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Data Mining (and Knowledge

Discovery)

! Use computation to learn from large

databases of routinely collected data
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Characteristics of Data Mining

! Practical implications, multidisciplinary nature

# The extracted information applied to business,

medicine, science, and engineering.

! Large databases of routinely collected data

# Data are routinely collected, otherwise trashed.

! Intensive computation

# Compute-intensive, ad hoc, approaches are used.
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Interdisciplinary Nature of Data

Mining

! Extracting  information " Information retrieval

! Computational modeling of data " Machine
learning

! Database interfaces " Database Theory

! Hardware issues " Systems, Networks

! Statistical underpinnings of results " Statistics

! Application dependent analysis of results "
Medicine, Economics, Management, etc.

! Heuristic algorithm design " Algorithms
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Data Mining Tasks Are Selected

Depending on Attribute Types

! Numeric (the set of real numbers)

! Discrete (the set of integers)

! Categorical (finite sets)

! Binary

! Plain Text

! Semi-Structured Text Data (HTML)

! Image

! Sequential Data
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Data Mining Tasks Are Selected

Depending on Data Layout

! Temporal data: Attributes include the time

stamp.  The temporal changes are studied

in the attributes of the data entries having

the same ID
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Major Data Mining Tasks

! Association Mining & Sequence Mining

# Finding significant patterns in the database

! Classification

# Learning to assign labels to data points

! Clustering

# Grouping similar data points together
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Talk Outline

!!! IntroductionIntroductionIntroduction

! Association mining

! Sequence mining

! Classification

! Conclusions
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Association Mining

! A classical example of data mining

# The very first use of “data mining” on this topic

! Attributes are binary, called items

# A collection of items is called an itemset

! Each data point is a subset of the set of all
attributes, called a transaction

! L, 0<L<1, an input parameter called minimum
support

! An itemset is frequent if it appears in at least L of
the transactions

! Goal: Identify all frequent itemsets
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Association Rule Mining

! Association rule mining

#Another parameter C, 0<C<1

#Goal: Find all itemset pairs (S,T), such that
! Both S and T are frequent

! At least C of the data points containing S contain T

! Interpretation:
# If you see S in a transaction you are likely to see T as

well
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Basket Database: A Popular

Example of Target Databases of

Association Rule Mining

! Items purchased at a store

! Quantities are reduced to 0/1

! Customer ID removed, multiple transactions of
same customers

! Association Mining
# “At least 1.5% of the customers buy shampoo,

toothpaste, and milk at one time.”

! Association Rule Mining
# “If a customer buys shampoo and toothpaste then

he/she is likely to buy milk with 90% of the time.”
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The Subset Property of Frequent

Attribute Sets

! Every subset of frequent attribute subset is
frequent

! The frequent attribute sets form a set lattice …
The mining problem is equivalent to the problem
finding maximal elements in a set lattice

! The mining has exponential complexity ... Need
to design heuristic search algorithms
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Subset Property of Frequent

Itemsets – Itemset Lattice
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Major Issues in Association and

Association Rule Mining
! Selection of the parameters is very important

# The higher L or C, the fewer the number of itemsets or rules discovered

! Once the combinations have been identified their significance can
be statistically measured (Chi-squared test) … but can’t use the
measure to prune search

! Numeric attributes must be converted to binary ones
# Solution: divide the range into overlapping/non-overlapping intervals …

difficult if the underlying distribution is unknown

! Missing data are often seen in real datasets
# How should missing binary attributes be modeled?
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The Apriori Algorithm (Agrawal &

Srikant ’93)

! Level-wise search in the itemset lattice:

# Combine frequent itemsets of size k to generate

candidates for frequent itemsets of size (k+1)

! A size-(k+1) itemset is a candidate if and only if all

of its size-k subsets are frequent

! The proof-of-concept algorithm … correct, but

slow

# Many heuristics have been designed
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The CLIQUE Algorithm (Zaki,

Ogihara, Parthasarathy, Li ’98)

! Discover all frequent item pairs

! View the pairs as edges to draw a graph whose nodes
are the items
# Each frequent itemset is a subset of a clique in the graph

# Use a maximal clique enumeration algorithm  the pairs to prune
the search space

! Can be efficiently run on parallel processor machines

! Twice to thrice faster than Apriori on single-processor
machines on synthetic datasets
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Rochester Perinatal Database
! Database of babies given birth in the Rochester

area

! A very small number of vital statistics (height,
weight, etc.)

! Mostly health conditions of the mothers collected by
questionnaire
# Before labor

# During labor

! Analysis not successful
# Too many missing data entries

! 30% of data points had some missing data
! 50% of attributes had missing entries

# Too many high confidence rules

# Expert knowledge must be incorporated (but never
happened)
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Talk Outline
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Sequence Mining

! The time dimension is added to association
mining
# Each data point is a sequence of attribute sets, each

labeled with a time point

# One more parameter W > 0

# Goal: Find all sequences of attribute sets that
! Appear in at least L of the data points

! The time interval between each neighboring attribute set pair
is at most W
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Sequence Mining of Basket

Databases

! Items purchased; 0/1 instead of quantity

! Each data point has a unique customer ID, it
is a sequence of transactions of the
customer

! Sequence Mining
# “At least 2.5% of the customers buy

shampoo, toothpaste, and milk at one time,
and then buy soap and peanut butter at one
time in a month.”



Mitsunori Ogihara, CSC200 Talk 21April 8, 2004

Major Issues in Sequence Mining

! Again, parameter selection is critical

#… actually, more critical than association

mining since the search space size is much

more sensitive to parameter choice
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Data Classification Using Frequent

Patterns

! Artificial planning domain for fire extinction

# 10x10 area of base, water, ground

# Fire starts off in a point

# Randomly fire spreads out

# Ground and base are flammable, but water is not

# Base must be protected from burning … Failure

if any one of base area is burnt

# Bulldozers can be deployed to run over an area

to extinguish fire
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Data Classification Using Frequent

Patterns

! 700 execution traces, where each
entry of a trace has:

#Time value

#Wind direction & speed

#Locations of bulldozers

#Areas where fire started

! Goal: Identify patterns that predict
ultimate failure
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The FeatureMine Algorithm (Lesh,

Zaki, Ogihara ’01)

! Find sequences that are frequent in
unsuccessful traces and are not frequent in
successful traces

! Prune as much as possible early on
# Collapse 100% implications

! If B occurs after A occurs with probability 1 remove B from
consideration

# Remove partial sequences whose frequency is the
same between successful traces and unsuccessful
traces
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Results of FeatureMine

! With FeatureMine, prediction accuracy is

improved from 70% to 80% using

Bayesian inference

! With the pruning strategy, CPU time for

training was reduced from 5.8 hours to

560
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Classification

! Data points are divided into classes

! Goal: Develop an accurate, efficient algorithm

for inferring membership of a new data point with

unknown class membership

! Major Issues:

# Extracting / selecting features that are useful for

classification

# Selection / development of classification algorithms
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Popular Classification Algorithms
! Decision Trees

# Data points are hierarchically divided into groups;

each division is based on the value of a

particular attribute

# Can deal with more than two classes

! Gaussian Mixture Models

# Numeric attributes

# In each class, each attribute is subject to a linear

combination of Gaussian distributions; obtain

maximum-likelihood estimations of the

parameters
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Classification Algorithms

! Support Vector Machines

#Find a linear separation with a wide gap

between two classes

# If linear separation is impossible in the given

space, transform the data points into a higher

dimensional space  to separate linearly
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Multi-class Extensions of Binary

Classifiers

! One-versus-all:  For each class, train a
classifier that distinguishes the class from
the rest.  Assemble predictions of the
classifiers.

! Pair-wise: For each class pair, train a
classifier.  Assemble predictions of them.

! Error-Correcting-Output-Coding (ECOC):
Assemble many binary classifiers
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Eigenvectors as Features

! Data points are viewed as points in a high

dimensional space

! Use covariance matrix to view relations between

coordinates

! Calculate largest eigenvectors, which represent

the covariance

! Project data points on the eigenvectors
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Music Information Retrieval

! Growing on-line music information (text & acoustic
data)
# Efficient tools for classifying and storing music data

! Classification of genre, style, artist, emotion, etc. is
a fundamental problem

! Extracting features
# Acoustic Data

! Fast Fourier Transform

! Wavelet histograms (Li, Ogihara, Li ’03)

# Text Data (Lyrics, in particular)
! Bag-Of-Words, Part-of-Speech Statistics, Lexical Features,

Orthographic Features
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Genre Classification: 10 Genre

Dataset
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With an Increasing Number of

Genres
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Co-Updating (Li, Zhu, Ogihara, Li

’03)

! Classifiers are built on more than one
feature set

! Existence of unlabeled data

! Each classifier advises the others on the
class membership of each unlabeled data
point

#Randomized process of removing
disagreement among classifiers
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Related Concepts
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Artist Cluster Identification (Using

All Music Guide as the Ground

Truth)

! 45 artists, 55 albums

! Cluster 1: Fleetwood Mac, Yes, Utopia,
Elton John, Genesis, Steely Dan, Peter
Gabriel

! Cluster 2: Carly Simon, Joni Mitchell,
James Taylor, Suzanne Vega, Ricky Lee
Jones, Simon & Garfunkel
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Classification Results: Cluster 1

0.64940.69440.6875Co-

Upd./Combined

0.71430.65480.6853Co-Upd./Sound

0.62210.57260.6358Co-Upd./Lyrics

0.46750.55710.5309Combined

0.33770.50980.5122Sound

0.38440.50000.5065Lyrics

RecallPrecisionAccuracyClassifier
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Classification Results: Cluster 2

0.58930.61110.6986Co-

Upd./Combined

0.62500.58330.6853Co-Upd./Sound

0.55360.56360.6644Co-Upd./Lyrics

0.55360.51670.6301Combined

0.46770.42620.6027Sound

0.46430.38240.5068Lyrics

RecallPrecisionAccuracyClassifier
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Conclusions

! Data mining is exploration for knowledge

in large databases

! Various techniques exist for mining

#Choice of the technique is crucial for

successful mining
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