

 Use computation to learn from large databases of routinely collected data

Characteristics of Data Mining

- Practical implications, multidisciplinary nature
 The extracted information applied to business, medicine, science, and engineering.
- Large databases of routinely collected data
 Data are routinely collected, otherwise trashed.
- Intensive computation
 - □ Compute-intensive, ad hoc, approaches are used.

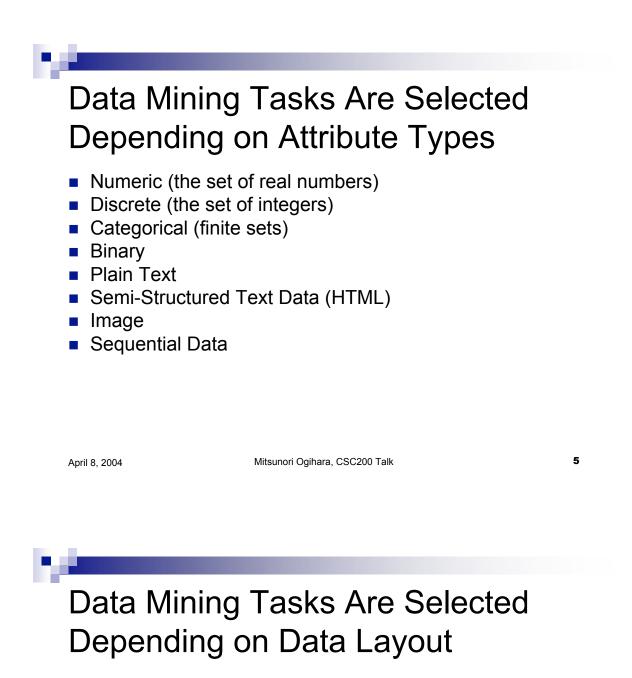
April	8,	2004

Mitsunori Ogihara, CSC200 Talk

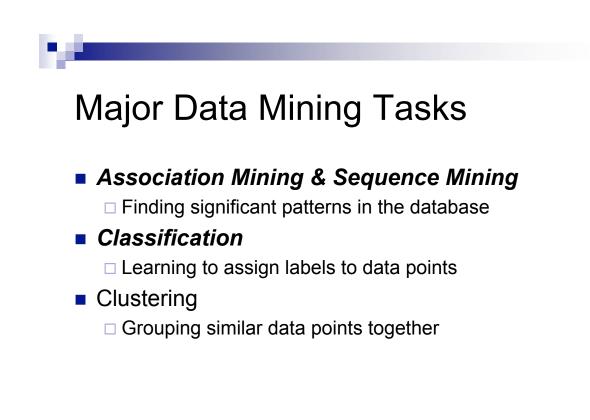
3

Interdisciplinary Nature of Data Mining

- Extracting information → Information retrieval
- Computational modeling of data → Machine learning
- Database interfaces → Database Theory
- Hardware issues → Systems, Networks
- Statistical underpinnings of results → Statistics
- Application dependent analysis of results → Medicine, Economics, Management, etc.
- Heuristic algorithm design Algorithms



Temporal data: Attributes include the time stamp. The temporal changes are studied in the attributes of the data entries having the same ID



April 8, 2004

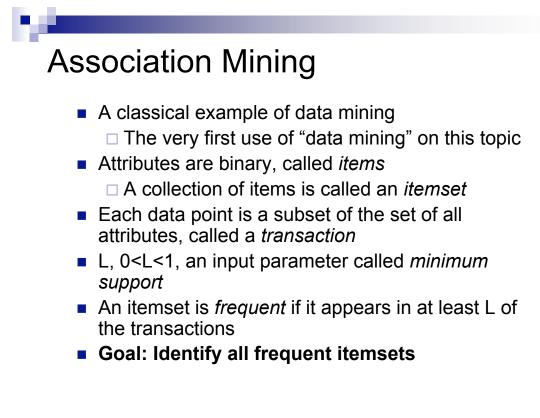
Mitsunori Ogihara, CSC200 Talk

7

Talk Outline

L Introduction

- Association mining
- Sequence mining
- Classification
- Conclusions



```
April 8, 2004
```

Mitsunori Ogihara, CSC200 Talk

9

Association Rule Mining

- □ Another parameter C, 0<C<1
- \Box Goal: Find all itemset pairs (S,T), such that
 - Both S and T are frequent
 - At least C of the data points containing S contain T
 - Interpretation:
 - If you see S in a transaction you are likely to see T as well



April 8, 2004

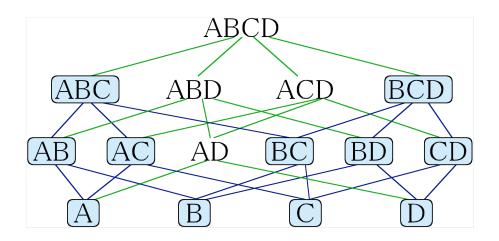
Mitsunori Ogihara, CSC200 Talk

11

The Subset Property of Frequent Attribute Sets

- Every subset of frequent attribute subset is frequent
- The frequent attribute sets form a set lattice ... The mining problem is equivalent to the problem finding maximal elements in a set lattice
- The mining has exponential complexity ... Need to design heuristic search algorithms

Subset Property of Frequent Itemsets – Itemset Lattice



April 8, 2004

Mitsunori Ogihara, CSC200 Talk

13

Major Issues in Association and Association Rule Mining

- Selection of the parameters is very important
 The higher L or C, the fewer the number of itemsets or rules discovered
- Once the combinations have been identified their significance can be statistically measured (Chi-squared test) ... but can't use the measure to prune search
- Numeric attributes must be converted to binary ones
 Solution: divide the range into overlapping/non-overlapping intervals ... difficult if the underlying distribution is unknown
- Missing data are often seen in real datasets
 - How should missing binary attributes be modeled?

The Apriori Algorithm (Agrawal & Srikant '93)

- Level-wise search in the itemset lattice:
 - □ Combine frequent itemsets of size k to generate candidates for frequent itemsets of size (k+1)
 - A size-(k+1) itemset is a candidate if and only if all of its size-k subsets are frequent
- The proof-of-concept algorithm ... correct, but slow

□ Many heuristics have been designed

April	8.	2004
, .p	ς,	2001

Mitsunori Ogihara, CSC200 Talk

15

The CLIQUE Algorithm (Zaki, Ogihara, Parthasarathy, Li '98)

- Discover all frequent item pairs
- View the pairs as edges to draw a graph whose nodes are the items
 - □ Each frequent itemset is a subset of a clique in the graph
 - □ Use a maximal clique enumeration algorithm the pairs to prune the search space
- Can be efficiently run on parallel processor machines
- Twice to thrice faster than Apriori on single-processor machines on synthetic datasets

- Database of babies given birth in the Rochester area
- A very small number of vital statistics (height, weight, etc.)
- Mostly health conditions of the mothers collected by questionnaire
 - Before labor
 - During labor
- Analysis not successful
 - Too many missing data entries
 - 30% of data points had some missing data
 - 50% of attributes had missing entries
 - Too many high confidence rules
 - Expert knowledge must be incorporated (but never happened)

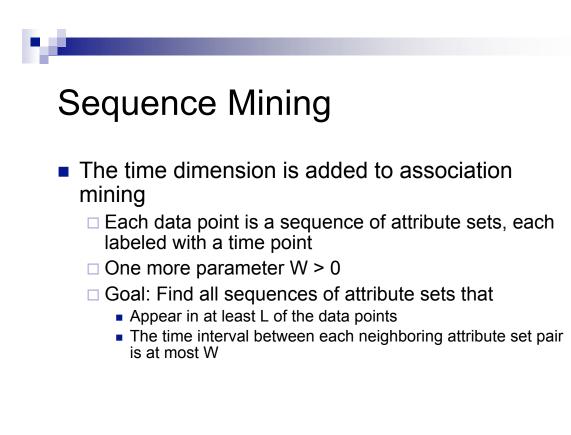
April 8, 2004

Mitsunori Ogihara, CSC200 Talk

17

Talk Outline

- L Introduction
- L Association mining
- Sequence mining
- Classification
- Conclusions



```
April 8, 2004
```

Mitsunori Ogihara, CSC200 Talk

19

- Items purchased; 0/1 instead of quantity
- Each data point has a unique customer ID, it is a sequence of transactions of the customer
- Sequence Mining
 - "At least 2.5% of the customers buy shampoo, toothpaste, and milk at one time, and then buy soap and peanut butter at one time in a month."

Again, parameter selection is critical

Image: more critical than association mining since the search space size is much more sensitive to parameter choice

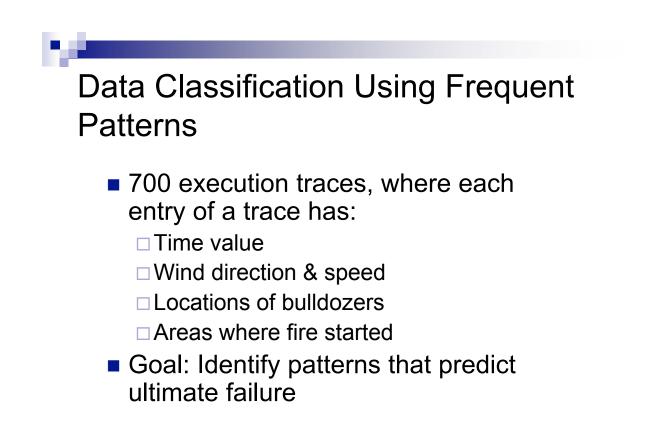
April 8, 2004

Mitsunori Ogihara, CSC200 Talk

21

Data Classification Using Frequent Patterns

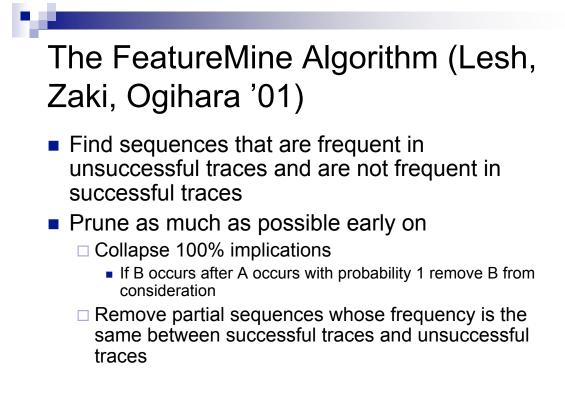
- Artificial planning domain for fire extinction
 - □ 10x10 area of base, water, ground
 - □ Fire starts off in a point
 - □ Randomly fire spreads out
 - □ Ground and base are flammable, but water is not
 - □ Base must be protected from burning ... Failure if any one of base area is burnt
 - Bulldozers can be deployed to run over an area to extinguish fire



April 8, 2004

Mitsunori Ogihara, CSC200 Talk

23



Results of FeatureMine

- With FeatureMine, prediction accuracy is improved from 70% to 80% using Bayesian inference
- With the pruning strategy, CPU time for training was reduced from 5.8 hours to 560

April 8, 2004

Mitsunori Ogihara, CSC200 Talk

25

Talk Outline

- Introduction
- L Association mining
- L Sequence mining
- Classification
- Conclusions

Classification

- Data points are divided into classes
- Goal: Develop an accurate, efficient algorithm for inferring membership of a new data point with unknown class membership
- Major Issues:
 - Extracting / selecting features that are useful for classification
 - □ Selection / development of classification algorithms

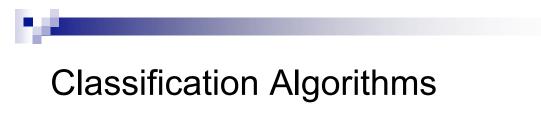
April 8, 2004

Mitsunori Ogihara, CSC200 Talk

27

Popular Classification Algorithms

- Decision Trees
 - Data points are hierarchically divided into groups; each division is based on the value of a particular attribute
 - □ Can deal with more than two classes
- Gaussian Mixture Models
 - Numeric attributes
 - In each class, each attribute is subject to a linear combination of Gaussian distributions; obtain maximum-likelihood estimations of the parameters



- Support Vector Machines
 - Find a linear separation with a wide gap between two classes
 - If linear separation is impossible in the given space, transform the data points into a higher dimensional space to separate linearly

```
April 8, 2004
```

Mitsunori Ogihara, CSC200 Talk

29

Multi-class Extensions of Binary Classifiers

- One-versus-all: For each class, train a classifier that distinguishes the class from the rest. Assemble predictions of the classifiers.
- Pair-wise: For each class pair, train a classifier. Assemble predictions of them.
- Error-Correcting-Output-Coding (ECOC): Assemble many binary classifiers

- Data points are viewed as points in a high dimensional space
- Use covariance matrix to view relations between coordinates
- Calculate largest eigenvectors, which represent the covariance

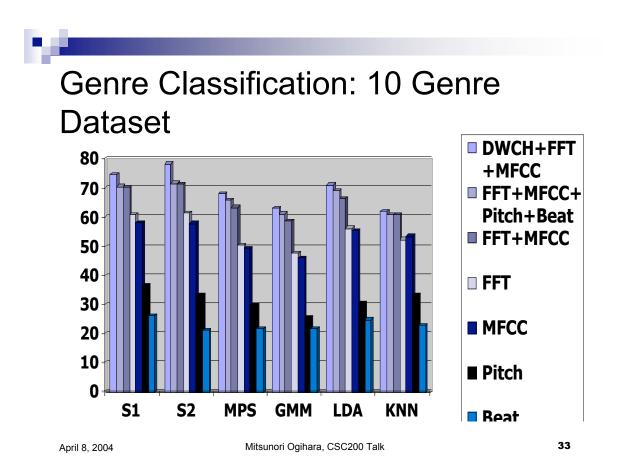
Mitsunori Ogihara, CSC200 Talk

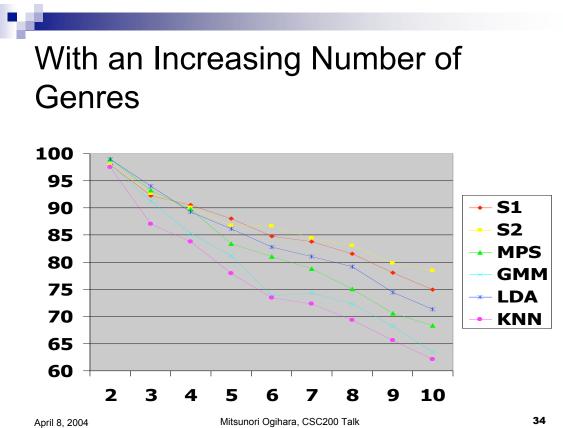
Project data points on the eigenvectors

Music Information Retrieva	1
 Growing on-line music information (text & a data) Efficient tools for classifying and storing music d Classification of genre, style, artist, emotion a fundamental problem Extracting features Acoustic Data Fast Fourier Transform Wavelet histograms (Li, Ogihara, Li '03) Text Data (Lyrics, in particular) Bag-Of-Words, Part-of-Speech Statistics, Lexical Orthographic Features 	ata n, etc. is

April 8, 2004

31





Co-Updating (Li, Zhu, Ogihara, Li '03)

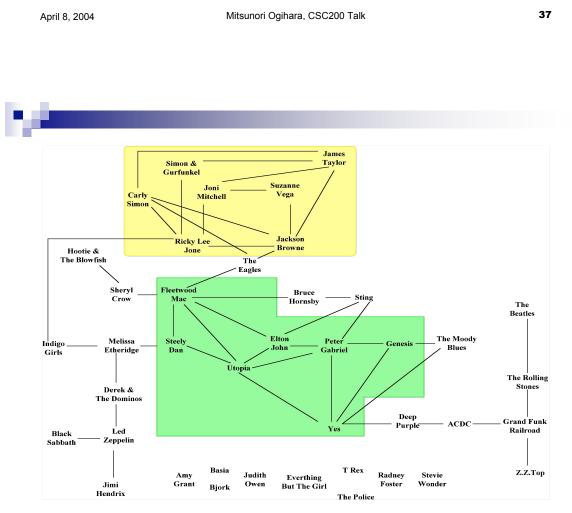
- Classifiers are built on more than one feature set
- Existence of unlabeled data
- Each classifier advises the others on the class membership of each unlabeled data point

Randomized process of removing disagreement among classifiers

April 8, 2004	Mitsunori Ogihara, CSC200 Talk	35
Related	Concepts	
Regularization Random Fields /Graph Theory	Labeled and Unlabeled Data Disagreement Minimization (Becker 1996) (DeSa&Ballard 1998) Boosting (Buc et al., 2002) EM (Dempster et al., 1977) co-Boosting (Collins&Singer, 1999) co-EM (Nigam&Ghari, 2000) CO	co-Testing (Muslea et al. 2000) Bootstrapping (Abney, 2002)

Artist Cluster Identification (Using All Music Guide as the Ground Truth)

- 45 artists, 55 albums
- Cluster 1: Fleetwood Mac, Yes, Utopia, Elton John, Genesis, Steely Dan, Peter Gabriel
- Cluster 2: Carly Simon, Joni Mitchell, James Taylor, Suzanne Vega, Ricky Lee Jones, Simon & Garfunkel



Classification Results: Cluster 1

Classifier	Accuracy	Precision	Recall
Lyrics	0.5065	0.5000	0.3844
Sound	0.5122	0.5098	0.3377
Combined	0.5309	0.5571	0.4675
Co-Upd./Lyrics	0.6358	0.5726	0.6221
Co-Upd./Sound	0.6853	0.6548	0.7143
Co- Upd./Combined	0.6875	0.6944	0.6494

April 8, 2004

Mitsunori Ogihara, CSC200 Talk

39

Classification Results: Cluster 2

Classifier	Accuracy	Precision	Recall
Lyrics	0.5068	0.3824	0.4643
Sound	0.6027	0.4262	0.4677
Combined	0.6301	0.5167	0.5536
Co-Upd./Lyrics	0.6644	0.5636	0.5536
Co-Upd./Sound	0.6853	0.5833	0.6250
Co- Upd./Combined	0.6986	0.6111	0.5893

Talk Outline

- Introduction
- L Association mining
- L Sequence mining
- L Classification

April 8, 2004

Mitsunori Ogihara, CSC200 Talk

41

Conclusions

- Data mining is exploration for knowledge in large databases
- Various techniques exist for mining
 Choice of the technique is crucial for successful mining

Acknowledgements

- Yin-He Cheng (UR, CS Grad Student)
- Neal Lesh (MERL)
- Qi Li (U. Delaware, CIS Grad Student)
- Tao Li (UR, CS Grad Student)
- Srinivasan Parthasarathy (Ohio State U., CIS Faculty)
- Mohammed Zaki (RPI, CS Faculty)

April 8, 2004

Mitsunori Ogihara, CSC200 Talk

43