string graph = intersection graph of a set of curves in the plane
Examples:

\(K_n \) is a string graph for any \(n \)

Any planar graph is a string graph
Examples:

\(K_n \) is a string graph for any \(n \)

Any planar graph is a string graph
Given a graph G, decide if it is a string graph?
Given a graph G, decide if it is a string graph?

Not a string graph!
History of the Question:

S. Benzer: On the topology of the genetic fine structure '1959

F.W. Sinden: Topology of thin RC circuits '1966

conductors of with some capacitance between them do intersect, other conductors do not intersect
Related older problem:

Diagrammatic reasoning

Is it possible that some A is B, some B is C, but no A is C?
Is it possible that some A is B, some B is C, but no A is C?
...has old history

J. Vives
J. Sturm
G. Leibniz
J. Lambert
L. Euler
Can any true statement of type*

“Is it possible that some A is B, some B is C, but no A is C?”

be represented using diagrams?

(in the plane, each class being represented by a region homeomorphic to a disc)

*) i.e. for any two concepts we specify whether they must/can/can not intersect.
Can any true statement of type

“Is it possible that some A is B, some B is C, but no A is C?”

be represented using diagrams?

NO
Can we for any true statement of type

“Is it possible that some A is B, some B is C, but no A is C?”

decline whether it can be represented by diagrams?
Can we for any true statement of type

"Is it possible that some A is B, some B is C, but no A is C?"

declare whether it can be represented by diagrams?

Given a graph G, decide if it is a string graph?
Some known results:

Ehrlich, Even, Tarjan ’76:
computing the chromatic number of a string graph is NP-complete

Kratochvíl ’91:
recognizing string graphs is NP-hard

induced minor closed, infinitely many non-isomorphic forbidden induced minors
An interesting question:

Kratochvíl, Matoušek ’91:
Can we give an upper bound on the number of intersections of the smallest realization?
Weak realizability:

given a graph G and a set of pairs of edges R – is there a drawing of G in which only edges in R may intersect?

e.g. for $R=0$ \[\rightarrow\] planarity
string graph \rightarrow weak realizability

any edge from \bullet and \bullet from \bullet and \bullet

KM '91
Can we give an upper bound on the number of intersections of the smallest weak realization?

SURPRISE! [KM’91]

There are graphs whose smallest weak representation has exponentially many intersections!

Conjecture[KM’91]: at most exponentially many many intersections
Theorem: A graph with m edges has weak realization with at most m^{2^m} intersections.

Deciding string graphs is in NEXP.
Given a graph G and pairs of edges which are allowed to intersect (some set R).

(e.g. K_5 with 2 edges allowed to intersect)

If (G,R) can be realized in the plane, can we give an upper bound on the number of intersections in the smallest realization?
Idea: if there are too many intersections on an edge we will be able to redraw the realization to reduce the number of intersections.

color the edges
suppose there are $>2^m$ intersections on e

Then there is a non-trivial segment of e where each color occurs even number of times (possibly 0).

(nontrivial = with >0 intersections)
suppose there are \(>2^m \) intersections on \(e \)

Then there is a non-trivial segment of \(e \) where each color occurs even number of times (possibly 0).

\[\uparrow \text{vector of parities of the colors to the left} \]

\((2^m \text{ pigeonholes})\)

Then there is a non-trivial segment of \(e \) where each color occurs even number of times (possibly 0).
look at the segment:

(a circle)

axis (a mirror)
number the intersections with circle:

2-3, 6-7, ..., 4k-2 – 4k-1- connected outside

4-5, ..., 4k – 4k+1- also connected outside
look at the connections 2-3, 6-7, ...:

(for all colors, respecting allowed intersections)

2-3, 6-7, ..., 4k-2-4k-1 - connected outside
clear the inside and bring them inside

(a circle)

(for all colors, respecting allowed intersections)

2-3, 6-7, ..., 4k-2-4k-1- connected outside
clear the inside and bring them inside

(a circle)

(4-5,...,4k – 4k+1- connected outside)
use mirror – now everything is connected.

What about e?
use upper or lower half of the circle as e

Decreased the # of intersections!

(Thus in a realization with minimal number of intersections $<m2^m$ of them)
consequences to topological inference:
can decide realizability for more complex formulas:

\begin{itemize}
 \item disjoint
 \item meet
 \item covered
 \item inside
 \item overlap
\end{itemize}
in NEXP
Conclusion:

STRING GRAPHS

NEXP
EXP
PSPACE
PH
NP