1 Schedule

<table>
<thead>
<tr>
<th>Part 1 of the homework is due Sep 24.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Part 2 of the homework is due Sep 29.</td>
</tr>
<tr>
<td>The QUIZ will be on Tuesday, Sep. 29.</td>
</tr>
</tbody>
</table>

2 List of algorithms covered in the class

(B-basic, I-intermediate, A-advanced):

I: Karatsuba-Offman (p.47, DSV).
B: Mergesort (p.50, DSV).
I: Linear-time deterministic selection (p.189, CLRS).
A: FFT (p.57, DSV).

3 Basic material

Important concepts, problems, theorems, and algorithms:

- Merge-sort, linear-time select algorithm (median).
- Evaluation, interpolation, convolution.

Testing method:

- Find the unique polynomial of degree d which has given values on a set of $d+1$ points (problems with $d \leq 3$).
- Apply master’s theorem to recurrence $T(n) = aT(n/b) + O(n^d)$.
- Trace the execution of the expected linear-time select algorithm (p.54 of DPV).
- Trace the first step of the deterministic linear-time select algorithm.
- Compute the convolution of two sequences (multiply two polynomials).
- Evaluate a polynomial on the n-th roots of unity (fourier transform), for $n = 2, 4$.

Example problems:

2.1 (due Sep 24) Find the unique polynomial of degree 2 such that $p(-1) = 2$, $p(0) = 3$, and $p(1) = 6$.

2.2 (due Sep 24) Solve the following recurrences: $T(n) = 3T(n/2) + O(n)$, $T(n) = 3T(n/2) + O(n^2)$.

2.3 (due Sep 24) Let $A[1..10] = [7, 2, 4, 9, 5, 1, 3, 10, 6, 8]$. Assume that we run the randomized algorithm with the following parameters: SELECT($A, 3$). Suppose that the following sequence of v's picked by the algorithm is 7, 2, 4. Trace the execution of the algorithm.

2.4 (due Sep 24) Let

$A[1..25] = [7, 2, 23, 4, 9, 5, 1, 24, 3, 10, 6, 8, 17, 12, 14, 19, 25, 22, 15, 11, 13, 20, 16, 21, 18]$.

Suppose that we use the deterministic linear-time select algorithm on A. Compute the pivot used by the algorithm to split A.

1
2.5 (due Sep 24) Compute the convolution of \((1,0,0,1,0,1)\) with \((0,1,0,0,1)\). (DEFINITION: convolution of two sequences \(a_0, \ldots, a_n\) and \(b_0, \ldots, b_m\) is a sequence \(c_0, \ldots, c_{m+n}\), where

\[
c_k = \min(k, n) \sum_{i=\max(0, k-m)} \alpha_i b_{k-i},
\]

i.e., \(c_0, \ldots, c_{m+n}\) is the coefficient sequence of the polynomial \((a_0 + a_1 x + \cdots + a_n x^n)(b_0 + b_1 x + \cdots + b_m x^m)\).

2.6 (due Sep 24) The convolution of sequence \((1, 2, 3, 4)\) with an unknown sequence \(S\) is sequence \((5, 11, 17, 23, 4)\). Compute the sequence \(S\).

2.7 (due Sep 24) Evaluate the polynomial \(x^3 + 3x^2 - x + 1\) on the 4-th roots of unity. (DEFINITION: \(n\)-th roots of unity are \(\exp(2\pi ik/n)\), where \(k = 0, \ldots, n - 1\). For example, 4-th roots of unity are: \(i, -1, -i, 1\).)

4 Additional homework

2.8 (due Sep 24) We are given an array \(A\) with \(n\) elements and a number \(C\). Assume that the sum of the elements in \(A\) is larger than \(C\). We would like to compute the size of the smallest subset of \(A\) whose elements sum to at least \(C\). (For example, if \(A = [8, 3, 9, 2, 7, 1, 5]\) and \(C = 18\) then the answer is 3; the set is \([7, 8, 9]\).) Give a linear-time algorithm for this problem. (HINT: use the linear-time SELECT algorithm)

2.9 (due Sep 24) We are given \(k\) sorted lists \(A_1, \ldots, A_k\). The total number of elements in the lists is \(n\). We would like to merge the lists into one sorted list \(B\) (the number of elements in \(B\) will be \(n\)). Give an algorithm which solves this problem in time \(O(n \log k)\).

2.10 (due Sep 24) We are given two sorted arrays \(A\) and \(B\), each containing \(n\) elements. Assume that the arrays do not contain duplicates, and the elements in \(A\) are different from elements in \(B\). We would like to compute the median of \(A \cup B\). For example if \(A = [1, 2, 3, 4, 5]\) and \(B = [6, 7, 8, 9, 10]\) then the median is 5; if \(A = [1, 3, 5, 7, 9]\) and \(B = [2, 4, 6, 8, 10]\) then the median is again 5. Give an \(O(\log n)\) algorithm for this problem.

2.11 (due Sep 29) We are given an array of integers \(A[1..n]\). We would like to determine whether there exists an integer \(x\) which occurs in \(A\) more than \(n/2\) times (i.e., whether \(A\) has a majority element). Give an algorithm which runs in time \(O(n)\). (HINT: use the linear-time SELECT algorithm.)

Example: For \(A = [3, 1, 2]\) the answer is NO. For \(A = [3, 1, 3]\) the answer is YES.

2.12 (due Sep 29) We are given an array of integers \(A[1..n]\). We would like to determine whether there exists an integer \(x\) which occurs in \(A\) more than \(n/3\) times. Give an algorithm which runs in time \(O(n)\). (HINT: use the linear-time SELECT algorithm)

2.13 (due Sep 29) We are given an array of integers \(A[1..n]\) which is almost sorted in the following sense: for all \(i \in \{1, \ldots, n-k\}\) we have \(A[i] \leq A[i+k]\). Give an algorithm which sorts the array \(A\). Your algorithm should run in time \(O(n \log k)\).

2.14 (due Sep 29) We are given two arrays of integers \(A[1..n]\) and \(B[1..n]\), and a number \(X\). Design an algorithm which decides whether there exist \(i, j \in \{1, \ldots, n\}\) such that \(A[i] + B[j] = X\). Your algorithm should run in time \(O(n \log n)\).

2.15 (due Sep 29) Let \(A\) and \(B\) be two sets. Their sum \(A + B\) is defined to be

\[
A + B := \{a + b \mid a \in A, \ b \in B\},
\]

for example if \(A = \{1, 4, 6\}\) and \(B = \{2, 5\}\) then \(A + B = \{3, 6, 8, 9, 11\}\). Give \(O(n \log n)\) algorithm whose input is two sets \(A, B \subseteq \{1, \ldots, n\}\) and the output is set \(A + B\).
5 Additional problems from the book (do not turn in)

Try to solve the following problems. A few of them will be on the quiz. We will go over the ones that you choose in the problem sessions.

- 2.4, 2.5, 2.8, 2.10, 2.12, 2.16, 2.17, 2.18, 2.21, 2.26, 2.27, 2.28, 2.29, 2.30, 2.31, 2.34.