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OutlineOutline
�

Framework: Dynamically Tunable Clustered 
Multithreaded Architecture

�
Motivation: Workload characterization

�
Architectural support for adaptation

�
Role of program analysis

�
Resource-aware operating system support

Emerging TrendsEmerging Trends

• Wire delays and faster clocks will necessitate 
aggressive use of clustering

• Larger transistor budgets and low cluster design 
costs will enable addition of more clusters 
incrementally

• There is a trend toward multithreading to exploit 
the transistor budget for improved throughput by 
combining ILP and TLP

�
Combine clustering and multithreading?

Conventional Processor Design
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A Clustered Processor
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A Clustered Multithreaded (CMT) A Clustered Multithreaded (CMT) 
ArchitectureArchitecture
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Components of IPC DegradationComponents of IPC Degradation
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Overall Energy ImpactOverall Energy Impact
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ProblemsProblems

• Tradeoff in communication vs. parallelism for a single 
thread

• Increased communication delays and contention when 
employing multiple threads
– Reduced performance
– Increased energy consumption

Goal:Goal:
Intelligent mapping of applications to resources for 
improved throughput and resource utilization as well as 
reduced energy 

Single Thread ExecutionSingle Thread Execution
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Communication vs Parallelism

4 clusters � 100 active instrs

r1 � r2 + r3
r5 � r1 + r3

…
…

r7 � r2 + r3
r8 � r7 + r3

8 clusters � 200 active instrs

r1 � r2 + r3
r5 � r1 + r3

…
…

r7 � r2 + r3
r8 � r7 + r3

…
…

r5 � r1 + r7
…

r9 � r2 + r3Distant parallelism:
distant instructions
that are ready to execute

Ready instructions

SingleSingle--Thread Adaptation [ISCAThread Adaptation [ISCA’’03]03]

• Dynamic interval-based exploration can adapt to 
available instruction-level parallelism in a single 
thread
– Determine when communication can no 

longer be tolerated in exploiting additional 
clusters

• Allow remaining clusters to be turned off to 
reduce power consumption or to be used by a 
different thread/application
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Results with Interval-Based Scheme 
(ISCA’03)
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Overall improvement: 11%

An Integrated Approach to Dynamic An Integrated Approach to Dynamic 
Tuning of the CMTTuning of the CMT

• Architectural design and dynamic configuration for fine-
grain adaptation

• Program analysis to determine application behavior 
• Runtime support to match predicted application behavior 

and resource requirements with available resources
– Resource-aware thread scheduling for maximum 

throughput and fairness
– Runtime support for balancing ILP with TLP in parallel 

application environments

• In-Order Dispatch  (dispatch stall) 

•Out-of-Order Dispatch (dispatch from T6)

OutOut--ofof--order Dispatch & Fetch Gatingorder Dispatch & Fetch Gating

Ready for dispatch

Blocked from dispatch

Ready for dispatch

Blocked from dispatch

Tx Thread id

tail head

T2T4T7T1T2T5T2T1T8T6T3T4T3T6

tail head

T2T4T7T1T2T5T2T1T8T6T3T4T3T6

Multithreaded AdaptationMultithreaded Adaptation

• Basic scheme 
– Interval-based
– Fixed 100,000 cycles

– Exploration-based
– Hysteresis to avoid spurious changes

Thread to Cluster AssignmentThread to Cluster Assignment
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ILP vs. TLPILP vs. TLP
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A Dynamically Tunable Clustered A Dynamically Tunable Clustered 
Multithreaded (DTMultithreaded (DT--CMT) ArchitectureCMT) Architecture
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Current Approaches to AdaptationCurrent Approaches to Adaptation

Inspect 
counters

Is there a 
phase change?

Explore configurations
Record CPIs

Pick best configuration

Remain at
present 

configuration

yes no

Adaptive change is triggered after observed 
variation in program behavior

Success depends on ability to repeat behavior across successive 
intervals

Reactive

Interval LengthInterval Length

Problem:Problem:
• Unstable behavior across intervals

SolutionSolution::
• Start with minimum allowed interval length
• If phase changes are too frequent, double the interval 

length – find a coarse enough granularity such that 
behavior is consistent

• Periodically reset interval length to the minimum 
• Small interval lengths can result in noisy measurements

Varied Interval LengthsVaried Interval Lengths

1280K / 1%31%djpeg

40K / 4%9%cjpeg

10K / 1%1%galgel

10K / 0%0%mgrid

10K / 0%0%swim

40M / 5%12%parser

320K / 4%30%crafty

320K / 5%14%vpr

10K / 4%4%gzip

Minimum acceptable interval 
length and its instability factor

Instability factor 
for a 10K interval 

length

Benchmark

Instability factor: Percentage of intervals that flag a phase change
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Characterizing Program Behavior Characterizing Program Behavior 
VariabilityVariability

• Whole program instrumentation (currently SPEC2k)
• Periodic hardware performance counter sampling using 

Ticker
– Dynamic Probe Class Library (DPCL) to insert a timer-

based interrupt in the program
– Performance Monitoring API (PMAPI) to read the hardware 

counters
– AIX-based

• Sampling interval of 10 msec
• Examination of IPC, L1D cache miss rate, instruction mix, 

branch mispredict rate
• Statistical analysis – correlation, frequency analysis, behavior 

variation

Example IPC PlotsExample IPC Plots

SPEC2k:bzip2

•Existence of macro phase behavior
•Significant behavior variation even at coarse granularities
•Strong frequency components/periodicity across several metrics

Example IPC PlotsExample IPC Plots

Spec2k:art

• High rate of behavior variation from one measurement to the next

Similarity Across MetricsSimilarity Across Metrics
SPEC2k:bzip2

Comparing Frequency SpectraComparing Frequency Spectra

bzip2 art

•Strong low (bzip2) and high (art) frequency components, indicating high rate of 
repeatability

Program Behavior VariabilityProgram Behavior Variability

•Variation in behavior, while different, persists across different sampling interval sizes
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Important Behavior CharacteristicsImportant Behavior Characteristics

• Programs exhibit high degrees of repeatability across all 
metrics

• Rate of behavior repeatability (periodicity) across metrics 
is highly similar

• Variation in behavior from one interval to the next can be 
high 

• Variation in behavior, while different, persists across 
different sampling interval sizes

On-line power-performance optimization needs to be 
predictive rather than reactive

• Linear (statistical) predictors to exploit behavior in the immediate 
past
– Last value
– Average(N)
– Mode(N)

• Table-based predictors to exploit periodicity (non-linear)
– Run-length encoded
– Fixed-size history

• Cross-metric predictors to exploit similarity across metrics
– Use one metric to predict several potentially different metrics
– Efficiently combine multiple predictors

OnOn--Line Program Behavior PredictionLine Program Behavior Prediction

• E.g. table-based and asymmetric predictor –
at-4at-3at-2at-1 at,bt avote, bvote

• Default to last value during learning period
• Use a voting mechanism to update table entries 

– Prediction (at or bt) is updated with the mode of the 
actual value (vote) the last time this history was 
encountered, the current prediction(t), and the 
measured value at the end of the interval

• Encoding and length of history (index) can be varied
– Fixed size or run-length encoded

TableTable--Based PredictorsBased Predictors

Trade-off between noise tolerance, learning period, and prediction accuracy

Design TradeDesign Trade--offsoffs

• Precision
– Too coarse a precision implies insensitivity to fine-

grained behavior
– Too fine a precision implies sensitivity to noise

• Size of history
– Too long a history implies a potentially long learning 

period
– Too short a history implies inability to distinguish 

between common histories of otherwise distinct 
regions

• Both precision and history have table size implications

Mean IPC Prediction ErrorMean IPC Prediction Error
(Power3)(Power3) Program Behavior PredictabilityProgram Behavior Predictability

• Variations in program behavior are predictable 
to within a few percent

• Table-based predictors outperform any others 
for programs with high variability

• Cross-metric table-based predictors make it 
possible to predict multiple metrics using a 
single predictor

• Microarchitecture-independent metrics allow 
stable prediction even when the predicted metric 
changes due to dynamic optimization
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ProblemsProblems

• High variability in program behavior
• Interval length hard to determine

– Too small � measurement noise

– Too large � missed opportunities for 
adaptation

• Interval and actual phase boundaries do not 
match

Information Space for Workload Information Space for Workload 
AnalysisAnalysis
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• Objective: to find basic blocks marking unique phase 
boundaries.

33 4��
�

5��6� 7��89�:�1;
�

����� 33�

<�����
7��
1
�1	�;
�:�1;�	�

<�����=
���>��33�

?��
�	:�

TOMCATV RD Signature with Phase BoundariesTOMCATV RD Signature with Phase Boundaries
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Similarity of Locality Phases: Similarity of Locality Phases: 
TOMCATV (5250 Phases)TOMCATV (5250 Phases)

Similarity of Locality Phases: Similarity of Locality Phases: 
COMPRESS (52 Phases)COMPRESS (52 Phases)

Similarity of Phases with BBV Similarity of Phases with BBV 
TOMCATV (2493 Intervals)TOMCATV (2493 Intervals) Bringing It All TogetherBringing It All Together

• Locality analysis for phase detection and 
marking of macro phases

• Linear or non-linear (table-based) prediction 
within each phase for improved learning

ResourceResource--Aware Thread Aware Thread 
SchedulingScheduling

Application threads O/S  threads H/W threads Processor 
pipeline

O/S schedulingApplication-level 
scheduling

H/W scheduling
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Multiple levels of thread scheduling

ResourceResource--Aware O/S SchedulerAware O/S Scheduler
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Fair Cooperative Scheduling [Fair Cooperative Scheduling [PPoPPPPoPP
2001]2001]

• Each process is allocated a piggy-bank of time (set to 1 
quantum) from which it can borrow and to which it can 
add

• The piggy-bank is used to boost a process’s priority (with 
the original purpose of responding to a communication 
request when notified by a wakeup signal)

• A process can add to the piggy-bank whenever it 
relinquishes the processor

�
Adapt the above so the piggy-bank is used to schedule a 
process earlier than according to priority and 
replenished, for example, when reconfiguring at a phase 
marker

�
Coordinate among schedulers for multiple hardware 
contexts

ApplicationApplication--Level SchedulingLevel Scheduling

• Provide a framework for 
– trading ILP for TLP based on application 

characteristics and available resources 
– Specifying cache and cluster sharing 

configurations at appropriate points
At the JVM level

– Target server workloads

At the level of an API such as OpenMP
– Target scientific/parallel applications

ResourceResource--Aware Thread Aware Thread 
Scheduling: Other ApplicationsScheduling: Other Applications

Power/Thermal management
• Temperature-aware process/thread scheduling to 

avoiding temperature hotspots
– characterize threads based on expected temperature 

contribution
– schedule based on a thread’s predicted heat 

contribution and current temperature
Performance
• Improving L2 bandwidth utilization on a multiprocessor 

(e.g., the two cores of a Power4)
– Characterize threads based on expected L2 cache 

accesses 
– avoid scheduling different threads with high L2 

access concurrently

ResourceResource--Aware Thread Aware Thread 
Scheduling (contScheduling (cont’’d)d)

Performance and Power
• Resource (memory, FU, and temperature) 

aware thread scheduling for simultaneous 
multithreaded processors (e.g., the Power5, and 
the hyper-threads of the Pentium IV) or our 
proposed clustered multithreaded architecture

Summary: An Integrated Summary: An Integrated 
Hardware/Software Approach to Hardware/Software Approach to 

DTDT--CMTCMT
• Aggressive clustering and multithreading 

requires a whole-system integrated view in order 
to maximize resource efficiency
– Architectural configuration support (while 

carefully considering circuit-level issues)
– Program analysis
– Runtime/OS support

OnOn--Going Projects at Going Projects at UofRUofR

• CAP: Dynamic reconfigurable general-purpose 
processor design

• MCD: Multiple Clock Domain Processors
• DT-CMT: Dynamically Tunable Clustered Multi-

threaded architectures
• InterWeave: 3-level versioned shared state 

(predecessors: InterAct and Cashmere)
• ARCH: Architecture, Runtime, and Compiler 

Integration for High-Performance Computing

See http://www.cs.rochester.edu/research and
http://www.cs.rochester.edu/~sandhya


