
Divide and Conquer Algorithms (part 2 of CSC 282),
http://www.cs.rochester.edu/~stefanko/Teaching/11CS282

1 Schedule

”Homework” problem sessions are in CSB 601, 6:15-7:15pm on Sep. 14
(Wednesday) and on Sep. 21 (Wednesday); held by Rintaro Kuroiwa and Josh
Pawlicki.

Homework is due Sep. 22 (Thursday).

”Exam” problem session is in CSB 601, 4:45-5:45pm on Sep. 26 (Monday).

EXAM #2 will be on Tuesday, Sep. 27.

2 List of algorithms covered in the class

(B-basic, I-intermediate, A-advanced):

I: Karatsuba-Offman (p.47, DSV).
B: Mergesort (p.50, DSV).
I: Linear time deterministic selection (p.189, CLRS).
A: Linear expected-time selection (p.53, DSV).
A: FFT (p.57, DSV).

Important concepts, problems, theorems, and algorithms:

• Recurrences, master theorem.

• Merge-sort, linear-time select algorithm (median).

• Evaluation, interpolation, convolution.

3 Basic Homework - solve and turn in

2.1 Find the unique polynomial of degree 2 such that p(−1) = 2, p(0) = 3, and p(1) = 6.

2.2 Solve the following recurrence relations and give O bound for each of them (you can use Master theorem).

• T (n) = 5T (n/4) + n.

• T (n) = 2T (n/3) + 1.

• T (n) = 9T (n/3) + n2.

• T (n) = 7T (n/7) + n.

2.3 Compute the convolution of (1, 0, 0, 1, 0, 1) with (0, 1, 0, 0, 1). (Definition: convolution of two sequences
a0, . . . , an and b0, . . . , bm is a sequence c0, . . . , cm+n, where

ck =
min(k,n)∑

i=max(0,k−m)

aibk−i,

i. e., c0, . . . , cm+n is the coefficient sequence of the polynomial (a0 + a1x + · · ·+ anxn)(b0 + b1x + · · ·+ bmxm)).

1



2.4 The convolution of sequence (1, 2, 3, 4) with an unknown sequence S is sequence (5, 11, 17, 23, 4). Compute the
sequence S.

2.5 Let A and B be two sets. Their sum A + B is defined to be

A + B := {a + b | a ∈ A, b ∈ B},

for example if A = {1, 4, 6} and B = {2, 5} then A + B = {3, 6, 8, 9, 11}. Give O(n log n) algorithm whose input is
two sets A,B ⊆ {1, . . . , n} and the output is set A + B. (Hint: use the FFT algorithm.)

2.6 (due Sep. 22) We are given k sorted lists A1, . . . , Ak. The total number of elements in the lists is n. We
would like to merge the lists into one sorted list B (the number of elements in B will be n). Give an algorithm which
solves this problem in time O(n log k).

2.7 (due Sep. 22) We are given two arrays of integers A[1..n] and B[1..n], and a number X. Design an algorithm
which decides whether there exist i, j ∈ {1, . . . , n} such that A[i] + B[j] = X. Your algorithm should run in time
O(n log n).

4 Advanced Homework - solve and turn in

In problems 2.8, 2.9, 2.10, do NOT use hashing (in practice hashing would be a great technique for these problems
even though it does not have worst-case guarantees), do NOT use linear sorting (the assumptions of the problems
do not allow for a linear sorting algorithm, such as, radix-sort).

2.8 (due Sep. 22) We are given an array A with n elements and a number C. Assume that the sum of the
elements in A is larger than C. We would like to compute the size of the smallest subset of A whose elements sum
to at least C. (For example, if A = [8, 3, 9, 2, 7, 1, 5] and C = 18 then the answer is 3; the set is {7, 8, 9}.) Give a
linear-time algorithm for this problem. (HINT: use the linear-time SELECT algorithm)

2.9 (due Sep. 22) We are given an array of integers A[1..n]. We would like to determine whether there exists an
integer x which occurs in A more than n/2 times (i. e., whether A has a majority element). Give an algorithm which
runs in time O(n). (HINT: use the linear-time SELECT algorithm.)

Example: For A = [3, 1, 2] the answer is NO. For A = [3, 1, 3] the answer is YES.

2.10 (due Sep. 22) We are given an array of integers A[1..n]. We would like to determine whether there exists
an integer x which occurs in A more than n/3 times. Give an algorithm which runs in time O(n). (HINT: use the
linear-time SELECT algorithm)

2.11 (due Sep. 22) We are given an array of integers A[1..n] which is almost sorted in the following sense: for all
i ∈ {1, . . . , n − k} we have A[i] ≤ A[i + k]. Give an algorithm which sorts the array A. Your algorithm should run
in time O(n log k).

2.12 (due Sep. 22) We are given two sorted arrays A and B, each containing n elements. Assume that the arrays
do not contain duplicates, and the elements in A are different from elements in B. We would like to compute the
median of A∪B. For example if A = [1, 2, 3, 4, 5] and B = [6, 7, 8, 9, 10] then the median is 5; if A = [1, 3, 5, 7, 9] and
B = [2, 4, 6, 8, 10] then the median is again 5. Give an O(log n) algorithm for this problem.

2



2.13 (due Sep. 22) We are given an array of integers A[0..n− 1]. Dr. Median uses the following program

for i from 0 to n− 1 do
for j from 0 to n− 1 do

C[i+n*j] = A[i]+A[j];
return the median of C[0], C[1], . . . , C[n2 − 1].

Dr. Median needs a faster program for the task. Give an O(n log n) algorithm that returns the same answer as the
algorithm above.

5 Additional problems from the book (do not turn in)

Try to solve the following problems. A few of them will be on the quiz. We will go over the ones that you choose in
the problem sessions.

• 2.4, 2.5, 2.8, 2.10, 2.12, 2.16, 2.17, 2.18, 2.21, 2.26, 2.27, 2.28, 2.29, 2.30, 2.31, 2.34.

3


	Schedule
	List of algorithms covered in the class
	Basic Homework - solve and turn in
	Advanced Homework solve and turn in
	Additional problems from the book (do not turn in)

