PPOPP '90

MULTI-MODEL PARALLEL PROGRAMMING IN PSYCHE

Michael L. Scott, Thomas J. LeBlanc, and Brian D. Marsh

Computer Science Department
University of Rochester
Rochester, New York 14627
{scott,leblanc,marsh} @cs.rochester.edu

Abstract

Many different parallel programming models, including
lightweight processes that communicate with shared memory and
heavyweight processes that communicate with messages, have
been used to implement parallel applications. Unfortunately,
operating systems and languages designed for parallel program-
ming typically support only one model. Multi-model parallel
programming is the simultaneous use of several different models,
both across programs and within a single program. This paper
describes multi-model parallel programming in the Psyche mul-
tiprocessor operating system. We explain why multi-model pro-
gramming is desirable and present an operating system interface
designed to support it. Through a series of three examples, we
illustrate how the Psyche operating system supports different
models of parallelism and how the different models are able to
interact.

1. Introduction

The widespread use of distributed systems since the late
1970’s and the growing importance of multiprocessor systems in
the 1980’s has spurred the development of programming
environments for parallel and distributed computing. Emerging
programming models have provided many different styles of
communication and process primitives. Individually-routed syn-
chronous and asynchronous messages, unidirectional and bidirec-
tional message channels, remote procedure calls, global buffers
[13], and shared address spaces with semaphores, monitors, or
spin locks have all been used for communication and synchroni-
zation. Coroutines, lightweight run-to-completion threads, light-
weight blocking threads, heavyweight single-threaded processes,
and heavyweight multi-threaded processes have been used to
express concurrency. These communication and process primi-
tives, among others, appear in many combinations in the parallel
and distributed programming environments in use today.

Each parallel programming environment defines a model of
processes and communication. Each model makes assumptions
about communication granularity and frequency, synchroniza-
tion, the degree of concurrency desired, and the need for protec-
tion. Successful models make assumptions that are well-matched

This work is supported in part by NSF research grant number
CDA-8822724, Darpa/ETL contract number DACA76-85-C-0001, and a
DARPA/NASA Graduate Research Assistantship in Parallel Processing.

to a large class of applications, but no existing model has
satisfied all applications, and there is little hope that one ever
will. Problems therefore arise when attempting to use a mul-
tiprocessor as a general-purpose parallel machine, because the
traditional approach to operating system design adopts a single
model of parallelism and embeds it in the kernel.

When the model of parallelism enforced by an operating sys-
tem does not meet the needs of an application, the programmer
must either (1) distort the algorithm to fit the available model, (2)
modify or augment the operating system, or (3) move to a system
with a different model. Changing the algorithm to fit the model
may or may not be practical, and often results in a loss of both
clarity and efficiency. Modifying the operating system is seldom
worthwhile for a single application. Augmenting the system
from outside (in a library or language run time package) may be
difficult as well; depending on the specific primitives provided
and the functionality needed, even minor changes can be surpris-
ingly hard to achieve [22]. Moving to another system is often
not an option, and even when possible will generally preclude
running applications to which the old system was well suited.

To meet the needs of different applications, many different
models of parallel programming must be implemented on the
same underlying hardware. To meet the needs of different appli-
cations simultaneously, these models must be implemented on a
single operating system. To meet the needs of applications that
use more than one model internally, the operating system must
allow program fragments written under different models to
interact in efficient and well-defined ways.

Applications that need not run concurrently can be supported
by separate operating systems. Building these systems from
scratch would involve enormous expense and duplication of
effort, but the development of customizable operating systems
(such as Choices [10] or the x-Kernel [15]) may make their con-
struction practical. It may even prove practical to customize
operating systems at run time, so that models can be changed
without rebooting. Even so, it is unlikely that applications will
be able to communicate across models supported by disjoint por-
tions of the kernel interface.

An alternative approach is to assume a single kernel interface
and then construct a library or language run time package for
each model. We find this approach attractive, but believe it to be
infeasible in existing systems, because existing interfaces are too
narrow and high-level, and because environments that attempt to
adapt these interfaces to their needs do so in different and incom-
patible ways.

Operating system designers have tended to target their inter-
faces to application programmers, not library and language
implementors, and have therefore developed high-level mechan-
isms for communication and process management. These
mechanisms are seldom amenable to change, and may not be
well-matched to a new model under development, leading to
awkward or inefficient implementations. The traditional Unix
interface, for example, has been used beneath many new parallel

mls
PPoPP '90

programming models [9, 19,26]. In most cases the implementa-
tion has needed to compromise on the semantics of the model
(e.g., by blocking all threads in a shared address space when any
thread makes a system call) or accept enormous inefficiency
(e.g., by using a separate Unix process for every lightweight
thread).

Programming environments that need mechanisms not pro-
vided among the high-level operating system primitives may res-
trict themselves to some subset of the kernel interface (e.g. sig-
nals and non-blocking I/O in Unix), and then use that subset in
stylized ways. This approach may allow the implementation of
more than one model, but it can be awkward, and does not gen-
erally support interaction across models. Working outside the
conventions of the kernel interface standard, the designers of
independently-developed programming environments are almost
certain to make incompatible decisions. They may use synchron-
ization mechanisms, for example, that depend upon the details of
a user-level thread package. Even if they express operations in
terms of the kernel interface, they may use primitives (Unix
domain sockets, for example) that are understood in one environ-
ment but not in another. Easy cooperation across environment
boundaries would require that synchronization mechanisms and
kernel primitives used in any environment be available in all,
enlarging and potentially corrupting the associated programming
models. Unless the set of kernel primitives is very small and
general, inconsistency in the use of primitives by different pro-
gramming environments will make cooperation extremely ad-hoc
and difficult.

Since 1984 we have explored these issues while developing
parallel programming environments for the BBN Butterfly mul-
tiprocessor. Using the Chrysalis operating system [4] as a low-
level interface, we have created several new programming
libraries and languages and ported several others [18]. We were
able to construct efficient implementations of many different
models of parallelism because Chrysalis allows the user to
manage memory and address spaces explicitly, and provides
efficient low-level mechanisms for communication and syn-
chronization. Chrysalis processes are heavyweight, however, so
lightweight processes must be encapsulated inside a heavyweight
process. The resulting special-purpose scheduling packages and
the need to avoid blocking kernel calls make it difficult to
interact with the processes of other programming models. More-
over, Chrysalis provides no acceptable way to share code across
processors, and no abstraction mechanism to provide conven-
tions for the sharing of data.

Each of our programming models was developed in isola-
tion, without support for interaction with other models. These
experiences led to us design a new multiprocessor operating sys-
tem, called Psyche, that would provide both an appropriate inter-
face for implementing multiple models and conventions for
interaction across models. The flexibility of Psyche stems from a
kernel interface based on fundamental concepts supported by
shared-memory hardware: data, processors, control flow via sub-
routine calls, and protection between address spaces. Rather than
providing a fixed set of parallel programming abstractions to
which programming environments would have to be adapted, this
interface provides an abstraction mechanism from which many
different user-level abstractions can be built in user space.

We believe that Psyche forms an ideal foundation for multi-
model parallel programming — the simultaneous use of disparate
models of parallelism, both across programs and within indivi-
dual programs. Multi-model programming allows each applica-
tion component to use the model most appropriate to its own
individual needs. It also introduces the ability to interact across
models when applications must communicate with server
processes that use a different model and when a single applica-
tion is composed of components using different models.

2. Related Work

Multi-model programming is related to, but distinct from, the
work of several other researchers. Remote procedure call sys-
tems have often been designed to work between programs writ-
ten in multiple languages [5,14,16,20]. RPC-based systems
support a single style of process interaction, and are usually
intended for a distributed environment; there is no obvious way
to extend them to fine-grained process interactions. Synchroni-
zation is supported only via client-server rendezvous, and even
the most efficient implementations [7] cannot compete with the
low latency of direct access to shared memory.

The Agora project [8] defines additional mechanisms for
process interaction in a distributed environment. It allows
processes to interact through events and certain kinds of stylized
memory sharing. Its emphasis is on optimizing static relation-
ships between processes and on providing the illusion of memory
sharing through extensive software support. Because it is imple-
mented on top of an existing operating system (Mach [1]), Agora
must limit process interactions to those that can be represented
effectively in terms of encapsulated Mach primitives.

Mach is representative of a class of operating systems
designed for parallel computing. Other systems in this class
include Amoeba [21], Chorus [2], Topaz [27], and V [11]. To
facilitate parallelism within applications, these systems allow
more than one kernel-supported process to run in one address
space. To implement minimal-cost threads of control, however,
or to exercise control over the representation and scheduling of
threads, coroutine packages must still be used within a single
kernel process. Psyche provides mechanisms unavailable in
existing systems to ensure that threads created in user space can
use the full range of kernel services (including those that block),
without compromising the operations of their peers. In contrast
to existing systems, Psyche also emphasizes data sharing
between applications as the default, not the exception, distributes
access rights without kernel assistance, and checks those rights
lazily. Protection is provided only when the user indicates a wil-
lingness to pay for it; Psyche presents an explicit tradeoff
between protection and performance.

Washington’s Presto system [6] is perhaps the closest rela-
tive to Psyche, at least from the point of view of an individual
application. Presto runs on a shared-memory machine (the
Sequent Symmetry), and allows its users to implement many dif-
ferent varieties of processes and styles of process interaction in
the context of a single C++ application. As with Agora, how-
ever, Presto is implemented on top of an existing operating sys-
tem, and is limited by the constraints that that system imposes.
Where Agora relies on operations supported across protection
boundaries by the operating system, Presto works within a single
language and protection domain, where a wide variety of parallel
programming models can be used. Psyche is designed to provide
the flexibility of Presto without its limitations, allowing programs
written under different models (e.g. in different languages) to
interact while maintaining protection.

This paper uses a series of examples to illustrate how dif-
ferent parallel programming models can be built on top of
Psyche. In the following section we overview the Psyche kernel
interface, explaining how it differs from more conventional sys-
tems. (Additional details and design rationale can be found in
other papers [24,25].) Using two different models as examples
(lightweight threads in a single shared address space and heavy-
weight processes that communicate with messages), we show
how dissimilar models can be implemented on top of Psyche.
We then describe the implementation of a parallel data structure
that can be shared by programs that use different models. Finally
we summarize the specific features of Psyche that facilitate
multi-model programming.

3. Psyche Overview

Psyche is intended to provide a common substrata for paral-
lel programming models implemented by libraries and language
run-time packages. As a result, Psyche has a low-level kernel
interface. We do not expect application programmers to use the
kernel interface directly. Rather, we expect that they will use
languages and library packages that implement their favorite pro-
gramming models. The purpose of the low-level interface is to
allow new packages to be written on demand (by somewhat more
sophisticated programmers), and to provide well-defined under-
lying mechanisms that can be used to communicate between
models when desired.

3.1. Kernel Interface Description

The Psyche kernel interface is based on four abstractions: the
realm, the protection domain, the virtual processor, and the pro-
cess. Realms form the unit of code and data sharing. Protection
domains are a mechanism for limiting access to realms.
Processes are user-level threads of control. Virtual processors
are kernel-level abstractions of physical processors, on which
processes are scheduled. Processes are implemented in user
space; the other three abstractions are implemented in the kernel.

Each realm contains code and data. In general, it is expected
that the code will provide a collection of operations that consti-
tute a protocol for accessing the data. If a realm has no code then
any needed protocol must be established by convention among
the users of the data. Since all code and data is encapsulated in
realms, all computation consists of the invocation of realm
operations. Interprocess communication is effected by invoking
operations of realms accessible to more than one process.

Depending on the degree of protection desired, an invocation
of a realm operation can be as fast as an ordinary procedure call,
termed optimized invocation, or as safe as a remote procedure
call between heavyweight processes, termed protected invoca-
tion. Unless the caller explicitly asks for protection, the two
forms of invocation are initiated in exactly the same way, with
the native architecture’s jump-to-subroutine instruction. The
kernel implements protected invocations by catching and inter-
preting page faults.

A process in Psyche represents a thread of control meaning-
ful to the user. A virtual processor is a kernel-provided abstrac-
tion on top of which processes are implemented. There is no
fixed correspondence between virtual processors and processes.
One virtual processor will generally schedule many processes.
Likewise, a given process may run on different virtual processors
at different points in time. As it invokes protected operations, a
process moves through a series of protection domains, each of
which embodies a set of access rights appropriate to the invoked
operation. Each domain has a separate page table, which
includes precisely those realms for which the right to perform
optimized invocations has been verified by the kernel in the
course of some past invocation.

Each realm includes an access list consisting of <key, right>
pairs. The right to invoke an operation of a realm is conferred by
possession of a key for which appropriate permissions appear in
the realm’s access list. A key is a large uninterpreted value
affording probabilistic protection. The creation and distribution
of keys and the management of access lists are all under user
control.

In order to verify access rights, the kernel checks to see
whether an appropriate key can be found in a special data struc-
ture shared (writably) between the user and the kernel. Once
authorization has been granted, access checks are not performed
for subsequent realm invocations, even those that are protected
(and hence effected by the kernel). To facilitate sharing of arbi-
trary realms at run time, Psyche arranges for every realm to have
a unique system-wide virtual address. This uniform addressing
allows processes to share pointers without worrying about
whether they might refer to different data structures in different
address spaces.

Every protection domain has a distinguished initial realm,
called its root. When a process performs a protected invocation
of some operation of a realm, it moves to the protection domain
rooted by that realm. The domain therefore contains processes
that have moved to it as a result of protected invocations,
together with processes that were created in it and have not
moved. Within each domain, the representations of processes are
created, destroyed, and scheduled by user-level code. As a pro-
cess moves among domains, it may be represented in many dif-
ferent ways—as lightweight threads of various kinds, or
requests on the queue of a heavyweight server. The kernel keeps
track of the call chains of processes that have moved between
protection domains (in order to implement returns correctly), but
it knows nothing about how processes are represented or
scheduled inside domains, and is not even aware of the existence
of processes that have not moved.

In order to execute processes inside a given protection
domain, the user must ask the kernel to create a collection of vir-
tual processors on which those processes can be scheduled. The
number of virtual processors in a domain determines the max-
imum level of physical parallelism available to the domain’s
processes. On each physical node of the machine, the kernel
time-slices among the virtual processors currently located on that
node. (The allocation of virtual processors to physical proces-
sors is usually established by the kernel, but may be specified by
certain user-level programs.) Because of time-slicing, the pro-
gress of a given virtual processor may be erratic, but each
receives a comparable share of available CPU resources. A data
structure shared between the kernel and the user contains an indi-
cation of which process is being served by the current virtual
processor. This indication can be changed in user code, so it is
entirely possible (in fact likely) that when execution enters the
kernel the currently running process will be different from the
one that was running when execution last returned to user space.
The kernel’s help is not required to create or destroy processes
within a single protection domain, or to perform context switches
between those processes.

Communication from the kernel to the virtual processors
takes the form of signals that resemble software interrupts. A
software interrupt occurs when a process moves to a new protec-
tion domain, when it returns, and whenever a kernel-detected
error occurs. In addition, user-level code can establish interrupt
handlers for wall clock and interval timers.

The interrupt handlers of a protection domain are the entry
points of a scheduler for the processes of the domain. Protection
domains can thus be used to provide the boundaries between dis-
tinct models of parallelism. Each scheduler is responsible for the
processes in its domain at the current point in time, managing
their representations and mapping them onto the virtual proces-
sors of the domain. Realms are the building blocks of domains,
and define the granularity at which domains can intersect.

3.2. Psyche Programming Environment

Like conventional systems such as Unix, Psyche assumes
that programs are executed in the context of a standard program-
ming environment. The uniform virtual address space requires
that programs be position independent, or else be dynamically
relocated when loaded into memory. It also presents the oppor-
tunity to dynamically link new applications to already-loaded
code. Name service is needed for running programs that need to
find each other, and command interpreters are required for
interactive use.

The standard execution environment for Psyche programs is
illustrated in figure 1. It includes a shell, a linker, and a name
server. The linker is created at system boot time as the primor-
dial realm, with a corresponding protection domain and initial
virtual processor. As part of its initialization, the linker creates
the rest of the execution environment, including the default shell
and the name server. The linker maintains a table of dis-
tinguished symbols that can be used to resolve external refer-
ences in applications. Among these symbols are the entry points

load (application)

e .

main (argc, argv)

register (my_interface)

load (other_application)

application name server

_/'

register (my_interface), lookup (linker_interface)

Figure 1: Psyche Execution Environment

of the name server and of the linker itself. Additional symbols
might include a default file server or reentrant C libraries. Once
initialization is complete, the linker enters server mode, in which
it accepts external requests from the shell or other user programs.

The shell accepts commands from a user. It communicates
with the linker to load new applications, and with the loaded
applications to begin their execution. The name server provides
a string registry that can be accessed via protected invocations.
Its principal purpose is to maintain a listing of services that are
not universal enough to be included in the linker’s symbol table,
or that may need to be accessed by already-loaded programs.
The name_server.register operation creates an association
between a key and a value string, typically a symbolic service
name and a realm operation address. The name_server.lookup
operation can be used to retrieve associations.

Applications are compiled into relocatable object files, suit-
able for dynamic linking. In response to a typed command, the
shell asks the linker to load a user program. The linker reads the
header of the object file to discover the size of the program. It
uses a system call to create an empty realm (which the kernel
places at an address of its choosing), and then loads the program
into the realm, resolving external symbols. At this point the
linker returns to the shell. The realm itself is still passive. The
shell uses another system call to create an initial virtual processor
in the protection domain of which the new realm is the root. The
kernel immediately provides this virtual processor with a
software interrupt at a handler address defined in a table at the
beginning of the realm. This handler initializes the program to
accept protected invocations before re-enabling software inter-
rupts. The shell performs a protected invocation to the
program’s main entry point, whose address was returned by the
linker. In most programs it is expected that the main entry point
will be in a library routine that initializes standard I/O and
repackages command line arguments before branching to the
user’s main routine. If desired, the main routine can then register
an external interface with the name server.

3.3. Discussion

As Unix-like systems are developed for multiprocessors, a
consensus is emerging on multiple kernel-supported processes
within an address space. Amoeba, Chorus, Mach, Topaz, and V
all take this approach. Most support some sort of memory shar-
ing between processes in different address spaces, but message
passing or RPC is usually the standard mechanism for synchroni-
zation and communication across address-space boundaries.

On the surface there is a similarity between the Psyche
approach and these modern conceptions of Unix. A protection
domain corresponds to an address space. A virtual processor
corresponds to a kernel-provided process. Protected procedure
calls correspond to RPC. The correspondence breaks down,
however, in three important ways.

Ease of Memory Sharing. Uniform addressing means that
pointers do not have to be interpreted in the context of a particu-
lar address map. Without uniform addressing, it is impossible to
guarantee that an arbitrary set of processes will be able to place a
shared data structure at a mutually-agreeable location at run time.
The key and access list mechanism, with its lazy checking of
access rights, means that processes do not have to pay for checks
on things they don’t actually use, nor do they have to realize
when they are using something for the first time, in order to ask
explicitly for access. Pointers in distributed data structures can
be followed without worrying about whether access checking has
yet been performed for the portion of the data they reference.

Uniformity of Invocation. Optimized and protected invoca-
tions share the same syntax and, with the exception of protection
and performance issues, the same semantics. No stub generators
or special compiler support are required to implement protected
procedure calls. In effect, an appropriate stub is generated by the
kernel when an operation is first invoked, and is used for similar
calls thereafter. As with the lazy checking of access rights, this
late binding of linkage mechanisms facilitates programming
techniques that are not possible with remote procedure call sys-
tems. Function pointers can be placed in data structures and can
then be used by processes whose need for an appropriate stub
was not known when the program was written.

First Class User-Level Threads. Because there are no block-
ing kernel calls, a virtual processor is never wasted while the
user-level process it was running waits for some operation to
complete. Protected invocations are the only way in which a
process can leave its protection domain for an unbounded
amount of time, and its virtual processor receives a software
interrupt as soon as this occurs. These software interrupts pro-
vide user-level code with complete control over the implementa-
tion of lightweight processes, while allowing those processes to
make standard use of the full set of kernel operations. In section
6 we describe a convention that provides the same degree of con-
trol for operations that are initiated by optimized invocations, but
must block for condition synchronization.

In a system with more than one kernel-level process per
address space, the programmer who wants more than one user-
level process must choose how to map user processes onto those
provided by the kernel. One option is to map them one-to-one.
Unfortunately, this approach implies significant costs for process
creation, destruction, synchronization, and context switching.
Though these costs are lower than the corresponding costs for an
old-style Unix process (because address space changes are no
longer involved), they are still large enough to be a serious con-
cern. A second option is to use a coroutine-style package to map
many user-level processes onto one or more kernel-level
processes [12]. This option either forces an entire collection of
user-level processes to wait when one of them performs a block-
ing operation, or else forces the programmer to cast all opera-
tions in terms of some non-standard non-blocking subset of the
kernel interface. In the latter case it becomes difficult or impos-
sible to interact with programming environments based on other
subsets of the kernel interface, to share data structures that
require condition synchronization with other environments, or to
use standard library packages.

A third possible mapping uses a hybrid of the other two
options, multiplexing user-level processes on top of one or more
kernel-level processes up to the point at which a blocking opera-
tion must be performed, and then interacting with a separate pool
of kernel-level processes that serve as blockable surrogates for
their peer(s). This option requires that the user decide up front
how many blocking processes to create, or else adjust the size of
the pool dynamically. It also requires that user code know ahead
of time which operations will block. It requires communication
and synchronization between kernel-level processes in order to
pass a blocking operation off to a surrogate.

The following three sections illustrate the advantages of the
Psyche approach through a series of examples.

4. Lightweight Processes in a Shared
Address Space

Programming models in which a single address space is
shared by many lightweight processes, such as Presto [6] and the
Uniform System [28], can be implemented easily and efficiently
on Psyche. A lightweight process scheduler can be implemented
as a library package that is linked into an application, creating a
single realm and protection domain whose virtual processors
share both the scheduling code and a central ready list. Virtual
processors can run whatever process is available, regardless of
where it ran last. Access to the ready list must be synchronized,
but in most other respects the scheduler resembles a traditional
coroutine package. Each process is represented by a context
block that includes room to save volatile registers and any other
data (such as display pointers) that the source language requires.

The scheduler interface contains routines to create a new
process, destroy the current process, block the current process,
and unblock a specified process. The destroy and block routines
cause a context switch to another process, busy-waiting if none is
available. All four routines require little more than a subroutine
call, with no assistance from the kernel.

For the sake of simplicity, we assume that our code is
designed to be used in applications started by the shell, which
cooperates with the linker to create the application’s realm, pro-
tection domain, and initial virtual processor. The virtual proces-
sor receives an initialization interrupt from the kernel. It initial-
izes the ready list and any other scheduler data structures, and
then creates a virtual processor on every physical processor of
the machine, ensuring the application maximum available paral-
lelism. Each new virtual processor receives its own initialization
interrupt and waits for processes to appear on the ready list.

After creating the initial virtual processor, the shell creates
the first lightweight process in the address space by invoking the
application’s main entry point. The kernel delivers an invocation
interrupt to a virtual processor in the application’s protection
domain. The code to handle this interrupt uses the create opera-
tion to allocate space for a process that has moved into the pro-
tection domain of the lightweight process package from outside
(in this case from the shell). To avoid copying arguments, the
invocation handler could allocate a new interrupt stack for future
use and give the old stack (with arguments in place) to the
newly-arrived process. Other processes can be created from
within the application (by simply calling the create operation) or
can arrive from outside the application via an invocation inter-
rupt (as in the case of the shell providing the initial process).

To synchronize access to shared data structures (including
those of the scheduler), we can build semaphores in user space
using spin locks and the scheduler’s block and unblock routines.
We assume the availability of an atomic hardware instruction
like test-and-set. A mechanism for ensuring that no process is
preempted while holding a spin lock is described in section 6.

4.1. Enhancements

The scheduling package above is deliberately simplistic; it
illustrates how simple scheduling policies and mechanisms can
be implemented with very little code and no interaction with the
kernel. Virtual processors spin when the ready list is empty.
They share a single list. They switch processes only when the
current process blocks or terminates explicitly. Each of these
simplifying assumptions can be relaxed with a small amount of
additional code. In addition, the basic kernel interface allows a
process to invoke operations of other protection domains without
blocking its virtual processor. It also allows processes in other
protection domains to invoke operations provided by the light-
weight process application.

Yielding When the Ready List is Empty

A virtual processor can spin when the ready list is empty,
just as a physical processor executes an idle task when it has

nothing else to do. Since physical processors are multipro-
grammed, a spinning virtual processor only chews up cycles to
which it would be entitled in any event. An obvious enhance-
ment is for a virtual processor to relinquish the physical proces-
sor for the rest of its scheduling quantum when there is nothing
on the ready list. To avoid the overhead of checking the list once
per quantum, the virtual processor could use a kernel call to
block pending interrupts instead. In this case, the lightweight
process package would need to keep a count of the number of
virtual processors that are blocked, and awaken one when insert-
ing a process onto a previously empty ready list.

Multiple Ready Lists

A single ready list is simple, and allocates work fairly among
virtual processors, achieving the effect of load balancing without
any effort on the kernel’s part. A single ready list may be inap-
propriate, however, on a machine in which there is a non-trivial
cost associated with running a process on a different processor
than the one on which it last ran. Such cost may be due to state
built up in a cache or TLB, or in pages that have been moved to
local memory on an architecture with non-uniform memory
access speeds. It is straightforward to replace the single ready
list with a collection of lists, one per virtual processor. New
processes created by the application (and newly-arrived
processes from the invocation interrupt handler) are added to the
shortest ready list. Each virtual processor adds and deletes
processes on its own ready list, examining other lists only when
their lengths become heavily unbalanced.

Preemption

Each process can be given a quantum at the end of which the
virtual processor will be given to another process. The kernel
interface associates interval timers with virtual processors for
this purpose. The timer value lies in data structures shared
between the virtual processor and the kernel. The kernel decre-
ments it on every hardware clock interrupt. The user may also
set it to any desired value. When the interval has expired, the
virtual processor receives a software interrupt. The timer expira-
tion handler will yield the virtual processor, putting the current
process at the end of the ready list, resetting the interval timer,
and selecting a new process to run. The block routine will also
reset the timer before transferring to another process. The kernel
must decrement the current timer value on each clock tick and
deliver an interrupt at expiration. All other aspects of light-
weight process preemption occur in user space.

4.2. Crossing Protection Domains

In Psyche, I/O and all other potentially blocking operations
are implemented in user space through protected invocations
(e.g., of read and write operations in a file server realm). When a
lightweight process invokes a protected operation the kernel pro-
vides its virtual processor with an interrupt indicating that the
process has moved to another protection domain. The process
state local to the invoking domain can be saved until the invoca-
tion returns. In the interim, the virtual processor can be used to
execute other processes. When the invoking process finally
returns, the kernel delivers a software interrupt to the virtual pro-
cessor that last ran the process in its old protection domain. The
handler for that interrupt looks up the context of the process and
unblocks it, placing it back on the ready list for later execution.

We have already mentioned the interrupt handler that allows
our lightweight process package to handle invocations from other
protection domains (it allowed the shell to provide our initial
process). The invocation handler routine allocates space for the
newly-arrived process as if it had been created locally, and adds
it to the ready list. While executing the requested operation, a
virtual processor indicates in data structures shared with the ker-
nel that it is running the newly-arrived process.

To switch processes in user mode, a virtual processor simply
changes the name of the current process in the data structure it
shares with the kernel. The kernel is therefore always able to tell

which process was responsible when a trap occurs. If the trap
represents a protected invocation, the kernel remembers that the
process has moved to another protection domain. Any future
trap in the current domain that claims to be caused by the
departed process is treated as an error. Because a process is
merely a name from the kernel’s point of view, new processes
can be created simply by inventing new names. So long as light-
weight processes execute inside their own protection domain,
they can be created, destroyed, and scheduled without interven-
tion by the kernel. When one of these processes invokes an
operation outside the protection domain, the kernel delivers an
interrupt to allow the scheduler to take action.

5. Heavyweight Processes with Message
Passing

Psyche can be used to implement heavyweight processes
communicating with messages. Consider a system with the fol-
lowing characteristics. Each process operates in its own address
space. Processes are connected by two-way communication
channels called links. There are three main message-passing
primitives: send, receive, and wait. Send and receive each
specify a buffer address, a length, and a link. Send indicates that
the contents of the specified buffer should be sent to the process
at the other end of the link. Receive indicates that the specified
buffer should be filled by a message received from the process at
the other end of the link. Wait blocks the process until some out-
standing send or receive request has completed.

These semantics are a subset of the message-passing primi-
tives of the Charlotte distributed operating system [3]. They can
be implemented as follows. Each Charlotte process is imple-
mented as a separate protection domain with a single virtual pro-
cessor, running a single Psyche process. A diagram of one such
protection domain (and its interactions with others) appears in
figure 2. Each link is implemented as a realm containing only
data. The process that creates the link realm also invents a key
that will permit optimized access to the link. It gives both the
address of the realm and the key to the processes at the ends of
the link, allowing those processes to open the realm for optim-
ized access from their protection domains. Each link realm con-
tains two buffers, one for a message in each direction, and a
small amount of status information that indicates which buffers
are full and which processes have an outstanding receive request
on the link.

To receive a message, a process looks in the link realm to see
if the appropriate buffer is full. If so, it copies the data into its
own local buffer and sets a flag indicating that the link buffer is
now empty. It then performs a (protected) invocation of an
operation in the sender’s protection domain to inform it that the

Application

Communication
Library

Application
\ Communication
send, receive, wait >

Library

(J

request_matched

request_matched

kernel

Figure 2: Implementation of a Message-Passing Model

send request has completed. (It finds the address of this opera-
tion, together with a key permitting protected invocation, in data
structures of the link realm.) If on the other hand the link buffer
is empty when the receiver first inspects it, the receiver leaves
status information indicating that it has a receive request out-
standing, specifying the location and size of its local buffer. In
either event, the receive operation does not block.

To send a message, a process gathers its data into the
appropriate buffer in the link realm and sets a flag indicating that
the message is available. If then checks to see if the process at
the other end of the link has a receive request outstanding. If so,
it performs a (protected) invocation of an operation in the
receiver’s protection domain to inform it that the receive request
has completed. Whether the receiver has a request outstanding
or not, the send operation returns without blocking.

When a send or receive operation discovers that a matching
request is already outstanding in the process at the other end of
the link, it makes a note in data structures local to the current
process, indicating that a transaction has occurred, and can be
reported by a subsequent wait operation. As noted above, a pro-
tected call is also made into the other process, allowing it to
make a similar note in its own data structures. When either pro-
cess performs a wait operation, it can tell if any transactions have
already occurred. If none have, it calls a Psyche kernel operation
to block the virtual processor pending the arrival of interrupts. It
will receive an interrupt (for a protected invocation) as soon as
some communication partner performs an operation to match one
of its outstanding send or receive requests.

When a process performs a protected invocation to inform
one of its communication partners that a send or receive request
has been matched, that process moves to the partner’s protection
domain. In the previous section we allocated a context block and
stack to represent each new arrival. In this new example, we can
treat each arriving Psyche process as simply a request for service.
We need not give it state. If requests do not interfere with
current activity, they can be serviced immediately by the inter-
rupt handler. Otherwise, the handler can place them in a queue
for synchronous examination later.

If we prefer a more sophisticated approach to process
management and message passing, the communication library
and link realms can easily be modified to provide the communi-
cation semantics of the Lynx distributed programming language
[23]. Lynx subdivides each heavyweight process into light-
weight threads of control, not to improve performance through
parallelism, but as a program structuring tool. The threads use
coroutine semantics: one thread runs until it blocks, then another
runs. Lynx also uses an RPC style of message passing: messages
come in matched request-reply pairs. A thread that initiates an
RPC waits until a reply message is received, but a control
transfer allows another thread to run in the meantime, so the
heavyweight process is not blocked. Seen from outside, a heavy-
weight Lynx process resembles a Charlotte process closely,
though not exactly.

Lynx was first implemented on top of Charlotte at the
University of Wisconsin. The implementation was complex and
difficult, because the operations provided by the operating sys-
tem were not quite what the language wanted, and their seman-
tics could not be changed [22]. For example, there are times
when a Lynx process is only interested in receiving replies to
RPCs it has initiated, and is not willing to service RPCs
requested by anybody else. Charlotte semantics provide no way
to differentiate between requests and replies, so unwanted
requests must be returned to the sender through a complicated
protocol.

In Psyche, the link realm described above can be modified to
include separate buffers for requests and replies in each direc-
tion, with appropriate operations to fill and empty them. The
communication library realms can be modified to provide rpc,
receive_request, and send_reply operations instead of send and
receive. The changes are straightforward, and produce an imple-
mentation almost identical to that used to support Lynx on top of

the Chrysalis operating system on the BBN Butterfly.

The ease with which the Charlotte style of message passing
can be converted to the Lynx style of message passing illustrates
the flexibility of Psyche. Implementing Lynx on Charlotte was
difficult because the communication semantics were fixed by the
kernel and not subject to even slight modification. The imple-
mentation of Lynx on Chrysalis was comparatively easy, but it
suffers from problems of its own. It depends on an unsafe
Chrysalis queue mechanism to achieve the effect of protected
calls to match send and receive requests. It is incompatible with
other models of programming on the Butterfly because Chrysalis
provides no conventions for synchronizing access to shared data
without understanding how other models are implemented.
Finally, it implements Lynx threads as coroutines outside the
knowledge of the operating system. If a thread performs a block-
ing operation (like I/0O), it blocks the entire Lynx process. In
Psyche, each Lynx thread would use a separate Psyche process
name, and any blocking operation it performed would result in a
software interrupt that would allow the virtual processor that
represents the Lynx process to switch to a different Psyche pro-
cess, representing a different Lynx thread.

6. Shared Parallel Priority Queue

Psyche can be used to implement parallel data structures that
can be accessed from several different programming models
simultaneously. In this example we describe a parallel priority
queue implementation. This example illustrates how data struc-
tures are shared among different programming models and also
how the Psyche interface incorporates cooperation between the
operating system and the application in the implementation of
scheduling.

The algorithm for concurrent priority queues can be adapted
from [17]. The external interface of the queue includes two
operations: insert and deletemin. The implementation uses a
heap ordered binary tree. Deletemin removes and returns the
smallest element in the queue by deleting the root of the tree and
melding the two remaining subtrees. Insert adds a new element
to the queue by melding the existing tree with a new one item
tree. Operations on the priority queue are allowed to proceed
concurrently; each operation need only hold exclusive access to
some subset of the queue’s data structure. Exclusive access is
implemented using binary semaphores associated with nodes in
the heap.

To implement a parallel priority queue in Psyche, we must
first consider how the queue will be used. If the queue is
intended for use within a single program or protection domain,
where compiler protection is sufficient, efficiency may be more
important than protection. If the queue will be used simultane-
ously by processes in different protection domains, under dif-
ferent programming models, then the implementation should
include firewalls to protect the abstraction.

These implementation issues are analogous to those that
arise in modular programming languages. In Modula-2, for
example, the implementor of an abstraction must decide whether
or not the abstraction should be represented by an opaque type.
The choice is usually based on how the abstraction is to be used
and on the likelihood of changes in the implementation of the
abstraction. With an opaque type, implementation details are
hidden by the abstraction; the interface must provide all opera-
tions that allocate and manipulate instances of the type. As a
result, changes to the implementation can be made without
affecting the client, but a procedure call, and its associated over-
head, is required for every operation on the type. If a transparent
type is used, clients can easily augment or modify the implemen-
tation to tailor it to specific cases. Although transparent types
introduce the potential for corruption of the abstraction, they
allow the client to bypass the procedural interface and optimize
the implementation for a particular need.

In the original version of the parallel priority queue algo-
rithm, a transparent type was used, so that clients could allocate
data items among their own variables and pass pointers to them

to the priority queue, rather than passing the contents of the
items. The implementation could then simply chain together
items from the clients. Such an implementation is appropriate in
Psyche if all clients reside in a single protection domain, where
mutual trust exists. In that case, clients could use optimized
invocations to access the data structure; only procedure call over-
head would be incurred.

If the data structure is to be used across several programming
models and protection domains, a priority queue server realm
with its own local allocation of data items would be more
appropriate. (Pointers to client-created data items could not be
used, because clients in one protection domain cannot follow
pointers into an inaccessible portion of another.) The priority
queue realm could be accessed via either protected or optimized
invocations. In the former case, the queue would be isolated in
its own protection domain. In the latter case, it would lie in the
intersection of the domains of all of its clients.

Placing the queue in its own protection domain would ensure
that modifications to its data structures happened only as a result
of legitimate invocations of queue operations. Placing the queue
in the intersection of its clients’ domains would only establish
conventions. In either case, malicious clients would be able to
send each other invalid information through the queue, but would
be unable to modify each other’s data structures directly. In the
protected invocation case, clients would also be unable to destroy
the structural integrity of a properly-implemented queue. With
optimized invocations they would be able to modify the data
structures of the queue directly, bypassing the normal access rou-
tines. The advantage of optimized invocations, of course, is that
they are much faster.

It is worth noting that trust relationships between the data
structure and its clients are not reflected in the calls to the opera-
tions on the data structure. Optimized and protected invocations
both take the form of ordinary procedure calls. However, as in
modular programming, trust relationships dictate how and where
storage is allocated, and how data is represented within the data
structure.

Let us assume that the priority queue realm will be included
in the protection domains of its clients, who will access it with
optimized invocations. No protection boundary will normally be
crossed. The virtual processors that run processes executing the
code of the queue will belong to client protection domains. The
level of concurrency within the realm will depend on the level of
concurrency among the clients, and on synchronization con-
straints in the code.

In an earlier example we assumed an implementation of
semaphores for use by threads within a shared address space. In
this example, different types of processes may access the data
structure and be forced to wait on a semaphore. Since the
semantics of blocking may differ among the various types of
processes that access the semaphore, our semaphore implementa-
tion must provide some mechanism to dynamically tailor the
implementation to the type of process.

By convention, each Psyche protection domain defines pro-
cedures to block and unblock its processes. These procedures are
part of the scheduling code of the domain. Pointers to them are
stored in each process context block. When a process attempts to
perform a P operation on an unavailable semaphore, the code for
that operation writes the address of the unblock routine of the
current process into the data of the semaphore and then calls the
block routine. Because it affects the current process, block is
always called within the current protection domain, and requires
no kernel intervention. When the semaphore implementation
must unblock the process (because some other process has per-
formed a V operation), the appropriate (saved) unblock routine is
called. This call may be either an optimized or protected invoca-
tion, depending on whether the process performing the V opera-
tion is in the same protection domain as the process that called
the P operation. Because it manipulates the data structures used
to represent processes, the unblock routine is unlikely to be made
available for optimized access from outside its domain.

A diagram of our implementation appears in figure 3. Solid
arrows represent optimized invocations (i.e. procedure calls) and
light grey arrows (with accompanying arrows into and out of the
kernel) represent protected invocations. In this figure, however,
the arrow representing a call to unblock may also be optimized, if
the process to be unblocked is in the current protection domain.

The discussion accompanying the original parallel priority
queue algorithm pointed out that the most appropriate implemen-
tation for mutual exclusion is spin locks, not binary semaphores.

Unfortunately, spin locks in the presence of preemption' can
cause a significant performance penalty [29]. A process holding
the lock could be preempted, causing other processes to spin on a
lock that cannot be released. In addition, pent-up demand for the
lock increases contention when it is finally released. As a result,
spin locks are rarely used unless the operating system dedicates
processors to a single application. Fortunately, Psyche supports
the “‘close alliance between the system’s processor allocator and
the application’s thread scheduler’” called for in [29] to solve the
problem of spin locks in the presence of preemption. Since the
kernel and user share a data structure describing the state of the
executing virtual processor, it is easy for the clock handler to set
a flag when the virtual processor is close to the end of its quan-
tum. The application can examine this flag to determine if
preemption within a critical section is likely. The code to
acquire a naive test-and-set lock would take the following form:

repeat
if preemption_flag
yield
until test_and_set (lock) = 0

7. Conclusions

We have attempted with the examples in this paper to illus-
trate how special features of Psyche facilitate the construction of
multi-model programs. We can summarize the effect of these
features as facilitating sharing within and between protection
domains, simplifying communication with the kernel and
between protection domains, and moving process scheduling out
of the kernel and into user-level code.

Facilitating Sharing

insert, deletemin

insert, deletemin
Lynx Lightweight Thread
Application 8 .wel-g e
Application
send, receive, wait
m‘ Thread
Library

|
Communication
Library

request_matched

Priority
Queue

unblock unblock

kernel

Figure 3: Implementation of a Shared Priority Queue

'Although our data structure might be used by a programming
model that provides non-preemptable processes, those processes execute
on virtual processors that can be preempted by the kernel. The use of
spin locks in any programming environment on Psyche must take this
fact into account.

Processes interact via shared memory and procedure calls.
Popular communication mechanisms have straightforward imple-
mentations, and any programming model that supports procedure
calls can use this common base to invoke operations imple-
mented under any other model.

Protection domains share a uniform virtual address space.
Every realm has a unique address, and can be incorporated
without conflict into any protection domain with the right to
access it.

Access rights are checked only when necessary. Lazy exam-
ination of key and access lists means that a process pays for
access checking only on the data and operations it actually uses,
not for the ones it might potentially use. We can afford to
disseminate keys liberally, because we don’t need the kernel’s
help to do so. Because access checking occurs automatically, the
user need not keep track of which realms have already been
accessed.

Simplifying Communication

Protected and optimized invocations are syntactically the
same. In the Lynx example, communication routines can use the
same syntax to invoke the local and remote request matched
operations. In the priority queue example, an insert operation on
an empty queue can call an unblock operation without worrying
about whether that operation is in the current protection domain
or not.

The kernel and the user share data. Descriptive data struc-
tures allow the kernel to obtain key lists, access lists, process
names, software interrupt vectors, and realm interface descrip-
tions without requiring the user to provide them as explicit argu-
ments to system calls. A virtual processor preemption warning
flag allows us to use spin locks efficiently in user space. Shared
flags and counters allow us to disable interrupts or ask for timer
interrupts without a kernel trap. A current_process_name vari-
able allows us to switch between processes without a kernel trap.
Kernel-maintained data allows us to read the time, compute load
averages, or examine other run-time statistics without a kernel
trap.

Scheduling in User Space

There is a standard interface for block and unblock routines.
Shared data structures like the priority queue can incorporate
synchronization code that works with any kind of process.

A virtual processor receives an interrupt when its process
blocks for a protected invocation. It can then switch to another,
runnable process. This means that lightweight processes get
first-class treatment from the kernel.

Other scheduling events cause interrupts as well. Timer
expiration interrupts allow preemption. Protected invocation
interrupts allow asynchronous communication from other protec-
tion domains. The kernel interface itself is entirely non-
blocking. User-level code controls every aspect of scheduling
other than the implementation of virtual processors.

Our first major user application was implemented in the
department’s robotics laboratory in the fall of 1989. It combines
binocular camera input, a pipelined image processor, a 6-
degree-of-freedom robot arm, and a competing agent model of
motor control to bounce a balloon suspended from the ceiling on
a string. We expect to tune the features of our kernel interface as
we accumulate experience with additional applications written by
programmers outside the Psyche group. Our experience with
previous systems and applications indicates that multi-model
programming is important. Our example programs and our work
to date in the robot lab suggest that Psyche supports it well.

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

(1]

[12]

[13]

[14]

[15]

M. Accetta, R. Baron, W. Bolosky, D. Golub, R. Rashid,
A. Tevanian and M. Young, ‘‘Mach: A New Kernel Foun-
dation for UNIX Development,”’ Proceedings of the Sum-
mer 1986 USENIX Technical Conference and Exhibition,
June 1986, pp. 93-112.

R. Armand, M. Gien, R. Herrmann and M. Rozier, ‘‘Revo-
lution 89, or ‘Distributing UNIX Brings it Back to its Ori-
ginal Virtues’,”” Proceedings of the First USENIX
Workshop on Experiences Building Distributed and Mul-
tiprocessor Systems, 5-6 October, 1989, pp. 153-174.

Y. Artsy, H. Chang and R. Finkel, ‘‘Interprocess Com-
munication in Charlotte,”” IEEE Software 4:1 (January
1987), pp. 22-28.

BBN Advanced Computers Incorporated, ‘Chrysalis®
Programmers Manual, Version 4.0,”” Cambridge, MA, 10
February 1988.

B. N. Bershad, D. T. Ching, E. D. Lazowska, J. Sanislo
and M. Schwartz, ‘‘A Remote Procedure Call Facility for
Interconnecting Heterogeneous Computer Systems,”” IEEE
Transactions on Software Engineering SE-13:8 (August
1987), pp. 880-894.

B. N. Bershad, E. D. Lazowska, H. M. Levy and D. B.
Wagner, ‘‘An Open Environment for Building Parallel
Programming Systems,”” Proceedings of the First ACM
Conference on Parallel Programming: Experience with
Applications, Languages and Systems, 19-21 July 1988,
pp- 1-9. In ACM SIGPLAN Notices 23:9.

B. N. Bershad, T. E. Anderson, E. D. Lazowska and H. M.
Levy, ‘‘Lightweight Remote Procedure Call,”” ACM Tran-
sactions on Computer Systems 8:1 (February 1990), pp.
37-55. Also in ACM SIGOPS Operating Systems Review
23:5; originally presented at the Twelfth ACM Symposium
on Operating Systems Principles, 3-6 December 1989.

R. Bisiani and A. Forim, ‘‘Multilanguage Parallel Pro-
gramming,”” Proceedings of the 1987 International
Conference on Parallel Processing, 17-21 August 1987,
pp. 381-384.

A.P. Black, ‘‘Supporting Distributed Applications:
Experience with Eden,”” Proceedings of the Tenth ACM
Symposium on Operating Systems Principles, 1-4
December 1985, pp. 181-193. In ACM SIGOPS Operating
Systems Review 19:5.

R. Campbell, G. Johnston and V. Russo, ‘‘Choices (Class
Hierarchical Open Interface for Custom Embedded Sys-
tems),”” ACM SIGOPS Operating Systems Review 21:3
(July 1987), pp. 9-17.

D. Cheriton, ‘“The V Kernel — A Software Base for Dis-
tributed Systems,”” IEEE Software 1:2 (April 1984), pp.
19-42.

T. W. Doeppner, Jr., ‘“Threads: A System for the Support
of Concurrent Programming,”” Technical Report CS-87-
11, Department of Computer Science, Brown University,
1987.

D. Gelernter, ‘‘Generative Communication in Linda,”’
ACM Transactions on Programming Languages and Sys-
tems 7:1 (January 1985), pp. 80-112.

R. Hayes and R.D. Schlichting, ‘‘Facilitating Mixed
Language Programming in Distributed Systems,”” [EEE
Transactions on Software Engineering SE-13:12
(December 1987), pp. 1254-1264.

N. C. Hutchinson and L. L. Peterson, ‘‘Design of the x-
Kernel,”” Proceedings of the SIGCOMM 88 Symposium,
August 1988, pp. 65-75.

[16]

(17]

[18]

[19]

[20]

(21]

(22]

(23]

[24]

(25]

[26]

(27]

(28]

[29]

M. B. Jones, R. F. Rashid and M. R. Thompson, ‘‘Match-
maker: An Interface Specification Language for Distrib-
uted Processing,”” Conference Record of the Twelfth ACM
Symposium on Principles of Programming Languages,
January 1985, pp. 225-235.

D. W. Jones, ‘‘Concurrent Operations on Priority
Queues,”” Communications of the ACM 32:1 (January
1989), pp. 132-137.

T. J. LeBlanc, M. L. Scott and C. M. Brown, ‘‘Large-Scale
Parallel Programming: Experience with the BBN Butterfly
Parallel Processor,”” Proceedings of the First ACM
Conference on Parallel Programming: Experience with
Applications, Languages and Systems, 19-21 July 1988,
pp. 161-172.

B. Liskov, D. Curtis, P. Johnson and R. Scheifler, ‘‘Imple-
mentation of Argus,”” Proceedings of the Eleventh ACM
Symposium on Operating Systems Principles, 8-11
November 1987, pp. 111-122. In ACM SIGOPS Operating
Systems Review 21:5.

B. Liskov, R. Bloom, D. Gifford, R. Scheifler and W.
Weihl, ‘‘Communication in the Mercury System,”’
Proceedings of the 2lst Annual Hawaii International
Conference on System Sciences, January 1988, pp. 178-
187.

S.J. Mullender and A. S. Tanenbaum, ‘‘The Design of a
Capability-Based Distributed Operating System,”” The
Computer Journal 29:4 (1986), pp. 289-299.

M. L. Scott, ‘“The Interface Between Distributed Operat-
ing System and High-Level Programming Language,”
Proceedings of the 1986 International Conference on
Parallel Processing, 19-22 August 1986, pp. 242-249.

M. L. Scott, ‘‘Language Support for Loosely-Coupled Dis-
tributed Programs,”” [EEE Transactions on Software
Engineering SE-13:1 (January 1987), pp. 88-103.

M. L. Scott, T.J. LeBlanc and B.D. Marsh, ‘‘Design
Rationale for Psyche, a General-Purpose Multiprocessor
Operating System,”” Proceedings of the 1988 International
Conference on Parallel Processing, V. 11 - Software,
15-19 August 1988, pp. 255-262.

M. L. Scott, T. J. LeBlanc and B. D. Marsh, ‘‘Evolution of
an Operating System for Large-Scale Shared-Memory
Multiprocessors,”” TR 309, Computer Science Department,
University of Rochester, March 1989.

M. Shapiro, ‘‘Prototyping a Distributed Object-Oriented
OS on UNIX,” Proceedings of the First USENIX
Workshop on Experiences Building Distributed and Mul-
tiprocessor Systems, 5-6 October, 1989, pp. 311-331.

C. P. Thacker and L. C. Stewart, ‘‘Firefly: A Multiproces-
sor Workstation,”” IEEE Transactions on Computers 37:8
(August 1988), pp. 909-920. Originally presented at the
Second International Conference on Architectural Support
for Programming Languages and Operating Systems, 5-8
October 1987.

R. H. Thomas and W. Crowther, ‘“The Uniform System:
An Approach to Runtime Support for Large Scale Shared
Memory Parallel Processors,”” Proceedings of the 1988
International Conference on Parallel Processing, V. 1l —
Software, 15-19 August 1988, pp. 245-254.

J. Zahorjan, E. D. Lazowska and D. L. Eager, ‘‘The Effect
of Scheduling Discipline on Spin Overhead in Shared
Memory Parallel Processors,”” TR 89-07-03, Department
of Computer Science, University of Washington, July
1989.

