
©

Chapter 9

Building a Runnable Program

Programming Language Pragmatics

relocatable
executable

import table –

relocation table –

export table –

external symbols

9.1 Back-End Compiler Structure

9.2 Intermediate Forms

9.3 Code Generation

9.4 Address Space Organization

From , by Michael L. Scott. Copyright c 2000, Morgan Kaufmann

Publishers, Inc. This material may not be copied or distributed without permission of the publisher.

Assemblers, linkers, and loaders typically operate on a pair of related file formats:
object code and object code. Relocatable object code is acceptable as input to
a linker; multiple files in this format can be combined to create an executable program.
Executable object code is acceptable as input to a loader: it can be brought into memory
and run. A relocatable object file includes the following descriptive information:

Identifies instructions that refer to named locations whose addresses are
unknown, but are presumed to lie in other files yet to be linked to this one;

Identifies instructions that refer to locations within the current file, but
that must be modified at link time to reflect the offset of the current file within the
final, executable program.

Lists the names and addresses of locations in the current file that may be
referred to in other files.

Imported and exported names are known as .
An executable object file is distinguished by the fact that it contains no references to

external symbols. It also defines a starting address for execution. An executable file may
or may not be relocatable, depending on whether it contains the tables above.

1

case

map

CHAPTER 9. BUILDING A RUNNABLE PROGRAM

segments

page fault

uninitialized data –

stack –

heap –

files – map

2

Internally, an object file is typically divided into several sections, each of which is handled
differently by the linker, loader, or operating system. The first section includes the import,
export, and relocation tables, together with an indication of how much space will be required
by the program for non-initialized static data. Other sections commonly include: code
(instructions), read-only data (constants, jump tables for statements, etc.), initialized
but writable static data, and high-level symbol table information saved by the compiler.
The initial descriptive section is used by the linker and loader. The high-level symbol table
section is used by debuggers and performance profilers. Neither of these tables is usually
brought into memory at run time; neither is needed by the running program.

In its runnable (loaded) form, a program is typically organized into several . On
some machines (e.g. the x86 or PA-RISC), segments are visible to the assembly language
programmer, and must be named explicitly in instructions. More commonly on modern
machines, segments are simply subsets of the address space that the operating system
manages in different ways. Two or three of them—code, constants, and initialized data—
correspond to sections of the object file. Code and constants are usually read-only, and are
often combined in a single segment; the operating system arranges to receive an interrupt if
the program attempts to modify them. (In response to such an interrupt it will most likely
print an error message and terminate the program.) Initialized data is writable. At load
time, the operating system either reads code, constants, and initialized data from disk, or
arranges to read them in at run time, in response to “invalid access” () interrupts
or dynamic linking requests.

In addition to code, constants, and initialized data, the typical running program has
two or more additional segments. These include:

May be allocated at load time or on demand in response to page faults.
Usually zero-filled, both to provide repeatable symptoms for programs that erro-
neously read data they have not yet written, and to enhance security on multi-user
systems, by preventing a program from reading the contents of pages written by pre-
vious users.

May be allocated in some fixed amount at load time. More commonly, is given
a small initial size, and is then extended automatically by the operating system in
response to (faulting) accesses beyond the current segment end.

Like stack, may be allocated in some fixed amount at load time. More commonly,
is given a small initial size, and is then extended in response to explicit requests (via
system call) from heap-management library routines.

In many systems, library routines allow a program to a file into memory. The
routine interacts with the operating system to create a new segment for the file,

and returns the address of the beginning of the segment. The contents of the segment
are usually fetched from disk on demand, in response to page faults.

16

9.5. ASSEMBLY

9.5 Assembly

9.6 Linking

9.6.1 Relocation and Name Resolution

com-
pilation units linker

linker static linker
dynamic linker

loading

3

Most language implementations—certainly all that are intended for the construction of large
programs—support separate compilation: fragments of the program can be compiled and
assembled more-or-less independently. After compilation, these fragments (known as

) are “glued together” by a . In many languages and environments, the
programmer explicitly divides the program into modules or files, each of which is separately
compiled. More integrated environments may abandon the notion of a file in favor of a
database of subroutines, each of which is separately compiled.

The task of a is to join together compilation units. A does its work
prior to program execution, producing an executable object file. A (to be
described in section 9.7) does its work after the program has been brought into memory for
execution.

Each of the compilation units of a program to be linked must be a relocatable object
file. Typically, some of these files will have been produced by compiling fragments of the
application being constructed, while others will be general-purpose library packages needed
by the application. Since most programs make use of libraries, even a “one-file” application
typically needs to be linked.

Linking involves two subtasks: relocation and the resolution of external references. Some
authors refer to relocation as , and call the entire “joining together” process “link-
loading”. Other authors (including the current one) use “loading” to refer to the process of
bringing an executable object file into memory for execution. On very simple machines, or on
machines with very simple operating systems, loading entails relocation. More commonly,
the operating system uses virtual memory to give every program the impression that it
starts at some standard address (e.g. zero). In section 9.7 we shall see that on many
systems loading entails a certain amount of linking.

Each relocatable object file contains the information required for linking: the import, export,
and relocation tables. A static linker uses this information in a two-phase process analogous
to that described for assemblers in section 9.5. In the first phase, the linker gathers all
of the compilation units together, chooses an order for them in memory, and notes the
address at which each will consequently lie. In the second phase, the linker processes each
unit, replacing unresolved external references with appropriate addresses, and modifying
instructions that need to be relocated to reflect the addresses of their units. These phases
are illustrated pictorially in figure 9.1. Addresses and offsets are assumed to be written in
hexadecimal notation, with a page size of 4K (1000) bytes.

Libraries present a bit of a challenge. Many consist of hundreds of separately compiled
program fragments, most of which will not be needed by any particular application. Rather
than link the entire library into every application, the linker needs to search the library
to identify the fragments that are referenced from the main program. If these refer to
additional fragments, then those must be included also, recursively. Many systems support
a special library format for relocatable object files. A library in this format may contain

Imports

Exports

Relocation

Code

Data

Imports

Exports

Relocation

Code

Data

BA

X

M
X

M
M

r1 := &L (1000)r1 := &M

.

. . .

. . .

r2 := Y (400)call M

r3 := X

L:

M:

Y:

X:

40
0

30
0

10
00

15
00

16
00

80
0

50
0

Relocatable Object Files

r1 := &M (2300)

call M (2300)

18
00

23
00

30
00

Code

Data

r1 := &L (1800)

r2 := Y (3900)

r3 := X (3300)

L:

M:

X:

Y:

30
0

50
0

90
0

80
0

Executable Object File

A B A
B

A
B M X

L Y
B

9.6.2 Type Checking

9.7 Dynamic Linking

CHAPTER 9. BUILDING A RUNNABLE PROGRAM4

Figure 9.1: Linking relocatable object files and to make an executable object file. ’s
code section has been placed at offset 0, with ’s code section immediately after, at offset
800. To allow the operating system to establish different protections for the code and data
segments, ’s data section has been placed at the next page boundary (offset 3000), with

’s data section immediately after (offset 3500). External references to and have been
set to use the appropriate addresses. Internal references to and have been updated by
adding in the starting addresses of ’s code and data sections, respectively.

an arbitrary number of code and data sections, together with an index that maps symbol
names to the sections in which they appear.

On a multi-user system, it is common for several instances of a program (an editor or
web browser, for example) to be executing simultaneously. It would be highly wasteful to
allocate space in memory for a separate, identical copy of the code of such a program for
every running instance. Many operating systems therefore keep track of the programs that
are running, and set up memory mapping tables so that all instances of the same program
share the same read-only copy of the program’s code segment. Each instance receives its
own writable copy of the data segment. Code segment sharing can save enormous amounts
of space. It does not work, however, for instances of programs that are similar but not
identical.

9.7. DYNAMIC LINKING

9.7.1 Position-Independent Code

dynamic linking

position-independent
code

5

Many sets of programs, while not identical, have large amounts of library code in com-
mon, e.g. to manage a graphical user interface. If every application has its own copy of the
library, then large amounts of memory may be wasted. Moreover, if programs are statically
linked, then much larger amounts of disk space may be wasted on nearly identical copies of
the library in separate executable object files.

In the early 1990’s, most operating system vendors adopted , in order
to avoid this waste. Each dynamically linked library resides in its own code and data
segments. Every program instance that uses a given library has a private copy of the
library’s data segment, but shares a single system-wide read-only copy of the library’s code
segment. These segments may be linked to the remainder of the code when the program is
loaded into memory, or they may be linked incrementally on demand, during execution. In
addition to saving space, dynamic linking allows a programmer or system administrator to
install backward-compatible updates to a library without rebuilding all existing executable
object files: the next time it runs, each program will obtain the new version of the library
automatically.

To be amenable to dynamic linking, a library must either (1) be located at the same
address in every program that uses it, or (2) have no relocatable words in its code segment,
so that the content of the segment does not depend on its address. The first approach
is straightforward but restrictive: it generally requires that we assign a unique address to
every sharable library; otherwise we run the risk that some newly created program will
want to use two libraries that have been given overlapping address ranges. In Unix System
V R3, which took the unique-address approach, shared libraries could only be installed by
the system administrator. This requirement tended to limit the use of dynamic linking to
a relatively small number of popular libraries. The second approach, in which a shared
library can be linked at any address, allows users to employ dynamic linking whenever they
want.

A code segment that contains no relocatable words is said to constitute
(PIC). To generate PIC, the compiler must

1. use PC-relative addressing, rather than jumps to absolute addresses, for all internal
branches.

2. similarly, avoid absolute references to statically allocated data, by using displacement
addressing with respect to some standard base register. If the code and data segments
are guaranteed to lie at a known offset from one another, then an entry point to a
shared library can compute an appropriate base register value using the PC. Otherwise
the caller must set the base register as part of the calling sequence.

3. use an extra level of indirection for every control transfer out of the PIC segment,
and for every load or store of static memory outside the corresponding data segment.
The indirection allows the (non-PIC) target address to be kept in the data segment,
which is private to each program instance.

Exact details vary among processors, vendors, and operating systems. Conventions for SGI’s
compilers for the MIPS architecture, under the IRIX 6.2 version of Unix, are illustrated in

main:
 *(sp +N) := gp
 . . .

-- call foo:
 t9 := *(gp+A)
 jalr t9
 gp := *(sp+N)
 . . .

-- load X:
 t0 := *(gp+C)
 t0 := *t0
 . . .

-- load Y:
 t0 := *(gp+B)
 t0 := *t0

AB

F

G

C

gp (main)

D

E

foo:
 gp := t9 + (E-D)
 . . .

-- load X:
 t0 := *(gp+F)
 t0 := *t0
 . . .

-- load Y:
 t0 := *(gp+G)
 t0 := *t0

gp (foo)

shared code
(PIC)

private data
(one copy
per process)

linkage table
(one copy
per process)

Y:

X:

Dynamically-linked
shared library

linkage table

ra

gp

jal
t9 gp

jalr
t9 gp

CHAPTER 9. BUILDING A RUNNABLE PROGRAM

main foo
ra gp

foo main
X Y

foo gp foo
t9 main gp foo

6

Figure 9.2: A dynamically linked shared library. Because calls , which lies in
the library, its prologue and epilogue must save and restore both (not shown) and .
Calls to are made indirectly, using an address stored in ’s linkage table. Similarly,
references to variables and , both of which are globally visible, must employ a level of
indirection. In the prologue of , is set to point to ’s linkage table, using the value
in . The calling sequence in restores the old when returns.

figure 9.2. Each shared code segment is accompanied, at a static offset, by a non-shared
and, at an arbitrary offset, by a non-shared data segment. The linkage table

lists the addresses of all external symbols referenced in the code segment.
As described in section 8.2.1, any non-leaf subroutine must allocate space in its stack

frame to hold the value of the (return address) register, and must save and restore
this register in its prologue and epilogue. Similarly, any subroutine that may call into a
dynamically linked shared library must save the (global pointer) register in the prologue,
and restore it after every call into a dynamically linked shared library. At code-generation
time, the compiler must know which external symbols lie in such libraries. For a call to
one of them, the usual (jump-and-link) instruction is replaced by a sequence of three
instructions. The first of these loads register from the linkage table, using -relative
addressing. The second is a (jump-and-link-register) instruction, which takes its target
address from . The third restores the . In a similar vein, any load or store of a datum
located in a dynamically linked shared library must employ a two-instruction sequence.

∗

∗

k

n

k

n

gp

gp t9

lazily

stub

9.7. DYNAMIC LINKING

9.7.2 Fully Dynamic (Lazy) Linking

foo

foo foo

main
foo X main Y

foo
foo foo

t9 := (gp) –– lazy linker entry point
t7 := ra
t8 := –– index of stub
call t9 –– overwrites ra

7

The first instruction loads the address of the datum from the linkage table using -relative
addressing. The second loads or stores the datum itself.

The prologue of any subroutine that serves as an entry to a dynamically linked
shared library must establish a new . To do so it takes the value in (i.e. the address
of) and adds the (statically known) signed difference between ’s offset within the
code segment and the distance between the code and the linkage table.

If all or most of the symbols exported by a shared library are referenced by the parent
program, then it makes sense to link the library in its entirety at load time. In any given
execution of a program, however, there may be references to libraries that are not actually
used, because the input data never causes execution to follow the code path(s) on which
the references appear. If these “potentially unnecessary” references are numerous, we may
avoid a significant amount of work by linking the library on demand. Moreover
even in a program that uses all its symbols, incremental lazy linking may improve the
system’s interactive responsiveness by allowing programs to begin execution faster. Finally,
a language system that allows the dynamic creation of program components (e.g. as in
Common Lisp or Java) must use lazy linking to delay the resolution of external references
in compiled components.

The run-time data structures for lazy linking are almost the same as those in figure 9.2,
but they are incrementally created. At load time, the program begins with the main code
segment and linkage table, and with all data segments for which addresses need to appear in
that linkage table. In our specific example, we would load the data segments of both
and , because the addresses of both (which belongs to) and (which belongs
to) need to appear in the main linkage table. We would not, however, load the code
segment or linkage table of , despite the fact that the address of needs to appear
in the linkage table. Instead, we would initialize that linkage table entry to refer to a
routine, created by the compiler and included in the main code segment. The code of the
stub looks like this:

+

The lazy linker itself resides in a (non-lazy) shared library, linked to the program at load
time. (Here we have assumed that its address lies at offset in the linkage table.)

After branching to the lazy linker, control never returns to the stub. Instead, the linker
uses the constant to index into the import table of the program’s object file, where it
finds the information it needs to identify both the name and the library of the unresolved
reference. The linker then loads the library’s code segment into memory if it is not already
there. At this point it can change (“patch”) the linkage table entry through which the stub
was called, so that it now points to the library routine. If it needed to load the library’s
code segment, the linker also creates a copy of the library’s linkage table. It initializes all
data entries in that table, loading (copies of) the segments to which those entries refer if
they (the segments) have not already been loaded as part of an earlier linking operation.

t7 ra

CHAPTER 9. BUILDING A RUNNABLE PROGRAM8

For each subroutine entry in the library’s linkage table, the linker checks to see whether
the relevant code segment has already been loaded. If so, it initializes the entry with the
subroutine’s address. If not, it initializes it with the address of its stub. Finally, the linker
copies into and jumps to the newly linked library routine. At this point, everything
appears as though the call had happened in the normal fashion.

As execution proceeds, further references to not-yet-loaded symbols extend the “frontier”
of the program. Because invocations of the linker occur on subroutine calls and not on data
references, the current frontier always includes a set of code segments and the data segments
to which those code segments refer. Each linking operation brings in one new code segment,
together with all of the additional data segments to which that code refers. If we were willing
to intercept page faults, we could arrange to enter the linker on references to not-yet-loaded
data. This approach would avoid loading data segments that are never really used, but the
overhead of the faults might greatly increase execution time.

