Counting Euler tours?

Qi Ge
Daniel Štefankovič

University of Rochester
Euler tour

1) every edge exactly once
2) end where started
Euler tour

1) every edge exactly once
2) end where started

not an Euler tour
Basic facts

- there exists one if and only if all vertices have even degree (Eulerian graph)
- an Euler tour in an Eulerian graph can be found in linear time.

Can we find a random one?
Can we count their number? (efficiently)
Can we count their number?

→ polynomial time algorithm

→ 264
Can we count their number?

undirected graphs

#P-complete

(Brightwell-Winkler’05)

directed graphs

polynomial-time algorithm known

(using spanning trees)

eact counting in poly-time unlikely
Can we count their number? ^ approximately

(open question, listed, e.g., in Approximation algorithms (V. Vazirani))

self-reducible \Rightarrow approximate counting \Leftrightarrow approximate sampling (Jerrum, Valiant, V. Vazirani’86)

\[264 \pm 10\% \]
Can we find a random one?

4-regular graphs

Markov chain

pick a random vertex \(v\)
locally change the tour at \(v\)

(exactly 2 of these are valid)
Can we find a random one?

Markov chain

$X_1, X_2, X_3, \ldots, X_t, \ldots$

Can we find a random one?

4-regular graphs

Markov chain

pick a random vertex v
locally change the tour at v

(exactly 2 of these are valid)

OPEN:
is the mixing time polynomial?

L_1 distance to uniform distribution

$$\sum_{a} |P(X_t=a) - \frac{1}{M}|$$

mixing time =
t to get L_1 distance $\leq \varepsilon/2$
Can we find a random one?

Markov chain

pick a vertex \(v \)
locally change the tour at \(v \)

(exactly 2 of these are valid)
Counting A-trails in a map

vertices with “rotations”
map

vertices with “rotations”
and a graph
A-trail = euler tour without crossings

not allowed
A-trail
Can we (approximately) count their number?

for planar maps
yes (Kotzig’68)

for general maps?
Our results: A-trails in 4-reg enough approximate sampling/counting of A-trails in 4-regular maps

approximate sampling/counting of Euler tours in Eulerian graphs

(AP-reduction (Goldberg, Dyer, Greenhill, Jerrum’04))
A-trails in 4-reg enough

approximate sampling/counting
of A-trails in 4-regular maps

→

approximate sampling/counting
of Euler tours in 4-regular graphs
approximate sampling/counting of A-trails in 4-regular maps

approximate sampling/counting of Euler tours in 4-regular graphs
A-trails in 4-reg enough

approximate sampling/counting
of A-trails in 4-regular maps

→

approximate sampling/counting
of Euler tours in Eulerian graphs

1st layer

2nd layer

T layers
Theorem (Wilson’04): in $O(d^3 \ln^2 d \ln(1/\varepsilon))$ steps get $\varepsilon/2$ L_1 distance from uniform on permutations.
Exact: A-trails in 4-reg enough

exact counting
of A-trails in 4-regular maps

exact counting
of Euler tours in Eulerian graphs

(corollary: counting A-trails in 4-regular graphs #P-complete)
Exact: A-trails in 4-reg enough
Exact: A-trails in 4-reg enough
Our results: A-trails in 4-reg enough approximate sampling/counting of A-trails in 4-regular maps

approximate sampling/counting of Euler tours in Eulerian graphs

(AP-reduction)
(Goldberg, Dyer, Greenhill, Jerrum’04)
Questions:

- AP reduction from Euler tours in Eulerian graphs to Euler tours in 4-regular graphs?
- Approximate sampling/counting of Euler tours/A-trails?
- Which subsets of the hypercube can be sampled from?