to possess” schema might be lower when the object is not a
marine animal, implying a “catch marine animal to possess” schema. Teleological inferences will likely
prove to be very useful in sifting out reasonable new schema generalizations from a large collection of
partly nonsensical ones.

Generalization can also take place from one example: after matching certain individual constants
from a story to slots in a schema, we can consult a generalization hierarchy for those individuals’ types
(e.g. dog -> canine -> animal -> object), and select appropriate generalizations for the slots. These
selections do not necessarily need to be made right away: the entire generalization hierarchy can be
stored, and usage frequencies can be accumulated when more examples are found. However, they also
do allow immediate generalization: a “reasonable guess” could be provided by the generalized word
that’s used the most frequently in some text corpus, for example. Further, if conditions are imposed on
the entity by other formulas in the schema, the most general word that still satisfies those conditions
could be selected, similar to the schema generalization in the GENESIS system (Mooney, 1990). For
example, “border collie” could be replaced with “dog” if there were a later assertion that “the border
collie competed in a dog show”, but replacing it with “animal” would be too general.

6.2 “Fuzzy Matching”

So far, we have mostly discussed exact matching of WFFs using the MGU algorithm. However, in many
cases, we will want to match something like a “Segway” to a schema predication about a “vehicle”, just
as readily as we would match “car” to “vehicle”. Additionally, synonyms and intuitively similar words,
like “run” and “jog”, should be able to match as well, perhaps with some certainty score. Hypernym
hierarchies, semantic word embeddings, and logical world knowledge of object properties all affect
whether we want to make inexact matches. We are actively researching how best to gather and use
this information in the matching process—as well as how to index schemas for quick retrieval, even
when matches are inexact.

6.3 A Note on Condition Strictness

It is currently unclear exactly how and when condition violations are acceptable. Certainly, to generalize
new schemas, we must allow some “slack” in condition violations: a schema that fits, say, a “fishing”
schema perfectly, except the variable constrained to be a fish is actually a crab, should cause us to infer
that “catching seafood” might be a good generalization to store. However, different conditions intuitively
seem violable to different degrees, and in different contexts, depending on what other conditions are met
or violated. Many factors seem to affect whether we match or abandon a schema, or create a new schema,
when trying to make sense of a story. These factors will be the subject of many future experiments.

6.4 Scaling the Matching Algorithm

Our algorithm is in an early stage, and several scaling problems must be solved to bring it to bear on an
unsupervised learning task. We are currently experimenting on an assortment of children’s first reader
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stories to determine rules and heuristics to guide us as we develop the matching algorithm to cope with
large numbers of possible schema matches.

6.4.1 Role Assignment Restriction

As the number of schemas scales, it will be combinatorially infeasible to maintain every possible schema
instance a story WFF might prompt; if there are three humans in a schema, and ten humans mentioned
in a story, there are

`10
3

˘

ways to instantiate the human roles alone in that schema. In many cases, it may
suffice to “let the actions speak for the agents”, that is, prefer to use verb predications to identify individ-
uals for schema roles, rather than considering role assignments directly. The schema relates arguments to
its verb predications to their role definitions and “type” predications, so if we can infer that ?x is |Mary|

from an action that she did, we can then simply confirm or refute the additional constraint (?x human.n).
However, there could be examples where there is still suitable ambiguity, or where “action-first” role
assignment isn’t the most efficient; we hope to discover and address these examples in our ongoing story
experiments.

6.4.2 Instance Abandonment

What might seem like a “promising” schema match at first could diverge suitably from the story and
become useless; we would want to abandon it to free up memory, and so we don’t continue fruitless
comparisons of story WFFs to it. However, it is difficult to know when a schema instance is unlikely to
continue to be matched to WFFs; sentences read, or inferences generated, much later on in a story could
provide the missing piece to a schema instance matched many sentences ago. We plan to use our ongoing
story experiments to formulate abandonment heuristics as well, or even identify potential applications of
machine learning to the problem.

6.4.3 Schema Retrieval

As the number of schemas grows, and as we allow for inexact matching, whether of hypernyms, syn-
onyms, or “functionally equivalent” terms (based on world knowledge), the task of identifying reasonable
schemas as match candidates grows more difficult in turn. As a first step, indexing schemas by a handful
of specific predications—specific verbs and nouns, chosen to maximally prune the search space—could
allow for quick identification of relevant schemas. From there, indexing by sequences, or subsequences,
of events should help us quickly identify highly specific sequential schemas within a large corpus; the
human brain seems to be able to recall schemas very quickly with very terse sequences, as Winograd
(1973) demonstrates with the sequence “skid, crash, hospital”. Finally, any indexing we’ve done will
need to be augmented to perform well even with inexact matching as described above. Schema retrieval
optimization will be heavily informed by our experiments with the matching space on real stories, and
especially as our number of schemas grows.
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