Adaptive annealing: a near-optimal connection between sampling and counting

Daniel Štefankovič
(University of Rochester)

Santosh Vempala
Eric Vigoda
(Georgia Tech)
Counting

independent sets
spanning trees
matchings
perfect matchings
k-colorings
(approx) counting \Leftrightarrow sampling

Valleau, Card’72 (physical chemistry), Babai’79 (for matchings and colorings), Jerrum, Valiant, V. Vazirani’86,

the outcome of the JVV reduction:

random variables: $X_1 \ X_2 \ \ldots \ X_t$

such that

1) $E[X_1 \ X_2 \ \ldots \ X_t] = \text{“WANTED”}$

2) the X_i are easy to estimate

squared coefficient of variation (SCV)

$$\frac{V[X_i]}{E[X_i]^2} = O(1)$$
Theorem (Dyer-Frieze’91)

O\left(\frac{t^2}{\varepsilon^2} \right) \text{ samples } (O\left(\frac{t}{\varepsilon^2} \right) \text{ from each } X_i)

give

1 \pm \varepsilon \text{ estimator of “WANTED” with prob } \geq \frac{3}{4}
JVV for **independent sets**

GOAL: given a graph G, estimate the number of independent sets of G

independent sets = \(\frac{1}{P(G)} \)
JVV for independent sets

\[P(\cap) = P(\cap) \]

\[P(\cap)P(\cap)P(\cap)P(\cap) \]

\[X_1 \quad X_2 \quad X_3 \quad X_4 \]

\(X_i \in [0,1] \) and \(E[X_i] \geq \frac{1}{2} \) \implies \frac{V[X_i]}{E[X_i]^2} = O(1)
JVV: If we have a sampler oracle:

graph G $\xrightarrow{}$ \textsc{Sampler Oracle} $\xrightarrow{}$ random independent set of G

then FPRAS using $O(n^2)$ samples.
JVV: If we have a sampler oracle:

graph G \quad \rightarrow \quad \text{SAMPLER ORACLE} \quad \rightarrow \quad \text{random independent set of } G

then FPRAS using $O(n^2)$ samples.

ŠVV: If we have a sampler oracle:

β, graph G \quad \rightarrow \quad \text{SAMPLER ORACLE} \quad \rightarrow \quad \text{set from gas-model Gibbs at } \beta$

then FPRAS using $O^*(n)$ samples.
Application – independent sets

$O^*(|V|)$ samples suffice for counting

Cost per sample (Vigoda’01, Dyer-Greenhill’01) time = $O^*(|V|)$ for graphs of degree ≤ 4.

Total running time:

$O^*(|V|^2)$.
Other applications

matchings $O^*(n^2m)$
(using Jerrum, Sinclair’89)

spin systems:
Ising model $O^*(n^2)$ for $\beta<\beta_c$
(using Marinelli, Olivieri’95)
k-colorings $O^*(n^2)$ for $k>2\Delta$
(using Jerrum’95)

total running time
easy = hot

hard = cold
Big set $= \Omega$

Hamiltonian

$H : \Omega \rightarrow \{0, \ldots, n\}$

Goal: estimate $|H^{-1}(0)|$

$|H^{-1}(0)| = E[X_1] \ldots E[X_t]$
Distributions between hot and cold

\[\beta = \text{inverse temperature} \]

\[\beta = 0 \quad \Rightarrow \quad \text{hot} \quad \Rightarrow \quad \text{uniform on } \Omega \]

\[\beta = \infty \quad \Rightarrow \quad \text{cold} \quad \Rightarrow \quad \text{uniform on } H^{-1}(0) \]

\[\mu_\beta (x) \propto \exp(-H(x)\beta) \]

(Gibbs distributions)
Distributions between hot and cold

\[\mu_\beta (x) \propto \exp(-H(x)\beta) \]

\[\mu_\beta (x) = \frac{\exp(-H(x)\beta)}{Z(\beta)} \]

Normalizing factor = partition function

\[Z(\beta) = \sum_{x \in \Omega} \exp(-H(x)\beta) \]
Partition function

\[Z(\beta) = \sum_{x \in \Omega} \exp(-H(x)\beta) \]

have: \(Z(0) = |\Omega| \)

want: \(Z(\infty) = |H^{-1}(0)| \)
Assumption:

we have a sampler oracle for μ_β

$$\mu_\beta (x) = \frac{\exp(-H(x)\beta)}{Z(\beta)}$$

graph G_β → SAMPLER ORACLE → subset of V from μ_β
Assumption:

we have a sampler oracle for μ_β

$w \sim \mu_\beta$

$\mu_\beta (x) = \frac{\exp(-H(x)\beta)}{Z(\beta)}$
Assumption:

we have a sampler oracle for μ_β

$$\mu_\beta (x) = \frac{\exp(-H(x)\beta)}{Z(\beta)}$$

$W \sim \mu_\beta \rightarrow X = \exp(H(W)(\beta - \alpha))$
Assumption:
we have a sampler oracle for μ_β

$$\mu_\beta(x) = \frac{\exp(-H(x)\beta)}{Z(\beta)}$$

$W \sim \mu_\beta \rightarrow X = \exp(H(W)(\beta - \alpha))$

can obtain the following ratio:

$$E[X] = \sum_{s \in \Omega} \mu_\beta(s) X(s) = \frac{Z(\alpha)}{Z(\beta)}$$
Our goal restated

Partition function

\[Z(\beta) = \sum_{x \in \Omega} \exp(-H(x)\beta) \]

Goal: estimate \(Z(\infty) = |H^{-1}(0)| \)

\[Z(\infty) = \frac{Z(\beta_1)}{Z(\beta_0)} \frac{Z(\beta_2)}{Z(\beta_1)} \ldots \frac{Z(\beta_t)}{Z(\beta_{t-1})} \frac{Z(0)}{Z(\beta_0)} \]

\(\beta_0 = 0 \leq \beta_1 \leq \beta_2 \leq \ldots \leq \beta_t = \infty \)
Our goal restated

\[Z(\infty) = \frac{Z(\beta_1)}{Z(\beta_0)} \frac{Z(\beta_2)}{Z(\beta_1)} \cdots \frac{Z(\beta_t)}{Z(\beta_{t-1})} Z(0) \]

Cooling schedule:

\[\beta_0 = 0 < \beta_1 < \beta_2 < \ldots < \beta_t = \infty \]

How to choose the cooling schedule?

minimize length, while satisfying

\[\frac{V[X_i]}{E[X_i]^2} = O(1) \quad E[X_i] = \frac{Z(\beta_i)}{Z(\beta_{i-1})} \]
Parameters: A and n

$$Z(\beta) = \sum_{x \in \Omega} \exp(-H(x)\beta)$$

$$Z(0) = A$$

$H: \Omega \rightarrow \{0, \ldots, n\}$

$$Z(\beta) = \sum_{k=0}^{n} a_k e^{-\beta k}$$

$$a_k = |H^{-1}(k)|$$
Parameters

\[
Z(0) = A \quad \text{H: } \Omega \to \{0, \ldots, n\}
\]

<table>
<thead>
<tr>
<th></th>
<th>(A)</th>
<th>(n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>independent sets</td>
<td>(2^V)</td>
<td>(E)</td>
</tr>
<tr>
<td>matchings</td>
<td>(\approx V!)</td>
<td>(V)</td>
</tr>
<tr>
<td>perfect matchings</td>
<td>(V!)</td>
<td>(V)</td>
</tr>
<tr>
<td>k-colorings</td>
<td>(k^V)</td>
<td>(E)</td>
</tr>
</tbody>
</table>
Previous cooling schedules

\[Z(0) = A \]

\[H: \Omega \rightarrow \{0, \ldots, n\} \]

\[\beta_0 = 0 < \beta_1 < \beta_2 < \ldots < \beta_t = \infty \]

“Safe steps”

\[\beta \rightarrow \beta + \frac{1}{n} \]

\[\beta \rightarrow \beta (1 + \frac{1}{\ln A}) \]

\[\ln A \rightarrow \infty \]

Cooling schedules of length

\[O(n \ln A) \]

\[O((\ln n) (\ln A)) \]

(Bezáková, Štefankovič, Vigoda, V.Vazirani’06)
No better fixed schedule possible

\(Z(0) = A \quad H: \Omega \rightarrow \{0,\ldots, n\} \)

A schedule that works for all \(a \in [0, A-1] \)

\[Z_a(\beta) = \frac{A}{1+a} \left(1 + a e^{-\beta n} \right) \]

(with \(a \in [0, A-1] \))

has LENGTH \(\geq \Omega \left((\ln n)(\ln A) \right) \)
Parameters

\[Z(0) = A \quad H : \Omega \rightarrow \{0, \ldots, n\} \]

Our main result:

Can get adaptive schedule of length \(O^* \left((\ln A)^{1/2} \right) \)

Previously:

Non-adaptive schedules of length \(\Omega^* (\ln A) \)
Existential part

Lemma:

for every partition function there exists
a cooling schedule of length $O^*((\ln A)^{1/2})$
Express **SCV using** partition function

(going from β to α) \[E[X] = \frac{Z(\alpha)}{Z(\beta)} \]

\[W \sim \mu_\beta \rightarrow X = \exp(H(W)(\beta - \alpha)) \]

\[\frac{E[X^2]}{E[X]^2} = \frac{Z(2\alpha - \beta) \ Z(\beta)}{Z(\alpha)^2} \leq C \]
\[
\frac{E[X^2]}{E[X]^2} = \frac{Z(2\alpha - \beta) Z(\beta)}{Z(\alpha)^2} \leq C
\]

\[f(\gamma) = \ln Z(\gamma)\]

\[\leq C' = (\ln C)/2\]
\[f(\gamma) = \ln Z(\gamma) \]

- \(f \) is decreasing
- \(f \) is convex
- \(f'(0) \geq -n \)
- \(f(0) \leq \ln A \)

Proof:

Either \(f \) or \(f' \) changes a lot.

Let \(K := \Delta f \)

\[\Delta(\ln |f'|) \geq \frac{1}{K} \]
f: [a,b] → R, convex, decreasing can be “approximated” using
\[\sqrt{\frac{f'(a)}{f'(b)}}(f(a) - f(b)) \]
segments
Technicality: getting to $2\alpha - \beta$
Technicality: getting to $2\alpha - \beta$
Technicallity: getting to $2\alpha - \beta$
Technicality: getting to $2\alpha - \beta$
Existential → Algorithmic

can get adaptive schedule of length $O^*\left((\ln A)^{1/2}\right)$
Algorithmic construction

Our main result:

using a sampler oracle for μ_β

$$\mu_\beta (x) = \frac{\exp(-H(x)\beta)}{Z(\beta)}$$

we can construct a cooling schedule of length

$$\leq 38 (\ln A)^{1/2}(\ln \ln A)(\ln n)$$

Total number of oracle calls

$$\leq 10^7 (\ln A) (\ln \ln A+\ln n)^7 \ln (1/\delta)$$
Algorithmic construction

current inverse temperature β

ideally move to α such that

$$B_1 \leq \frac{E[X^2]}{E[X]^2} \leq B_2$$

$$E[X] = \frac{Z(\alpha)}{Z(\beta)}$$
Algorithmic construction

current inverse temperature β

ideally move to α such that

$$B_1 \leq \frac{E[X^2]}{E[X]^2} \leq B_2$$

$$E[X] = \frac{Z(\alpha)}{Z(\beta)}$$

X is “easy to estimate”
Algorithmic construction

current inverse temperature β

ideally move to α such that

$$B_1 \leq \frac{E[X^2]}{E[X]^2} \leq B_2$$

$$E[X] = \frac{Z(\alpha)}{Z(\beta)}$$

we make progress (assuming $B_1 > 1$)
Algorithmic construction

current inverse temperature β

ideally move to α such that

$$B_1 \leq \frac{E[X^2]}{E[X]^2} \leq B_2$$

$$E[X] = \frac{Z(\alpha)}{Z(\beta)}$$

need to construct a “feeler” for this
Algorithmic construction

current inverse temperature β

ideally move to α such that

$$B_1 \leq \frac{E[X^2]}{E[X]^2} \leq B_2$$

$$E[X] = \frac{Z(\alpha)}{Z(\beta)}$$

$$\equiv \frac{Z(\beta)}{Z(\alpha)} \cdot \frac{Z(2\beta-\alpha)}{Z(\alpha)}$$

need to construct a “feeler” for this
Algorithmic construction

current inverse temperature β

ideally move to α such that

$$B_1 \leq \frac{E[X^2]}{E[X]^2} \leq B_2$$

$$\iff \frac{Z(\beta)}{Z(\alpha)} \leq \frac{Z(2\beta - \alpha)}{Z(\alpha)}$$

bad "feeler"

$$E[X] = \frac{Z(\alpha)}{Z(\beta)}$$

need to construct a "feeler" for this
Rough estimator for \(\frac{Z(\beta)}{Z(\alpha)} \)

\[
Z(\beta) = \sum_{k=0}^{n} a_k e^{-\beta k}
\]

For \(W \sim \mu_\beta \) we have

\[
P(H(W)=k) = \frac{a_k e^{-\beta k}}{Z(\beta)}
\]
Rough estimator for $Z(\beta)$

If $H(X)=k$ likely at both α, $\beta \Rightarrow$ rough estimator

$$Z(\beta) = \sum_{k=0}^{n} a_k e^{-\beta k}$$

For $W \sim \mu_\beta$ we have $P(H(W)=k) = \frac{a_k e^{-\beta k}}{Z(\beta)}$

For $U \sim \mu_\alpha$ we have $P(H(U)=k) = \frac{a_k e^{-\alpha k}}{Z(\alpha)}$
Rough estimator for $\frac{z(\beta)}{z(\alpha)}$

For $W \sim \mu_\beta$ we have $P(H(W)=k) = \frac{a_k e^{-\beta k}}{Z(\beta)}$

For $U \sim \mu_\alpha$ we have $P(H(U)=k) = \frac{a_k e^{-\alpha k}}{Z(\alpha)}$

$$\frac{P(H(U)=k)}{P(H(W)=k)} e^{k(\alpha-\beta)} = \frac{Z(\beta)}{Z(\alpha)}$$
Rough estimator for $\frac{Z(\beta)}{Z(\alpha)}$

$$Z(\beta) = \sum_{k=0}^{n} a_k e^{-\beta k}$$

For $W \sim \mu_\beta$ we have

$$P(H(W) \in [c,d]) = \frac{\sum_{k=c}^{d} a_k e^{-\beta k}}{Z(\beta)}$$
Rough estimator for $\frac{Z(\beta)}{Z(\alpha)}$

If $|\alpha - \beta| \cdot |d-c| \leq 1$ then

$$\frac{1}{e} \cdot \frac{Z(\beta)}{Z(\alpha)} \leq \frac{P(H(U) \in [c,d])}{P(H(W) \in [c,d])} e^{c(\alpha - \beta)} \leq e \cdot \frac{Z(\beta)}{Z(\alpha)}$$

We also need $P(H(U) \in [c,d])$ and $P(H(W) \in [c,d])$ to be large.
Split \{0,1,...,n\} into \(h \leq 4(\ln n)^{\sqrt{\ln A}} \) intervals
\([0],[1],[2],...,[c,c(1+1/\sqrt{\ln A})],...\)

for any inverse temperature \(\beta \) there exists a interval with \(P(H(W) \in I) \geq 1/8h \)

We say that \(I \) is **HEAVY** for \(\beta \)
Algorithm

repeat

find an interval I which is heavy for the current inverse temperature β

see how far I is heavy (until some β^*)

use the interval I for the feeler $\frac{Z(\beta)}{Z(\alpha)}$ $\frac{Z(2\beta-\alpha)}{Z(\alpha)}$

either
* make progress, or
* eliminate the interval I
Algorithm

repeat

find an interval I which is heavy for the current inverse temperature β

see how far I is heavy (until some β^*)

use the interval I for the feeler

$\frac{Z(\beta)}{Z(\alpha)} \quad \frac{Z(2\beta-\alpha)}{Z(\alpha)}$

either

* make progress, or
* eliminate the interval I
* or make a “long move”
if we have sampler oracles for μ_β then we can get adaptive schedule of length $t=O^*\left((\ln A)^{1/2}\right)$

- independent sets $O^*(n^2)$
 (using Vigoda’01, Dyer-Greenhill’01)

- matchings $O^*(n^2m)$
 (using Jerrum, Sinclair’89)

- spin systems:
 - Ising model $O^*(n^2)$ for $\beta<\beta_c$
 (using Marinelli, Olivieri’95)
 - k-colorings $O^*(n^2)$ for $k>2\Delta$
 (using Jerrum’95)
input: A black-box sampler for $X \sim \mu_\beta$ for any $\beta \geq 0$, starting inverse temperature β_0.

output: A cooling schedule for Z.

Bad $\leftarrow \emptyset$

print β_0

if $\beta_0 < \ln A$ then

$I \leftarrow \text{Find-Heavy}(\beta_0, \text{Bad})$

$w \leftarrow$ the width of I

$L \leftarrow \min\{\beta_0 + 1/w, \ln A\}$; \hspace{1cm} \text{(where } 1/0 = \infty)\]

$\beta^* \leftarrow$ binary search on $\beta^* \in [\beta_0, L]$ with precision $1/(2n)$, using predicate $\text{Is-Heavy}(\beta^*, I)$

$\beta \leftarrow$ binary search on $\beta \in [\beta_0, (\beta^* + \beta_0)/2]$ with precision $1/(4n)$, using predicate $\text{Est}(I, \beta_0, \beta) \cdot \text{Est}(I, 2\beta - \beta_0, \beta) \leq 2000$

if $\beta < (\beta^* + \beta_0)/2$ then

Print-Cooling-Schedule(β) \hspace{1cm} \text{(optimal move)}

else

if $\beta = L$ then

Print-Cooling-Schedule(β) \hspace{1cm} \text{(long move)}

else

$\gamma \leftarrow (\beta^* - \beta_0)/2$

print $\beta_0 + \gamma, \beta_0 + (3/2)\gamma, \beta_0 + (7/4)\gamma, \ldots, \beta_0 + (2 - 2^{-[\ln \ln A]})\gamma$

Bad \leftarrow Bad \cup I

Print-Cooling-Schedule(β^*) \hspace{1cm} \text{(interval move)}

end

end

else

print ∞

end