
1

An Integrated Hardware/Software An Integrated Hardware/Software
Approach to OnApproach to On--Line PowerLine Power--
Performance OptimizationPerformance Optimization

Sandhya Dwarkadas

University of Rochester

Collaborators at UR: David Albonesi, Chen Ding, Eby Friedman, Michael L. Scott, UR
Systems and Architecture groups

Collaborators at IBM: Pradip Bose, Alper Buyuktosunoglu, Calin Cascaval, Evelyn
Duesterwald, Hubertus Franke, Zhigang Hu, Bonnie Ray,Viji Srinivasan

OutlineOutline
�

Framework: Dynamically Tunable Clustered
Multithreaded Architecture

�
Motivation: Workload characterization

�
Architectural support for adaptation

�
Role of program analysis

�
Resource-aware operating system support

Emerging TrendsEmerging Trends

• Wire delays and faster clocks will necessitate
aggressive use of clustering

• Larger transistor budgets and low cluster design
costs will enable addition of more clusters
incrementally

• There is a trend toward multithreading to exploit
the transistor budget for improved throughput by
combining ILP and TLP

�
Combine clustering and multithreading?

Conventional Processor Design

I Cache

Branch
Predictor

Rename
&

Dispatch

I
s
s
u
e
Q

Register File

FU

FU

FU

FU

Large structures �
Slower clock speed

A Clustered Processor

I Cache

Branch
Predictor

Rename
&

Dispatch

IQ

Regfile

FU

IQ

Regfile

FU

IQ

Regfile

FU

IQ

Regfile

FU

r1 � r3 + r4

r41 � r43 + r44

r2 � r1 + r41
r2 � r1 + r41

Small structures �
Faster clock speed

But, high latency for some
instructions

A Clustered Multithreaded (CMT) A Clustered Multithreaded (CMT)
ArchitectureArchitecture

L2
Shared
Unified
Cache

IPREG

IIQ

Integer

LSQ
L1

Dcache

Memory

Floating Pt

Int FUs

FPQ

FPREG
FP FUs

ROB

Rename
map

Branch
predict

L1
Icache FetchQ

ROB

Rename
map

Branch
predict

L1
Icache FetchQ

IPREG

IIQ

Integer

LSQ
L1

Dcache

Memory

Floating Pt

Int FUs

FPQ

FPREG
FP FUs

2

Components of IPC DegradationComponents of IPC Degradation

0

1

2

3

4

5

6

7

ilp4 com4 mix4

Monolithic

Clustered

Centralized FUs

No Comm Penalty

Centralized FUs + No Comm Penalty

Centralized FUs + No Comm Penalty + Centralized RegFile

Overall Energy ImpactOverall Energy Impact
Power

0

0.2

0.4

0.6

0.8

1

1.2

SMT TD:8;Link 2 TD:4;Link 2 TD:2;Link 2 TD:1;Link 2 Dynamic

Communication

ResultBus

ALU

Dcache 2

Dcache

Icache

Regfiles

LSQ

Bpred

ROB

Clock

IQRAM

Rename

ProblemsProblems

• Tradeoff in communication vs. parallelism for a single
thread

• Increased communication delays and contention when
employing multiple threads
– Reduced performance
– Increased energy consumption

Goal:Goal:
Intelligent mapping of applications to resources for
improved throughput and resource utilization as well as
reduced energy

Single Thread ExecutionSingle Thread Execution
IPREG

IIQ

Integer

LSQ
L1

Dcache

Memory

Floating Pt

Int FUs

FPQ

FPREG
FP FUs

ROB

Rename
map

Branch
predict

L1
Icache FetchQ

IPREG

IIQ

Integer

LSQ
L1

Dcache

Memory

Floating Pt

Int FUs

FPQ

FPREG
FP FUs

L2
Unified
Cache

Communication vs Parallelism

4 clusters � 100 active instrs

r1 � r2 + r3
r5 � r1 + r3

…
…

r7 � r2 + r3
r8 � r7 + r3

8 clusters � 200 active instrs

r1 � r2 + r3
r5 � r1 + r3

…
…

r7 � r2 + r3
r8 � r7 + r3

…
…

r5 � r1 + r7
…

r9 � r2 + r3Distant parallelism:
distant instructions
that are ready to execute

Ready instructions

SingleSingle--Thread Adaptation [ISCAThread Adaptation [ISCA’’03]03]

• Dynamic interval-based exploration can adapt to
available instruction-level parallelism in a single
thread
– Determine when communication can no

longer be tolerated in exploiting additional
clusters

• Allow remaining clusters to be turned off to
reduce power consumption or to be used by a
different thread/application

3

Results with Interval-Based Scheme
(ISCA’03)

0

0.5

1

1.5

2

2.5

cjpeg crafty gzip parser vpr djpeg galgel mgrid swim HM

In
st

ru
ct

io
ns

 p
er

 c
yc

le
 (

IP
C

)

4-clusters
16-clusters
interval-based

Overall improvement: 11%

An Integrated Approach to Dynamic An Integrated Approach to Dynamic
Tuning of the CMTTuning of the CMT

• Architectural design and dynamic configuration for fine-
grain adaptation

• Program analysis to determine application behavior
• Runtime support to match predicted application behavior

and resource requirements with available resources
– Resource-aware thread scheduling for maximum

throughput and fairness
– Runtime support for balancing ILP with TLP in parallel

application environments

• In-Order Dispatch (dispatch stall)

•Out-of-Order Dispatch (dispatch from T6)

OutOut--ofof--order Dispatch & Fetch Gatingorder Dispatch & Fetch Gating

Ready for dispatch

Blocked from dispatch

Ready for dispatch

Blocked from dispatch

Tx Thread id

tail head

T2T4T7T1T2T5T2T1T8T6T3T4T3T6

tail head

T2T4T7T1T2T5T2T1T8T6T3T4T3T6

Multithreaded AdaptationMultithreaded Adaptation

• Basic scheme
– Interval-based
– Fixed 100,000 cycles

– Exploration-based
– Hysteresis to avoid spurious changes

Thread to Cluster AssignmentThread to Cluster Assignment

0

1

2

3

4

5

6

7

8

ilp4 com4 mix4 ilp8 com8 mix8

Monolithic TD:4 + SD + FG TD:2 + SD + FG Adaptive

Thread to Cache Bank AssignmentThread to Cache Bank Assignment
N_WAY = 8

0

1

2

3

4

5

6

7

com_4_I com_4_m ilp_4_f ilp_4_m mix1_4_m mix2_4_m

IP
C

SMT_8_BANK

SMT_4_BANK

SMT_2_BANK

SMT_1_BANK

CMT_8_BANK

CMT_4_BANK

CMT_2_BANK

CMT_1_BANK

4

ILP vs. TLPILP vs. TLP

Jacobi

0

1

2

3

4

5

6

7

8

1 2 4 6 8

Number of Threads

IP
C

Shared

Ideal WB

WB

WT

Centralized

SMT

ILP vs. TLPILP vs. TLP
LU

0

1

2

3

4

5

6

7

8

9

1 2 4 6 8

Number of Threads

IP
C

Shared

Ideal WB

WB

WT

Centralized

SMT

A Dynamically Tunable Clustered A Dynamically Tunable Clustered
Multithreaded (DTMultithreaded (DT--CMT) ArchitectureCMT) Architecture

L2
Shared
Unified
Cache

IPREG

IIQ

Integer

LSQ
L1

Dcache

Memory

Floating Pt

Int FUs

FPQ

FPREG
FP FUs

ROB

Rename
map

Branch
predict

L1
Icache FetchQ

ROB

Rename
map

Branch
predict

L1
Icache FetchQ

IPREG

IIQ

Integer

LSQ
L1

Dcache

Memory

Floating Pt

Int FUs

FPQ

FPREG
FP FUs

Current Approaches to AdaptationCurrent Approaches to Adaptation

Inspect
counters

Is there a
phase change?

Explore configurations
Record CPIs

Pick best configuration

Remain at
present

configuration

yes no

Adaptive change is triggered after observed
variation in program behavior

Success depends on ability to repeat behavior across successive
intervals

Reactive

Interval LengthInterval Length

Problem:Problem:
• Unstable behavior across intervals

SolutionSolution::
• Start with minimum allowed interval length
• If phase changes are too frequent, double the interval

length – find a coarse enough granularity such that
behavior is consistent

• Periodically reset interval length to the minimum
• Small interval lengths can result in noisy measurements

Varied Interval LengthsVaried Interval Lengths

1280K / 1%31%djpeg

40K / 4%9%cjpeg

10K / 1%1%galgel

10K / 0%0%mgrid

10K / 0%0%swim

40M / 5%12%parser

320K / 4%30%crafty

320K / 5%14%vpr

10K / 4%4%gzip

Minimum acceptable interval
length and its instability factor

Instability factor
for a 10K interval

length

Benchmark

Instability factor: Percentage of intervals that flag a phase change

5

Characterizing Program Behavior Characterizing Program Behavior
VariabilityVariability

• Whole program instrumentation (currently SPEC2k)
• Periodic hardware performance counter sampling using

Ticker
– Dynamic Probe Class Library (DPCL) to insert a timer-

based interrupt in the program
– Performance Monitoring API (PMAPI) to read the hardware

counters
– AIX-based

• Sampling interval of 10 msec
• Examination of IPC, L1D cache miss rate, instruction mix,

branch mispredict rate
• Statistical analysis – correlation, frequency analysis, behavior

variation

Example IPC PlotsExample IPC Plots

SPEC2k:bzip2

•Existence of macro phase behavior
•Significant behavior variation even at coarse granularities
•Strong frequency components/periodicity across several metrics

Example IPC PlotsExample IPC Plots

Spec2k:art

• High rate of behavior variation from one measurement to the next

Similarity Across MetricsSimilarity Across Metrics
SPEC2k:bzip2

Comparing Frequency SpectraComparing Frequency Spectra

bzip2 art

•Strong low (bzip2) and high (art) frequency components, indicating high rate of
repeatability

Program Behavior VariabilityProgram Behavior Variability

•Variation in behavior, while different, persists across different sampling interval sizes

6

Important Behavior CharacteristicsImportant Behavior Characteristics

• Programs exhibit high degrees of repeatability across all
metrics

• Rate of behavior repeatability (periodicity) across metrics
is highly similar

• Variation in behavior from one interval to the next can be
high

• Variation in behavior, while different, persists across
different sampling interval sizes

On-line power-performance optimization needs to be
predictive rather than reactive

• Linear (statistical) predictors to exploit behavior in the immediate
past
– Last value
– Average(N)
– Mode(N)

• Table-based predictors to exploit periodicity (non-linear)
– Run-length encoded
– Fixed-size history

• Cross-metric predictors to exploit similarity across metrics
– Use one metric to predict several potentially different metrics
– Efficiently combine multiple predictors

OnOn--Line Program Behavior PredictionLine Program Behavior Prediction

• E.g. table-based and asymmetric predictor –
at-4at-3at-2at-1 at,bt avote, bvote

• Default to last value during learning period
• Use a voting mechanism to update table entries

– Prediction (at or bt) is updated with the mode of the
actual value (vote) the last time this history was
encountered, the current prediction(t), and the
measured value at the end of the interval

• Encoding and length of history (index) can be varied
– Fixed size or run-length encoded

TableTable--Based PredictorsBased Predictors

Trade-off between noise tolerance, learning period, and prediction accuracy

Design TradeDesign Trade--offsoffs

• Precision
– Too coarse a precision implies insensitivity to fine-

grained behavior
– Too fine a precision implies sensitivity to noise

• Size of history
– Too long a history implies a potentially long learning

period
– Too short a history implies inability to distinguish

between common histories of otherwise distinct
regions

• Both precision and history have table size implications

Mean IPC Prediction ErrorMean IPC Prediction Error
(Power3)(Power3) Program Behavior PredictabilityProgram Behavior Predictability

• Variations in program behavior are predictable
to within a few percent

• Table-based predictors outperform any others
for programs with high variability

• Cross-metric table-based predictors make it
possible to predict multiple metrics using a
single predictor

• Microarchitecture-independent metrics allow
stable prediction even when the predicted metric
changes due to dynamic optimization

7

ProblemsProblems

• High variability in program behavior
• Interval length hard to determine

– Too small � measurement noise

– Too large � missed opportunities for
adaptation

• Interval and actual phase boundaries do not
match

Information Space for Workload Information Space for Workload
AnalysisAnalysis

��������
����	
�

����

������

��

Data Locality Analysis (Data Locality Analysis (ShenShen and Ding)and Ding)

������������������������
��� !�"

Program Phase DetectionProgram Phase Detection

"����#$�%&���������'($���
)�*�$�� !��$+���

�(��'�$,-��� ,������.�

/����+ ,�.���'

,�.���' ,-����

0	1��� 2
0	1��� 22

Phase Marker InsertionPhase Marker Insertion
----------Basic Block Trace AnalysisBasic Block Trace Analysis

• Objective: to find basic blocks marking unique phase
boundaries.

33 4��
�

5��6� 7��89�:�1;
�

����� 33�

<�����
7��
1
�1	�;
�:�1;�	�

<�����=
���>��33�

?��
�	:�

TOMCATV RD Signature with Phase BoundariesTOMCATV RD Signature with Phase Boundaries

8

Similarity of Locality Phases: Similarity of Locality Phases:
TOMCATV (5250 Phases)TOMCATV (5250 Phases)

Similarity of Locality Phases: Similarity of Locality Phases:
COMPRESS (52 Phases)COMPRESS (52 Phases)

Similarity of Phases with BBV Similarity of Phases with BBV
TOMCATV (2493 Intervals)TOMCATV (2493 Intervals) Bringing It All TogetherBringing It All Together

• Locality analysis for phase detection and
marking of macro phases

• Linear or non-linear (table-based) prediction
within each phase for improved learning

ResourceResource--Aware Thread Aware Thread
SchedulingScheduling

Application threads O/S threads H/W threads Processor
pipeline

O/S schedulingApplication-level
scheduling

H/W scheduling

P
ro

cess B
P

ro
cess A

Multiple levels of thread scheduling

ResourceResource--Aware O/S SchedulerAware O/S Scheduler

next
task(s)

e.g., current
temperature

O/S task

Kernel
scheduler(s). . .

C
o

unter-based
R

eso
urce M

o
de

l

H/W Counters

Resource counter/ Sensor

R
esource-aw

are
extensio

n

O/S kernel

R
eso

urce U
sag

e
P

redictio
n

9

Fair Cooperative Scheduling [Fair Cooperative Scheduling [PPoPPPPoPP
2001]2001]

• Each process is allocated a piggy-bank of time (set to 1
quantum) from which it can borrow and to which it can
add

• The piggy-bank is used to boost a process’s priority (with
the original purpose of responding to a communication
request when notified by a wakeup signal)

• A process can add to the piggy-bank whenever it
relinquishes the processor

�
Adapt the above so the piggy-bank is used to schedule a
process earlier than according to priority and
replenished, for example, when reconfiguring at a phase
marker

�
Coordinate among schedulers for multiple hardware
contexts

ApplicationApplication--Level SchedulingLevel Scheduling

• Provide a framework for
– trading ILP for TLP based on application

characteristics and available resources
– Specifying cache and cluster sharing

configurations at appropriate points
At the JVM level

– Target server workloads

At the level of an API such as OpenMP
– Target scientific/parallel applications

ResourceResource--Aware Thread Aware Thread
Scheduling: Other ApplicationsScheduling: Other Applications

Power/Thermal management
• Temperature-aware process/thread scheduling to

avoiding temperature hotspots
– characterize threads based on expected temperature

contribution
– schedule based on a thread’s predicted heat

contribution and current temperature
Performance
• Improving L2 bandwidth utilization on a multiprocessor

(e.g., the two cores of a Power4)
– Characterize threads based on expected L2 cache

accesses
– avoid scheduling different threads with high L2

access concurrently

ResourceResource--Aware Thread Aware Thread
Scheduling (contScheduling (cont’’d)d)

Performance and Power
• Resource (memory, FU, and temperature)

aware thread scheduling for simultaneous
multithreaded processors (e.g., the Power5, and
the hyper-threads of the Pentium IV) or our
proposed clustered multithreaded architecture

Summary: An Integrated Summary: An Integrated
Hardware/Software Approach to Hardware/Software Approach to

DTDT--CMTCMT
• Aggressive clustering and multithreading

requires a whole-system integrated view in order
to maximize resource efficiency
– Architectural configuration support (while

carefully considering circuit-level issues)
– Program analysis
– Runtime/OS support

OnOn--Going Projects at Going Projects at UofRUofR

• CAP: Dynamic reconfigurable general-purpose
processor design

• MCD: Multiple Clock Domain Processors
• DT-CMT: Dynamically Tunable Clustered Multi-

threaded architectures
• InterWeave: 3-level versioned shared state

(predecessors: InterAct and Cashmere)
• ARCH: Architecture, Runtime, and Compiler

Integration for High-Performance Computing

See http://www.cs.rochester.edu/research and
http://www.cs.rochester.edu/~sandhya

