
Divide and Conquer Algorithms (part 2 of CSC 282),
http://www.cs.rochester.edu/~stefanko/Teaching/10CS282

1 Schedule

Homework is due Sep 28.
The QUIZ will be on Thursday, Sep. 30.

2 List of algorithms covered in the class

(B-basic, I-intermediate, A-advanced):

I: Karatsuba-Offman (p.47, DSV).
B: Mergesort (p.50, DSV).
I: Linear time deterministic selection (p.189, CLRS).
A: Linear expected-time selection (p.53, DSV).
A: FFT (p.57, DSV).

3 Basic material

Important concepts, problems, theorems, and algorithms:

• Recurrences.

• Merge-sort, linear-time select algorithm (median).

• Evaluation, interpolation, convolution.

Example problems (solve, but do NOT turn in):

2.1 Find the unique polynomial of degree 2 such that p(−1) = 2, p(0) = 3, and p(1) = 6.

2.2 Solve the following recurrence relations and give O bound for each of them.

• T (n) = 5T (n/4) + n.

• T (n) = 2T (n/3) + 1.

• T (n) = 9T (n/3) + n2.

• T (n) = 7T (n/7) + n.

2.3 Let
A[1..25] = [7, 2, 23, 4, 9, 5, 1, 24, 3, 10, 6, 8, 17, 12, 14, 19, 25, 22, 15, 11, 13, 20, 16, 21, 18].

Suppose that we use the deterministic linear-time select algorithm on A. Compute the pivot used by the algorithm
to split A.

2.4 Compute the convolution of (1, 0, 0, 1, 0, 1) with (0, 1, 0, 0, 1). (Definition: convolution of two sequences
a0, . . . , an and b0, . . . , bm is a sequence c0, . . . , cm+n, where

ck =
min(k,n)∑

i=max(0,k−m)

aibk−i,

i. e., c0, . . . , cm+n is the coefficient sequence of the polynomial (a0 + a1x + · · ·+ anxn)(b0 + b1x + · · ·+ bmxm)).

1



2.5 The convolution of sequence (1, 2, 3, 4) with an unknown sequence S is sequence (5, 11, 17, 23, 4). Compute the
sequence S.

2.6 Evaluate the polynomial x3 + 3x2 − x + 1 on the 4-th roots of unity. (Definition: n-th roots of unity are
exp(2πik/n), where k = 0, . . . , n− 1. For example, 4-th roots of unity are: i,−1,−i, 1.)

2.7 Let A and B be two sets. Their sum A + B is defined to be

A + B := {a + b | a ∈ A, b ∈ B},

for example if A = {1, 4, 6} and B = {2, 5} then A + B = {3, 6, 8, 9, 11}. Give O(n log n) algorithm whose input is
two sets A,B ⊆ {1, . . . , n} and the output is set A + B. (Hint: use the FFT algorithm.)

4 Additional homework

In problems 2.8, 2.11, 2.12, do NOT use hashing (in practice hashing would be a great technique for these problems
even though it does not have worst-case guarantees), do NOT use linear sorting (the assumptions of the problems
do not allow for a linear sorting algorithm, such as, radix-sort).

2.8 (due Sep 28) We are given an array A with n elements and a number C. Assume that the sum of the elements
in A is larger than C. We would like to compute the size of the smallest subset of A whose elements sum to at least
C. (For example, if A = [8, 3, 9, 2, 7, 1, 5] and C = 18 then the answer is 3; the set is {7, 8, 9}.) Give a linear-time
algorithm for this problem. (HINT: use the linear-time SELECT algorithm)

2.9 (due Sep 28) We are given k sorted lists A1, . . . , Ak. The total number of elements in the lists is n. We would
like to merge the lists into one sorted list B (the number of elements in B will be n). Give an algorithm which solves
this problem in time O(n log k).

2.10 (due Sep 28) We are given two sorted arrays A and B, each containing n elements. Assume that the arrays
do not contain duplicates, and the elements in A are different from elements in B. We would like to compute the
median of A∪B. For example if A = [1, 2, 3, 4, 5] and B = [6, 7, 8, 9, 10] then the median is 5; if A = [1, 3, 5, 7, 9] and
B = [2, 4, 6, 8, 10] then the median is again 5. Give an O(log n) algorithm for this problem.

2.11 (due Sep 28) We are given an array of integers A[1..n]. We would like to determine whether there exists an
integer x which occurs in A more than n/2 times (i. e., whether A has a majority element). Give an algorithm which
runs in time O(n). (HINT: use the linear-time SELECT algorithm.)

Example: For A = [3, 1, 2] the answer is NO. For A = [3, 1, 3] the answer is YES.

2.12 (due Sep 28) We are given an array of integers A[1..n]. We would like to determine whether there exists
an integer x which occurs in A more than n/3 times. Give an algorithm which runs in time O(n). (HINT: use the
linear-time SELECT algorithm)

2.13 (due Sep 28) We are given an array of integers A[1..n] which is almost sorted in the following sense: for all
i ∈ {1, . . . , n − k} we have A[i] ≤ A[i + k]. Give an algorithm which sorts the array A. Your algorithm should run
in time O(n log k).

2.14 (due Sep 28) We are given two arrays of integers A[1..n] and B[1..n], and a number X. Design an algorithm
which decides whether there exist i, j ∈ {1, . . . , n} such that A[i] + B[j] = X. Your algorithm should run in time
O(n log n).

2



5 Additional problems from the book (do not turn in)

Try to solve the following problems. A few of them will be on the quiz. We will go over the ones that you choose in
the problem sessions.

• 2.4, 2.5, 2.8, 2.10, 2.12, 2.16, 2.17, 2.18, 2.21, 2.26, 2.27, 2.28, 2.29, 2.30, 2.31, 2.34.

3


	Schedule
	List of algorithms covered in the class
	Basic material
	Additional homework
	Additional problems from the book (do not turn in)

