Insertion / Merge / Heapsort

- **Insertion sort:**
 - $O(n^2)$
 - Sorts in place.
- **Merge sort:**
 - $O(n \lg n)$
 - Needs $O(n)$ extra space.
- **Heap sort:**
 - $O(n \lg n)$
 - Sorts in place!
 - *In practice* usually slower than Quicksort.
 - Not a stable sort.
Heaps, huh?

- Heap - data structure used in heapsort.
- Different concept that in memory management.
- Useful for priority queues as well.
- Heap (almost always) is a “nearly” complete binary tree – gets filled on all levels, except on lowest. Then – from left to right.
- Each node in the tree contains a value.
Heaps!

- Nodes of heaps satisfy heap property.
- Max-heap property:
 - For every node \(i \):
 \[A[\text{PARENT}(i)] \geq A[i] \]
 - Root - largest.
- Min-heap property:
 - For every node \(i \):
 - \(A[\text{PARENT}(i)] \leq A[i] \)
 - Root – smallest.
- We will use max-heaps.
- Example.
Implementing a heap

• Storage – array, with the following indexing:
 – $\text{PARENT}(i) = \text{floor}(i/2)$
 – $\text{LEFT-CHILD}(i) = 2 \times i$
 – $\text{RIGHT-CHILD}(i) = 2 \times i + 1$
 – Quick to calculate (by shifting).

• Example.
• **Height of a node** – number of edges on the longest downward path to a leaf.
• **Height of the heap** – height of root node.
• **Height** = \(\Theta(lg n) \), where \(n \) – number of elements
• We will use heap-size[\(A \)] \(\leq \) length[\(A \)] in our algorithms.
Our building blocks

- **MAX-HEAPIFY**(*A*, *i*) – fix a node *i* in heap *A* by “floating down” the value – \(O(lg\ n)\)
- **BUILD-MAX-HEAP**(*A*) – produces max-heap from unordered array – \(O(n)\)
- **HEAPSORT**(*A*) – sorts array in place – \(O(n\ lg\ n)\)
MAX-HEAPIFY(A, i)

- A – possibly “broken” heap, i - index.
- Assumption: children LEFT(i) and RIGHT(i) are max-heaps, A[i] might be smaller.
- Goal: “float down” the value at A[i] to its correct place down to heap-size[A].
- Idea: determine the largest of A[i], A[LEFT(i)], A[RIGHT(i)]. If that is not A[i], swap, and recurse.
- Running time O(lg n). Example.
BUILD- MAX- HEAP(A)

- **Goal**: convert an array into a max-heap.
- **Idea**: “float up” values that are in wrong places.
- **BUILD- MAX- HEAP(A):**

  ```
  heap-size[A] = length[A]
  FOR i = floor(length[A]/ 2) DOWNTO 1
  MAX-HEAPIFY(A, i)
  ```

- **Example.**
- **Running time**: $O(n)$, using clever summation (see the book for details).
HEAPSORT(A)

• BUILD-MAX-HEAP(A)
 FOR i = length[A] DOWNTO 2
 heap-size[A] = heap-size[A] - 1
 MAX-HEAPIFY(A, 1)

• Idea: build a max-heap, pull out the top element, replace with last, re-run heapify, repeat. Example.

• Running time: O(n) + n-1 * O(lg n) = O(n lg n)
Priority queues

- **Priority queue** – set S of elements, each associated with a key.
- **Max-priority-queue:**
 - $\text{INSERT}(S, x)$
 - $\text{MAX}(S)$
 - $\text{EXTRACT-MAX}(S)$
- **Example:** scheduling jobs.
Priority queue implementation

- EXTRACT-MAX(A):
 - Idea: remember the root, move the last element to first, shrink the heap by 1, heapify.
 - O(lg n)
- INSERT(A, x):
 - Idea: increase heap, add the element as last, move A[i] up while A[i] > A[PARENT(i)]